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ABSTRACT. Given a finite group G, denote by D(G) the degree pattern of G
and by OC(Q) the set of all order components of G. Denote by hop (G) (resp.
hoc(G)) the number of isomorphism classes of finite groups H satisfying condi-
tions |H| = |G| and D(H) = D(G) (resp. OC(H) = OC(G)). A finite group G
is called OD-characterizable (resp. OC-characterizable) if hop(G) = 1 (resp.
hoc(G) =1). Let C = Cp(2) be a symplectic group over the binary field, for
which 2P — 1 > 7 is a Mersenne prime. The aim of this article is to prove that
hop(C) =1 = hoc(C).
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1. Introduction

Only finite groups will be considered. Let G be a group, m(G) the set of all prime
divisors of its order and w(G) be the spectrum of G, that is the set of its element
orders. The prime graph GK(G) (or Gruenberg-Kegel graph) of G is a simple graph
whose vertex set is m(G) and two distinct vertices p and ¢ are joined by an edge if
and only if pg € w(G). Let ¢(G) be the number of connected components of GK(G).
The vertex set of the ith connected component of GK(G) is denoted by m;(G) for
each i =1,2,...,t(G). In the case when 2 € 7(G), we assume that 2 € 71(G). The
classification of finite simple groups with disconnected prime graph was obtained by
Williams [13] and Kondratév [4]. Recall that a clique in a graph is a set of pairwise
adjacent vertices. Note that for all non-abelian simple groups S with disconnected
prime graph, all connected components m;(S) for 2 < i < t(5) are cliques, for
instance, see [13]. The degree degq(p) of a vertex p € 7(G) in GK(G) is the
number of edges incident on p. If 7(G) = {p1,p2,...,pn} With p1 < pa < -+ < pp,

then we define

D(G) = (degg(p1),degg(p2), - - -, degq(pn)),
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which is called the degree pattern of G. Given a group G, denote by hop(G) the
number of isomorphism classes of groups with the same order and degree pattern

as G. All finite groups, in terms of the function hop(+), are classified as follows:

Definition 1.1. A group G is called k-fold OD-characterizable if hop(G) = k.
Usually, a 1-fold OD-characterizable group is simply called OD-characterizable.

There are scattered results in the literature showing that certain simple groups
are k-fold OD-characterizable for k € {1,2}. The most recent version of the list of
such simple groups is presented in [8, Tables 2 and 3]. Until now, no examples of
simple groups S with hop(S) > 3 were known. Therefore, we posed the following

question:
Problem 1.2. Is there a non-abelian simple group S with hop(S) > 37

In this article, we focus our attention on the symplectic groups C)(2) = S3,(2),
where p is an odd prime. Recall that C3(2) is not a simple group, in fact, the
derived subgroup C>(2)’ is a simple group which is isomorphic with Ag = Ly(9).
In addition, we recall that Bo(3) = 244(22), B,(2™) = C,,(2™) and By(q) = Cs(q)
(see [2]). Previously, it was determined the values of hop(-) for some symplectic
and orthogonal groups (see [1,6,9]). In the table below, 7(n) is the set of all prime

divisors of n, where n is a natural number.

G Restrictions on G hop(G) Refs.
Bs(4) = C3(4) 1 [6]
Ba(g) = Calg)  In(hy) =1 1 1]
Ban(q) = Con(q) |n(ths)| =1, gis even 1 1]
Bs(5), Cs(5), 2 1]
By(q), Cn(a), n=2">2 |r(5) =1, 2 1]

q is an odd prime power

B,(3), Cp(3), |ﬂ(3p§1)| =1, pisan odd prime, 2 [1,9]

Given a group G, the order of G can be expressed as a product of some coprime
natural numbers m;(G), i = 1,2,...,t(G), with 7(m;(G)) = m;(G). The numbers
m1(G), ma(G),...,mye) (G) are called the order components of G. We set

OC(G) = {m1(G),m2(G), ..., myc)(G)}.
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In a similar manner, we define hoc(G) as the number of isomorphism classes of
finite groups with the same set OC(G) of order components. Again, in terms of

function hoc(+), the groups G are classified as follows:

Definition 1.3. A finite group G is called k-fold OC-characterizable if hoc(G) = k.
In the case when k = 1 the group G is simply called OC-characterizable.

A Mersenne prime is a prime that can be written as 2P — 1 for some prime p.

The purpose of this article is to prove the following theorem.

Main Theorem. Let C = Cp(2) be the symplectic group over the binary field, for
which 2P — 1 > 7 is a Mersenne prime. Then hop(C) =1 = hoc(C).

It is worth noting that the values of functions hop () and hoc(-) may be different.
For instance, suppose M € {Bs(5),C5(5)}. By [13], the prime graph associated with
M is connected and so OC(M) = {|M|} = {2°-3%.5%.7-13-31}. On the other
hand, it is easy to see that the prime graph associated with a nilpotent group is

always a clique, hence, we have
hoc(M) > va(|M|) > va(|M|) = Par(9)? - Par(4) = 302 x 5 = 4500,

where vy;1(n) (resp. v.(n)) signifies the number of non-isomorphic nilpotent (resp.
abelian) groups of order n and Par(n) denotes the number of partitions of n. How-
ever, by Theorem 1.3 in [1], we know that hop(M) = 2.

