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Abstract. Let D be a division ring with the center F = Z(D). Suppose

that N is a normal subgroup of D∗ which is radical over F , that is, for any

element x ∈ N , there exists a positive integer nx, such that xnx ∈ F . In [5],

Herstein conjectured that N is contained in F . In this paper, we show that

the conjecture is true if there exists a positive integer d such that nx ≤ d for

any x ∈ N .
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1. Introduction

Let D be a division ring with the center F = Z(D). For an element x ∈ D, if

there exists a positive integer nx such that xnx ∈ F and xm /∈ F for any positive

integer m < nx, then x is called nx-central. If nx = 1, x is said to be central. A

subgroup N of the unit group D∗ of D is called radical over F if for any element

x ∈ N , there exists nx > 0 such that x is nx-central. Such a subgroup N is called

central if nx = 1 for any x ∈ N . In other words, N is central if and only if N is

contained in F .

In 1978, Herstein [5] conjectured that if a subnormal subgroup N of D∗ is radical

over F then it is central. Two years later, he considered the conjecture again

and proved that the assumption “subnormal” in this conjecture is equivalent to

“normal” (see [6, Lemma 1]). That is, he asked whether a normal subgroup of

D∗ is central if it is radical over F . In [5], Herstein proved that the conjecture

holds if N is torsion. As a consequence, one can see that the conjecture is also

true if D is centrally finite. We notice that in [4], there is a different proof of this

fact. Recall that a division ring D with the center F is called centrally finite if

D is a finite dimensional vector space over F [8, Definition 14.1]. In [6], by using
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the Pigeon-Hole Principle, Herstein also showed that the conjecture holds if F is

uncountable.

Recently, there are some efforts to give the answer for this conjecture. In [3]

and [2], we proved that the conjecture holds if D is either of type 2 or weakly

locally finite. Actually, we get a more general result: if a normal subgroup of D∗

is radical over a proper division subring K of D then it is central provided D is

either of type 2 or weakly locally finite. Recall that a division ring D is of type 2 if

dimF F (x, y) < ∞ for any x, y ∈ D∗. If F (S) is a centrally finite division ring for

any finite subset S of D then D is called weakly locally finite. Here, F (S) denotes

the division subring of D generated by F ∪ S. In general, the conjecture remains

still open.

In this paper, we give a positive answer for this conjecture in a particular case.

In fact, we prove the following theorem.

Theorem 1.1. Let D be a division ring and N be a normal subgroup of D∗. If

there exists a positive integer d such that every element x ∈ N is nx-central for

some positive integer nx ≤ d, then N is central.

2. The proof of the Theorem

The technique we use in this paper is generalized rational expressions. For our

further need, we recall some definitions and prove some lemmas.

First, basing on the structure of twisted Laurent series rings, we will construct

a division ring which will be used for next lemmas. Let R be a ring and φ be a

ring automorphism of R. We write R = R((t, φ)) for the ring of formal Laurent

series
∞∑
i=n

ait
i, where n ∈ Z, ai ∈ R, with the mutiplication defined by the twist

equation ta = φ(a)t for every a ∈ R. In case φ(a) = a for any a ∈ R, we write

R((t)) = R((t, φ)). If R = D is a division ring, then D = D((t, φ)) is also a division

ring (see [8, Example 1.8]). Moreover, we have.

Lemma 2.1. Let R = D be a division ring, D = D((t, φ)) be as above, F = Z(D)

be the center of D, and L = { a ∈ D | φ(a) = a} be the fixed division ring of φ in

D. If the center k = Z(L) of L is contained in F , then the center of D is

Z(D) =

{
k if φ has infinite order,

k((ts)) if φ has an order s.

Proof. The proof is similar to [8, Proposition 14.2]. It suffices to prove that

Z(D) ⊆ k if φ has infinite order, and Z(D) ⊆ k((ts)) in case f has an or-

der s since it is easy to check that k((ts)) ⊆ Z(D) if f has an order s. Let



68 MAI HOANG BIEN

α =
∞∑
i=n

ait
i be in Z(D). We first prove that ai ∈ k for every i ≥ n. One

has
∞∑
i=n

ait
i+1 = (

∞∑
i=n

ait
i)t = t

∞∑
i=n

ait
i =

∞∑
i=n

φ(ai)t
i+1. Hence, φ(ai) = ai for

every i ≥ n. It means ai ∈ L for every i ≥ n. Moreover, for any a ∈ L,
∞∑
i=n

aait
i = (

∞∑
i=n

ait
i)a =

∞∑
i=n

aiφ(a)ti =
∞∑
i=n

aiat
i. Therefore, aai = aia for ev-

ery i ≥ n. It implies, ai ∈ k for every i ≥ n. Now for any b ∈ D,
∞∑
i=n

bait
i =

(
∞∑
i=n

ait
i)b =

∞∑
i=n

aiφ
i(b)ti =

∞∑
i=n

φi(b)ait
i, so that bai = φi(b)ai for every i ≥ n.