2. Preliminaries

If a is a natural number, r is an odd prime and (r,a) = 1, then by e(r, a)
we denote the multiplicative order of a modulo r, that is the minimal natural
number n with ¢ =1 (mod r). If a is odd, we put e(2,a) =1 if a =1 (mod 4),
and e(2,a) = 2 if a

= —1 (mod 4). The following lemma is a consequence of
Zsigmondy’s Theorem (see [14]).

Lemma 2.1. Leta > 1 be an integer. Then for every natural number n there exists
a prime r with e(r,a) = n except for the cases (n,a) € {(1,2),(1,3),(6,2)}.

A prime r with e(r,a) = n is called a primitive prime divisor of a™ — 1. By
Lemma 2.1, such a prime exists except for the cases mentioned in the lemma. We
denote by ppd(a™ — 1) the set of all primitive prime divisors of a™ — 1. By our
definition, we have m(a — 1) = ppd(a — 1) but for the following sole exception,

namely, 2 ¢ ppd(a — 1) if e(2,a) = 2. In this case, we assume that 2 € ppd(a® —1).
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From the definition it is easy to conclude that: Let p > 2 be an integer. Then
m(a? — 1) = ppd(a? — 1) if and only if p is a prime.
In the following results, we will consider the function 1 : N — N, which is defined
as follows
m if m=1 (mod 2),
n(m) = {

m/2 if m=0 (mod 2).

Lemma 2.2. ([11]) Let M be one of the simple groups of Lie type By (q) or Cyr(q)
over a field of characteristic p, and let r € w(M) \ {p} and r € ppd(¢* —1). Then
r and p are non-adjacent if and only if n(k) >n — 1.

Lemma 2.3. ([12]) Let M be one of the simple groups of Lie type B, (q) or Cyr(q)
over a field of characteristic p. Let r, s be odd primes with r,s € w(M) \ {p}.
Suppose that r € ppd(¢¥ — 1), s € ppd(¢' — 1) and 1 < n(k) < n(l). Then r and
s are non-adjacent if and only if n(k) + n(l) > n and l/k is not an odd natural

number.

Using Lemmas 2.2 and 2.3, we conclude that the prime graphs GK(B,(¢)) and
GK(C(q)) coincide (see also [11, Proposition 7.5]), and hence

Corollary 2.4. Let p > 3 be a prime and C = C,(2). Then deg(3) = |m1(C)|—1.

Proof. Recall that, by [4], we have

p—1

m(C)=m (2(2P +1) [J @ - 1)) and w5 (C) = w(2P —1).

i=1

Now, it follows from Lemma 2.3 that all primitive prime divisors of 2? — 1 (and so
all primes in 7(2” — 1)) are non-adjacent to 3. On the other hand, by Lemmas 2.2
and 2.3, we deduce that deg(3) = |m1(C)| — 1, as desired. O

The following lemma is crucial to the study of characterizability of symplectic

groups Cp(2) by order components.

Lemma 2.5. ([3]) Let G be a group whose prime graph has more than one com-
ponent. If H is a normal 7 (G)-subgroup of G, then |H| — 1 is divisible by m;(G),
for alli # k.

A group G is called 2-Frobenius if there exists a normal series 1 < H I K 1 G
of G such that H is the Frobenius kernel of K and K/H is the Frobenius kernel of
G/H.
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Lemma 2.6. ([7]) Let S be a simple group with disconnected prime graph GK(S),
except Uy(2) and Us(2). If G is a finite group with OC(G) = OC(S), then G is

neither a Frobenius group nor a 2-Frobenius group.

Lemma 2.7. ([13]) Let G be a group with t(G) = 2. Then one of the following
hold:

(1) G is a Frobenius group;

(2) G is a 2-Frobenius group; or

(3) G has a normal series 1 <H < K <G such that H is a nilpotent m1-group,
K/H is a non-abelian simple group, G/K is a mi-group, |G/K| divides
|Out(K/H)| and any odd order component of G is equal to one of the odd
order components of K/H.

Lemma 2.8. ([5]) The only solution of the equation p™ — q™ = 1, where p,q are

primes and m,n > 1 are integers, is (p,q,m,n) = (3,2,2,3).

Given a natural number B and a prime number ¢, we denote by B; the t-part of

B, that is the largest power of ¢ dividing B.

Lemma 2.9. ([10]) Let B = (22 —1)(2* = 1)--- (22" —1). If t is a prime divisor
of B, then B, < 23", Furthermore, if t > 5 then B, < 22",

3. Proof of the main theorem

Throughout this section, we will assume that 2P — 1 > 7 is a Mersenne prime
and C' = Cp(2). Suppose that G is a group with the same order and degree pattern
as C, that is

G| =|C| = 2¥" ﬁ(fz?i —1) and D(G) =D(C).

i=1
Note that, according to the results summarized in [4], we have ¢(C') = 2, and

p—1

m(C)=mn (2(2?’ +1) H(22i - 1)) and my(C) = {2 —1}.

i=1

By our hypothesis, it is easy to see that
m2(G) = m(C) ={2P — 1} and #(G) ==(C) =m(C)U{2P —1}.

First of all, we notice that 27 — 1 is the largest prime in 7(G) = «(C'). Moreover,

it follows from Corollary 2.4 that

degq(3) = dege(3) = [m(C) - 1,
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and this forces m1 (G) = m1(C), and so t(G) = 2. Hence, we have

0OC(G) = OC(C) = {2?2(21’ + 1)1)1:[(222‘ —1), 2 - 1} ,

i=1
and from Lemma 2.6, the group G is neither a Frobenius group nor a 2-Frobenius
group. Finally, Lemma 2.7, reduces the problem to the study of the simple groups.
Indeed, by Lemma 2.7, there is a normal series 1 < H << K < G of G such that:
(1) H is a nilpotent m(G)-group, K/H is a non-abelian simple group and
G/K is a m1(G)-group. Moreover, we have K/H < G/H < Aut(K/H),
and t(K/H) > t(G) > 2,
(2) 2P —1 is the only odd order component of G which is equal to one of those
of the quotient K/H,
(3) |G/K]| divides |Out(K/H)|.
For odd order components of K/H see [4,13]. Now, we will continue the proof

step by step.

Step 3.1. K/H 2 2A43(2),2F4(2)",%2A45(2), E7(2), E7(3), A2(4),%Eg(2) nor one of

the sporadic simple groups.

Note that either the odd order components of above groups are not equal to a
Mersenne prime 2P — 1 > 7 or their orders do not divide the order of G.

In the following, A,, denotes the alternating group on n letters.
Step 3.2. K/H # A,,, where n and n — 2 are both prime numbers.

In this case, it follows that n = 2P — 1. Now, simple computations show that
! n n »
k2 = <T;) — (sl lm]r) 1 2 g2,
2

If p > 5, then 2 — p — 2 > p? and hence the 2-part of |A,| does not divide the
2-part of |G, i.e. 21’2, which is a contradiction. In the case when p = 5, then n = 31
and |K/H| = (31!)/2, which does not divide |G| = |C5(2)| = 22°-36.52.7-11-17-31,

which is again a contradiction.

Step 3.3. K/H 2 A, wheren=gq, g+ 1, or ¢+ 2 (q is a prime), and one of n,

n — 2 1s not prime.

Here, ¢ is the only odd order component of K/H, and so ¢ = 2P — 1. We now
consider the alternating group A, which is a subgroup of K/H = A,. Similar
arguments as those in the previous step, on the subgroup A, instead of A,,, lead us

a contradiction.
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Step 3.4. K/H is isomorphic to neither 2E¢(q), ¢ > 2, nor Eg(q).

We deal with 2Fs(q), ¢ > 2, the proof for Eg(q) being quite similar. Suppose
that K/H =2 ?Eg(q). First of all, we recall that

mq%” ~ D@+ D(g* = 1)(@° = (@ + 1D(e* ~1).

Considering the only odd order component of 2Eg(q), that is (¢° —¢®>+1)/(3,q¢+1),
we must have (¢° — ¢® +1)/(3,¢ +1) = 2P — 1, which implies that ¢° > 2P, or

*Es(q)| =

equivalently ¢°¢ > 2%, Let ¢ = r/. If 7 is an odd prime, then from Lemma 2.9, we
get

¢*° = = |K/H|, < |G|, <2,
which is a contradiction. Therefore we may assume that » = 2. In this case, we
have

(260 — 237 1 1)/(3,2f +1) =2 — 1.
Now, if (3,2f + 1) = 1, then we obtain 23f(23/ — 1) = 2(2°~! — 1), from which we
deduce that 3f = 1, a contradiction. In the case where (3,2f + 1) = 3, an easy

calculation shows that

23123 — 1) =22(3. 272 — 1),
and so 3f = 2, which is again a contradiction.
Step 3.5. K/H % Fy(q), where q is an odd prime power.

We remark that ¢* — g2 +1 is the only odd order component of Fy(q), and clearly
this forces ¢* — ¢ +1 =27 — 1. Then ¢?(¢®> — 1) = 2(2P~! — 1), which shows that
2(2P~1 — 1) is divisible by 4, a contradiction.

Step 3.6. K/H % %Bs(q), where ¢ = 22"+ > 2,

Recall that |?Ba(q)| = ¢*(¢*> +1)(¢— 1) and the odd order components of 2 B (q)

are:
g—1, q—+/2¢+1, qg++/2¢+1.
If g—1=2P —1, then ¢ = 2P. Now, we consider the primitive prime divisor
r € ppd(2* —1). Clearly r € m(2?? + 1), and so r € 7(2Ba(q)) C 7(G). This is a
contradiction.

In the case when

g—+2¢+1=2P—1 (resp. ¢+ +/2¢q+1=27—1),
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by simple computations we obtain

omtl(gm 1) =2(2P71 — 1) (resp. 2mTL(2™ +1) =2(2P71 — 1)),
a contradiction.
Step 3.7. K/H % Es(q), where ¢ = 2,3 (mod 5).

The odd order components of Eg(q) in this case are
P?+qg+1’ ?—q+1

If ¢ — ¢* +1 =27 — 1, then we obtain ¢*(¢ — 1)(¢ + 1)(¢*> + 1) = 2(2°~1 —1).
However, the left hand side is divisible by 16, while the right hand side is not

¢ —q'+1,

divisible by 4, which is impossible.
If (¢'° 4+ ¢° +1)/(¢®> + ¢+ 1) = 2P — 1, then after subtracting 1 from both sides

of this equation and some simple computations, we obtain
glg— D@+ D@+ 1)(¢* —¢* +1) =2(2""" — 1).

Now, if ¢ is odd, then the left hand side is divisible by 16, a contradiction. Moreover,
if ¢ is even, then it follows that ¢ = 2, and if this is substituted in above equation
we get 76 = 2P~1 a contradiction.

The case (¢'° —¢°+1)/(¢*> — g+ 1) = 2P — 1 is quite similar to the previous case

and it is omitted.
Step 3.8. K/H % Fs(q), where ¢ =0,1,4 (mod 5).

The odd order components of Eg(q) in this case are
OrP 1 O — P
P+qg+l’  P-q+1
Consider the first case. Let (¢'°+1)/(¢?> +1) = 2P — 1. Subtracting 1 from both
sides of this equality, we get

q10+1
?+17

¢ —q+1,

*(@® = D(¢" +1) =22 - 1),
which implies 2(2P~! — 1) is divisible by 4, a contradiction.
Similarly, if ¢® —¢*+1 = 2P — 1, we obtain ¢*(¢—1)(¢+1)(¢> +1) = 2(2P~1 - 1),
which shows that 2(2P~! —1) is divisible by 16, a contradiction. Similar arguments
work if (¢"° +¢° +1)/(¢° +q+1) =2" —1or (¢ —¢* +1)/(¢° —q+1) =2" — 1,

and we omit the details.

Step 3.9. K/H % 2F4(q), where ¢ = 2™+ > 2,
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The odd order components of 2Fy(q) are:
P4 V263 +q+/2¢+1 and QQ—@—FQ—\/E—I—L

Therefore, we have

CH V2P +q+V2q+1=2" -1 or =203 +q—/2q+1=2"—1.
However, if 22+ is substituted in these equations we obtain

mHl(dmAl g g2mHl 4 ogm 4 1) = 2(2P71 — 1),

which is a contradiction.
Step 3.10. K/H % F4(q), where ¢ = 2™.

The odd order components of Fy(q) are ¢*+1 and ¢* —¢?+1, hence ¢*+1 = 2P —1
or ¢* —¢*>+1 = 2P — 1. Now, it is easy to see that in both cases, 22™ divides

2(2P~1 — 1), a contradiction.
Step 8.11. K/H % 2Ga(q). where g = 371 > 3,

The odd order components of 2Gy(q) are ¢ + /3¢ + 1 and ¢ — /3¢ + 1. If
q—+/3q+1=2P —1, then ¢3 > 237, while Lemma 2.9 shows that ¢ < 237, which
is a contradiction. If ¢ + /3¢ + 1 = 2P — 1, then

9P — 2 = 2(2P=D/2 _1)(2(P=1/2 L 1) = gmHL(3m 4 1), (1)

First of all, we recall that (2(P~1/2 — 1, 2>=1/2 1 1) = 1. Now we consider two

cases separately:

(i) If 3™+ divides 2(P=1)/2 — 1, then
3m 41 < 3t <o /2 g - D/2 4
Hence, we obtain
33 4 1) < 2(2P7D/2 _ 1) (2= 1/2 4 1),

a contradiction.
(43) If 3™+ divides 2P~1/2 41, then 2(P~1/2 41 = k-3™+! where k is a natural
number. Now, from Eq.( 1), it follows that

Qk(g(p—l)ﬂ —1)=3"+1,
and consequently 3" > 2(P+1)/2 _ 1 Therefore we have
o(Pt1)/2 _ 1 < gm < 3mtl L olp=1)/2 4 1

a contradiction.
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Step 3.12. K/H 2 Gs(q), where ¢ = 3™.

Recall that the odd order components of G3(q) are ¢> — g+ 1 and ¢®> + ¢+ 1. If
¢ —q+1 =2P —1 then ¢® > 237 while one can follow from Lemma 2.9 that
q® < 237 which is a contradiction. If ¢?+¢+1 = 2P — 1, then q(¢+1) = 2 (mod 4),
which forces m is even. But then, it is obvious that 22 —2 = ¢(¢+ 1) =2 (mod ),

a contradiction.
Step 3.13. K/H %2D,.(3), where r = 2™ + 1 is a prime number and m > 1.

Recall that

r—1
1 r(r— r 7
|2Dr(3)|:m3 =13 +1)H(32 - 1),
’ i=1

and the odd order components of 2D,.(3) are
(3"'4+1)/2 and (3" +1)/4.

In the case when (3"! 4 1)/2 = 2P — 1, adding 1 to both sides of this equality, we
obtain

3(37 2+ 1) =20,
which is a contradiction. If (3"+1)/4 = 2P —1, then r > 5 because p > 5. Moreover,
on the one hand, from last equation we obtain 3" = 2P*2 —5 > 2P+l which implies

that
3r(r=1) 5 9(+1)(r=1) 5 94(p+1).

On the other hand, it follows from Lemma 2.9 that
37D = |K/H|3 < |Gl3 < 2°7,
which is a contradiction.
Step 3.14. K/H % B,(q), where n = 2™ >4 and q = v/ is an odd prime power.
Note that .
B0 = Gy [l -,

and the only odd order component of B, (q) is (¢" +1)/2. If (¢" +1)/2 = 2P — 1,
then ¢" = 2P*! — 3 > 2P and clearly ¢ is not divisible by 2 and 3. Since p > 5 and

n > 4, it is easy to see that
qv > g3 > 93P > 9%,
On the other hand, by Lemma 2.9, we obtain

¢ = |K/H|, < |G|, < 2%,
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which is a contradiction.
Step 3.15. K/H % B,(3).

The only odd order component of B,(3) is (3" —1)/2. If (3" —1)/2 = 2P — 1,
then 2P*! — 37 = 1. However, this equation has no solution by Lemma 2.8, which

is impossible.
Step 3.16. K/H 2 3Dy(q).

We recall that ¢* — g2 + 1 is the only odd order component of 3Dy(q), and so
¢'—q®+1 = 27— 1. But then, ¢*(¢>—1) = 2(2~1 —1), which shows that 2(2P~1 —1)

is divisible by 4, a contradiction.
Step 3.17. K/H % G2(q), where 2 < ¢ = £1 (mod 3).

In this case, the odd order components of G5(q) are ¢ + ¢+ 1 and ¢ — q + 1.
Let q=7/. If > + ¢+ 1 =27 — 1, then q(q+ 1) = 2(2?~! — 1), which shows that

q > 2 is not a power of 2. Moreover, since ¢ — 1 > 2, we obtain
¢ =1=(q-1)(¢" +q+1)>2(2" - 1),
and so ¢3 > 2PT! — 1 > 2P, which yields that ¢% > 22P. However, since
G2(a)] = ¢°(¢* = 1)(¢° - 1),
from Lemma 2.9, we conclude that
¢ = |K/H|. < |G|, < 2%,

which is a contradiction.

The case when ¢? — ¢+ 1 = 2P — 1 is similar and left to the reader.
Step 3.18. K/H #2D,,(3), where n = 2™ + 1 which is not a prime and m > 2.

The odd order component of 2D,,(3) is (371 +1)/2. If 3" 1 +1)/2 =2F — 1,
then 2Pt = 3(3"72 + 1), a contradiction.

Step 3.19. K/H 2 2D,(3), where r > 5 is a prime and v # 2™ + 1.

Here, we have

r—1
1 r(r— T 7
e LGRS U Ch )

i=1

"D (3)| =
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The only odd order component of 2D,.(3) is (3" +1)/4, and so (3" +1)/4 = 2P — 1.
An easy computation shows that 3" = 2PT2 — 5 > 2P*1 Moreover, we note that
r—12>4, and so

gr(r=1) 5 gir 5 od(pt1),

On the other hand, by Lemma 2.9, we obtain

37070 = |K/Hl5 < |GJs < 27,
which is a contradiction.
Step 3.20. K/H 22D, (2), where n=2"+1, m > 2.

The only odd order component of 2D, (2) is 2"~! + 1. Therefore, we obtain
27—l + 1 =27 — 1, which is impossible.

Step 3.21. K/H % 2D, (q), where n =2™ >4 and q = rf.

Recall that
1 n—1
mqn(n_l)(qn +1) H(qm -1,

i=1

"D (q)| =

and the only odd order component of 2D, (q) is (¢" + 1)/(2,q + 1). Therefore,
(¢"+1)/(2,g+1) = 2P —1. Assume first that (2,¢+1) = 1. In this case, we obtain
q" = 2(2P~1 — 1), a contradiction. Assume next that (2,¢q + 1) = 2. Again, using
simple calculations we obtain ¢" = 2P*! — 3 > 2P and so ¢ cannot be a power of 2.

Moreover, since n — 1 > 3, ¢"("=1) > ¢3" > 237 Now, Lemma 2.9 shows that
¢"" Y = |K/H|, < |G|, < 2%,
which is a contradiction.
Step 3.22. K/H % D, 11(q), where ¢ = 2,3.
Since, the only odd order component of D,1(q) is (¢" — 1)/(2,q — 1), we have
(¢"—1)/(2,g—1)=2P — 1. If (2,g— 1) =1, then r = p and ¢ = 2, and we have

1

|K/H| = |Dpy1(2)| = (@271 1)

P
op(p+1) (gpt1 _ H (2% —
i=1

this shows that |K/H|, = 22+ /(4,2PF1 — 1) does not divide |G|y = 27", which is
a contradiction. In the case when (2,¢—1) = 2, we have the equation 2P*1 —37 = 1,

which has no solution for p > 5, by Lemma 2.8. This is again a contradiction.

Step 3.23. K/H 2 D,(q), where ¢ =2,3,5 and r > 5.
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We recall that the only odd order component of D,(q) is (¢" —1)/(¢ — 1). We

distinguish three cases separately.

(1) ¢ =2. In this case, we have 2" — 1 =2P — 1, and so r = p and
p—1
[K/H| = |D,(2)| = 2"~V (2r — 1) [[(2* - 1).

i=1
Note that |Out(Dy(2))| = 2 and Dp(2) < G/H < Aut(D,(2)). Now,
considering the order of groups, we get |H| = 2%(2P+1) where p—1 < a < p.
Let r € ppd(2%? —1) and Q € Syl,.(H). Clearly r € (2P +1), Q is a normal
m1(G)-subgroup of G and |Q| divides 2 + 1. Now, from Lemma 2.5, it
follows that |Q| — 1 is divisible by ma(G) =2 — 1, and so |Q] —1 > 2P — 1
or equivalently |Q| > 2P. This forces |Q| = 2P+ 1. But then m2(G) = 2P -1
does not divide the value |Q] — 1 = 2P, which is a contradiction.

(i4) g = 3. In this case, from the equality (3" —1)/2 = 2P — 1, we deduce that
2r+l _ 3" = 1. However, this equation has no solution when p > 5 by
Lemma 2.8, a contradiction.

(iii) g = 5. Here (5" —1)/4 =2P — 1, and so 5" = 2PT2 — 3 > 2PF1 Ag before,
since r — 1 > 4, we obtain 5"("=1 > 54 > 24(+1)  On the other hand, by

Lemma 2.9, we have
5771 = |K/H|5 < |Gls < 2%,
which is a contradiction.
Step 3.24. K/H 2 C,.(3).

The only odd order component of C,.(3) is (3" —1)/2. Thus, if (3" —1)/2 =2P — 1,
then 2P*! — 37 = 1. However, this equation has no solution by Lemma 2.8, which

is impossible.
Step 3.25. K/H 2 C,(q), where n =2™ > 2.

Note that
1

|Culg)| = mqnz il;[l(qQ’ - 1),
and the only odd order component of C,(q) is (¢" + 1)/(2,q — 1). Therefore,
(" +1)/(2,g—1)=2P — 1. If (2,g — 1) = 1, then ¢" = 2(2P~! — 1), which yields
that ¢ = p = 2 and n = 1, a contradiction. If (2,¢q—1) = 2, then ¢" = 2PT1 -3 > 27,
which implies that ¢ is not a power of 2 and 3. Let ¢ = rf. When n > 4, it is easy
to see that

q”2 > @2 > 2% > 22t
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But, from Lemma 2.9, we obtain
¢ =|K/H|, < |G|, < 2%,

a contradiction. Assume now that n = 2. In this case, we have ¢> = 2PT1 — 3, or
equivalently

(@=1)(g+1)=22@2""" —1).
However, the left hand side is divisible by 8, while the right hand side is divisible

by 4, a contradiction.
Step 3.26. K/H 2 A;(q), where g = 2™ > 2.

The odd order components of A;(q) are g+ 1 and ¢ — 1. If g+ 1 =27 — 1, then
q = 2(2P~' — 1), a contradiction. If ¢ — 1 = 2P — 1, then ¢ = 2P. Moreover, since
Ai(q) < G/H < Aut(A1(q)), it is easy to see that the order of H is divisible by
(22-1)(2—1)---(22>=1) —1). Let r € ppd(22(P~1) —1) and Q € Syl,.(H). Clearly
Q is a normal 71 (G)-subgroup of G and |Q| divides 2P~ 4+ 1. On the other hand,
from Lemma 2.5, |Q| — 1 is divisible by 2P — 1 which implies that |@Q| > 2P. This is

a contradiction.
Step 3.27. K/H % A;(q), where 3 < ¢ = +1 (mod 4) and ¢ = r/.

Assume first that 3 < ¢ =1 (mod 4). In this case, the odd order components of
Ai(q) are (¢ +1)/2 and q. If (¢ +1)/2 = 2P — 1, then r/ = ¢ = 2PT! — 3. First of
all, we claim that f is an odd number. Otherwise, we have

(2 —1)(r 2 41) = 22(2P71 — 1),
But then, the left hand side is divisible by 8, while the right hand side is divisible

by 4, which is a contradiction. Furthermore, by easy computations we observe that

|A1(q)| = 1q(q2 —1)=22(2PFTt —3)(2P L —1)(2P —1).

2
On the other hand, we have |G/K|-|H| = |G|/|A1(q)|, from which we deduce that
G2 2—2
G/K|z-|H|a = ———~ =2P 7=,
| / |2 | |2 |A1(q)|2

But since |G/K| divides |Out(A41(q))| = 2f and f is odd, |G/K]|2 is at most 2.
Hence, if Sy € Syly(H), then |Ss| = 2°°=2 or |Sy| = 27" 3. We notice that S is
a normal subgroup of G, because H is nilpotent. Now, it follows from Lemma 2.5
that 2P — 1 divides 2P°~2 — 1 or 2" =3 — 1, which is a contradiction. If g = 2P — 1,
we get a contradiction by Lemma 2.8.

Assume next that 3 < ¢ = —1 (mod 4). In this case, the odd order components
of Ai(q) are (¢ —1)/2 and q. If (¢ — 1)/2 = 2P — 1, then 27! —r/ = 1. Noting
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Lemma, 2.8, we deduce that f = 1, and hence r = 2P*! — 1 is a Mersenne prime,
which is a contradiction because p + 1 is not a prime.

The case when ¢ = 2P — 1 is similar to the previous paragraph.
Step 3.28. K/H % A,(q), where (¢ —1)|(r + 1).

Recall that
r+1

1 )
)qr(r+1)/2 H(qz _ 1)
=2

|K/H| = |Ar(q)] = m

The only odd order component of A,.(q) is (¢" —1)/(¢ — 1), and so

(¢"—=1)/(g—1)=2"-1.
As a simple observation we see that ¢" —1 > (¢" —1)/(g — 1) = 2P — 1 and so
q" > 2P. Let ¢ = tf, where t is a prime number and f is a natural number.
(1) Suppose first that > 7. Then ¢"("+1)/2 > ¢3(r+1) > 23431 > 93(p+1) Now,

if ¢ is an odd prime, then by Lemma 2.9 we obtain
qr(r+1)/2 — |K/H|t < ‘G|t < 23197

which is a contradiction. Therefore, we may assume that ¢t = 2. In this
case, we have
(@~ 1))@ —1) =2 -1,
from which one can deduce that f =1 and r = p. Thus
2 .

@ 1)
2 I (2 - 1)
Since |G/ K| divides |Out(K/H)| = |Out(A,(2))| = 2, we conclude that |H|
is divisible by 2P + 1. Let s € ppd(2%? — 1) C (2P + 1) and Q € Syl,(H).
Clearly |Q[|2” + 1. Since H is a normal m1(G)-subgroup of G which is

G/K] - |H| =

nilpotent, @ is also a normal 7 (G)-subgroup of G. Now, by Lemma 2.5,
ma(G) = 2P—1 divides |Q|—1, and so |@| > 2P. But, this forces |Q| = 2P+1.
However, this contradicts the fact that mq(G)||Q] — 1.

(ii) Suppose next that r = 5. If ¢ is even, then from (¢° —1)/(¢g — 1) =27 — 1,
we obtain q(¢® + ¢* + ¢+ 1) = 2(2°~! — 1), which implies that ¢ = 2 and
r = p = 5. Therefore, by easy calculations we see that

2T, (2 +1)

26 —1 ’
which is not a natural number, a contradiction. If ¢ is odd, then we get

|G/K] - |H| =

ag+D)(@P+)=¢"+@+¢ +qg=2" -2,
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however q(q+1)(¢*> +1) =0 (mod 4), while 2° —2 =2 (mod 4), a contra-
diction.

(iii) Finally suppose that r = 3. Then g(q + 1) = 2(2P~! — 1). First of all, we
note that ¢ is not even, otherwise p = 3, which is impossible. In addition,
we have

alq+1) = 2020-V/2 — 1) (2012 1), (2)

Now we consider two cases separately:
(a) Tf ¢ divides 2(°=1/2 — 1, then

g<2-2 1 g41<2"D/2 4,
Hence, we obtain
alg+1) < 220D/ Z1)(20-D/2 1 1),

a contradiction.
b) If q divides 2(P=1/2 4+ 1 then 2(P~1/2 4 1 = kq for some natural
( q ; q

number k. Now from Eq.( 2), it follows that

2k(2PD/2 1) =g+ 1.

If k =1, then p = ¢ = 5. Hence 13 € n(K/H) = w(A3(5)), however
13 ¢ 7(G) = 7(C5(2)), a contradiction. Thus, k > 2 and we obtain

22PH/2 _2) 1< g<q+1<kqg=2P"1/2 11,
which is a contradiction.
Step 3.29. K/H 2 A,_1(q), where (r,q) # (3,2), (3,4).

Again, we recall that

1 r(r— - 7
|K/H| = [A,—1(q)| = mq (r-1)/2 H(q - 1),
’ i=2

and the only odd order component of A,_1(q) is (¢" —1)/(¢ — 1)(r,q — 1). Hence,

we must have
(@ = 1)/(g—1)rqg—1) =2 — 1,
which implies that
¢ =12 -1)/(g=1(rg-1)=2"~1,

or equivalently ¢" > 2P. Let ¢ = t/, where ¢t is a prime and f is a natural number.

In what follows, we consider several cases separately.
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r > 7. In this case, we obtain
qr(r—l)/Z > q3r > 23])’

and Lemma 2.9 implies that ¢ = 2. Now, Lemma 2.1 shows that ¢ = 2 and

r = p, and hence we obtain

2 i
oy = 22D g iy
20 [[i,(2" = 1) i=1
On the other hand, |G/K| divides |Out(K/H)| = 2. From this we deduce
that |H| is divisible by 27 + 1. Let s € ppd(2* — 1) C (2P + 1) and
Q € Syl (H). Evidently @ is a normal subgroup of G and |Q| divides
2P +1. Now, it follows from Lemma 2.5 that ma(G) = 2° —1||Q| — 1, which
is impossible.
r =>5. Assume first that (5,¢ — 1) = 1. In this case, we have
¢°—1
qg—1

="+ ++q+1=2" -1,
or equivalently
q(q+1)(¢* +1) =2(2"" - 1). (3)

If ¢ is even, then we conclude that ¢ = 2 and r = p = 5, and the proof
is quite similar as (7). If ¢ is odd, then the left-hand side of Eq.( 3) is
congruent to 0 (mod 4), while the right-hand side of Eq.( 3) is congruent
to 2 (mod 4), a contradiction.

Assume next that (5,¢ — 1) = 5. In this case, we have
@+ +¢ +q+1=502 1),
or equivalently
(q—1)(¢* +2¢> + 3¢ +4) = 10(2P~* — 1).

In the case when ¢ is even, one can easily deduce that ¢ = 2, and so
13 = 5(2°~1 — 1), a contradiction. Moreover, if ¢ is odd, then from the
equality q(q + 1)(¢*> + 1) = 5-2P — 6 it is easily seen that the left-hand
side of this equation is congruent to 0 (mod 4), while the right-hand side
is congruent to 2 (mod 4), a contradiction.

r = 3. In this case, we have (¢> —1)/(q — 1)(3,qg — 1) = 2P — 1. First of
all, if ¢ is even, then we obtain p = 3, which is not the case. Thus, we can

assume that ¢ is odd.
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If (3,g— 1) =1, then
gla+1) = 2207072 - 1)(0/2 1), @
If ¢ divides 2(P=1/2 — 1, then
q<2PD2 1 g4 1 <27 D/2 g,
Hence, we obtain
alg+1) < 220702 — 10D/ 4 1),

a contradiction. If ¢ divides 2°=1/2 41 then 2(P~1/2 4+ 1 = kq. Now, from
Eq.( 4), it follows that

2k(2P~D/2 1) = g+ 1.
When k =1, we conclude that p =5 and ¢ = 5. But then, we have
|K/H| = |As(5)| =2°-3-5° - 31,

while |G| = |C5(2)] = 22°-35.52.7.11-17 - 31; this is a contradiction
because |K/H|s > |G|s. If k > 2, then ¢ > 2(2(P*1/2 — 2) — 1. Therefore,

we have
2(2(p+1)/2 —2)-1<g¢<q+1< 2(P=1)/2 4 1,

a contradiction.
If (3, —1) = 3, then q(q + 1) = 22(3-2P~2 — 1), which implies that
(g+1)2 = 4 and so (¢ — 1)3 = 2. Moreover, under these conditions, one

can easily deduce that f is odd, otherwise 8/¢ — 1 where
g—1=t) —1=@!2-1)t!? +1),

which is a contradiction. Thus, we have |A(q)|2 = 2%, while
G2
|A2(q) 2
Since |G/K| divides 2f(3,q — 1) and f is odd, |G/K|2 < 2. Therefore a
Sylow 2-subgroup of H has order either 9p* =4 or 2P° =5, Applying Lemma
2.5 we deduce that 2P — 1|2”2*4 —1lor2P— 1\2”2*5 —1. Now, one can easily

check that the second divisibility is possible only for p = 5. But then, we

2
|G/K|2- |H2 = = 2"~

get q(qg+ 1) = 22 - 23, which is a contradiction.

Step 3.30. K/H % 2A.(q), where (¢ + 1)|(r + 1) and (r,q) # (3,3), (5,2).
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In this case, we have

r+1
K/H| = 2A r(r+1 /2 s
/= P = oy T

and the only odd order component of 24,.(q) is (¢" +1)/(q+ 1). Therefore, we get
(¢"+1)/(¢g+1) =27 -1
An argument similar to that in the previous cases shows that
¢ =1>(" +1/(g+1)=2"~-1,

and so ¢" > 2P. Let ¢ = tf, where t is a prime and f is a natural number. We now
consider three cases separately.
(i) > 7. Then ¢"("+1)/2 > 3(r+1) > 93431 5 23(+1) ' which forces by Lemma
2.9 that t = 2. Thus (2/" +1)/(2/ + 1) = 2? — 1, and, consequently, f = 1,
r =3 and p = 2, which is a contradiction.
(ii) If r = 5, then (¢° + 1)/(¢ + 1) = 2P — 1. Arguing as in the case (i), we
conclude that t =2 and f = 1, whence 12 = 2P, a contradiction.
(iii) If r = 3, then (¢3+1)/(g+1) = 2P —1. It follows that g(¢—1) = 2(2P~1 1),

and so ¢ = p = 2, which is impossible.
Step 3.31. K/H 22A,_1(q).

In this case, we have

|K/H| =*4,-1(q)| = “q+1 TT””IIq———

and the only odd order component of 2A,_1(q) is (¢" +1)/(q + 1)(r,q + 1). Thus

q +1

e

)

As before, we deduce that ¢" > 27. Let ¢ = tf, where t is a prime and f is a natural
number. We now consider three cases separately.
(i) © > 7. Tt follows that ¢"("~1/2 > ¢ > 237 which implies that t = 2 by
Lemma 2.9. Now, we obtain

2fr 41

|
@ +1)(r,2/ +1) ’

which contradicts Lemma 2.1 because 2P — 1 is the largest prime in 7(G).
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(i) r = 5. In this case we have ¢® +1 = (¢ + 1)(2P — 1)(5,q + 1). Assume
first that ¢ is even, that is ¢ = 2/. If (5,¢ + 1) = 1, then we obtain
2°f = 2f+P 4 2P — 2f — 2 which is impossible. If (5, + 1) = 5, then
25f = 5(27+P 427 — 2/) — 6, which is again a contradiction. Assume next
that ¢ is odd. Noting that ¢(¢—1)(¢>+1) = (2P —1)(5,q+1) — 1, it is easily
seen that the left hand side is congruent to 0 (mod 4), while the right hand
side is congruent to 2 (mod 4), a contradiction.

(iii) r = 3. In this case, we have (¢>*+1)/(q+1)(3,¢+1) = 2P —1. If (3,q+1) = 1,

then we obtain
qlg—1) =27 —2 =2(2=1/2 _ 1)(2p=1)/2 4 1),

If ¢ divides 2, than p = 2, a contradiction. If ¢ divides 2(»=1/2 — 1 or
20=1)/2 4 1 then

alg—1) <2 —2 = 2(20-D/2 _ 1)(2/2 4 1),

a contradiction. Therefore we may assume that (3,¢+ 1) = 3. If ¢ is even,
then we conclude that ¢ = 4, which is a contradiction. We now suppose
that g is odd. Since g¢(q—1) = 22(3-2P=2 — 1), it follows that (¢ — 1)2 = 4,
and so (¢ + 1)2 = 2. Moreover, under these hypotheses, one can easily
deduce that f is odd, otherwise 8| — 1 =t/ — 1 = (t//2 — 1)(¢t//? + 1),
which is a contradiction. On the other hand, |G/K]| divides f(3,¢+1) and
since f is odd, |G/K|2 = 1. Therefore a Sylow 2-subgroup of H has order
op’—4, Again, using Lemma 2.5, we see that 2P — 1|2p2*4 — 1, which implies

that p = 2. This is a contradiction.
Step 3.32. K/H 2 C,(2).

The only odd order component of C,.(2) is 2" — 1. Thus 2" — 1 = 2P — 1. Tt follows
that » = p, G/K =1 and H = 1, which means G = C. This completes the proof
of the theorem. |
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