Case 1. The automorphism φ has infinite order. For some i 6= 0, from the fact

that (b− φi(b))ai = 0, one has ai = 0, which implies α = a0 ∈ k.

Case 2. The automorphism Φ has an order s. For any i which is not divided by

n, since (b− φi(b))ai = 0, so that ai = 0. Therefore, α =
∞∑
i=m

asit
si ∈ k((ts)). �

Let { ti | i ∈ Z } be a countable set of indeterminates and D be a division ring.

We construct a family of division rings by the following way. Set

D0 = D((t0)), D1 = D0((t1)),

D−1 = D1((t−1)), D2 = D−1((t2)),

for any n > 1,

D−n = Dn((t−n)), Dn+1 = D−n((tn+1)).

Now put D∞ =
+∞⋃

n=−∞
Dn. Then D∞ is a division ring. Assume that F is the

center of D. By Lemma 2.1, it is elementary to prove by induction on n ≥ 0 that

the center of D0 is F0 = F ((t0)), the center of Dn+1 is Fn+1 = F−n((tn+1)) and

the center of D−n is F−(n+1) = Fn+1((t−(n+1))). In particular, F is contained in

Z(D∞). Consider an automorphism f on D∞ defined by f(a) = a for any a in D

and f(ti) = ti+1 for every i ∈ Z.

Proposition 2.2. Let D,D∞ and f be as above. Then D = D∞((t, f)) is a division

ring whose center coincides with the center F of D.

Proof. We have D is the fixed division ring of f in D∞. Since the center F

of D is contained in the center of D∞, f has infinite order and by Lemma 2.1,

Z(D) = F. �

Recall that a generalized rational expression of a division ring D is an expression

constructed from D and a set of noncommutative indeterminates using addition,

subtraction, multiplication and division. A generalized rational expression over D
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is called a generalized rational identity if it vanishes on all permissible substitutions

from D. A generalized rational expression f of D is called nontrivial if there exists

an extension division ring D1 of D such that f is not a generalized rational identity

of D1. The details of generalized rational identities can be found in [9].

Given a positive integer n and n+1 noncommutative indeterminates x, y1, · · · , yn,

put

gn(x, y1, y2, · · · , yn) =
∑

δ∈Sn+1

sign(δ).xδ(0)y1x
δ(1)y2x

δ(2) . . . ynx
δ(n),

where Sn+1 is the symmetric group of { 0, 1, · · · , n } and sign(δ) is the sign of

permutation δ. This is the generalized rational expression defined in [1] to connect

an algebraic element of degree n and a polynomial. We have the first property of

this generalized rational expression.

Lemma 2.3. Let D be a division ring with the center F . For any element a ∈ D,

the following are equivalent:

(1) The element a is algebraic over F of degree less than n.

(2) gn(a, r1, r2, · · · , rn) = 0 for any r1, r2, · · · , rn ∈ D.

Proof. See [1, Corollary 2.3.8]. �

Let D be a division ring with center F and a be an element of D. Then, by

definition, gn(axa−1x−1, y1, y2, · · · , yn) is also a generalized rational expressions of

D. Notice that, in general, the expression gn(x, y1, · · · , yn) is a polynomial but

gn(axa−1x−1, y1, y2, · · · , yn) is not necessary a polynomial. If a is algebraic of

degree less than n over F then gn(a, y1, y2, · · · , yn) is a trivial generalized rational

expression according to Lemma 2.3. However, the following lemma shows that

gn(axa−1x−1, y1, y2, · · · , yn) is always nontrivial if a is not in F .

Lemma 2.4. Let D be a division ring with center F . If a ∈ D\F , then the

generalized rational expression gn(axa−1x−1, y1, y2, · · · , yn) is nontrivial.

Proof. Let D∞, D = D∞((t, f)) and F be as in Proposition 2.2. Since a /∈ F ,

there exists c ∈ D such that c = aba−1b−1 6= 1. Because a, b, c commute with t,

(c− 1)(1 + b−1t)−1 + 1 = a(b+ t)a−1(b+ t)−1.

If a(b + t)a−1(b + t)−1 is algebraic over F , then so is (c − 1)(1 + b−1t)−1. Hence,

(c − 1)−1 + b−1(c − 1)−1t = ((c − 1)(1 + b−1t)−1)−1 is algebraic over F . Let

p(x) = xm + am−1x
m−1 + · · ·+ a1x+ a0, with m > 0, be the minimal polynomial
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of (c− 1)−1 + b−1(c− 1)−1t over F . It means

0 = ((c− 1)−1 + b−1(c− 1)−1t)m + · · ·+ a1((c− 1)−1 + b−1(c− 1)−1t) + a0.

For instance, (b−1(c− 1)−1)m = 0, a contradiction! Therefore, a(b+ t)a−1(b+ t)−1

is not algebraic over F . Using Lemma 2.3, we have

gn(a(b+ t)a−1(b+ t)−1, r1, r2, · · · , rn) 6= 0,

for some r1, r2, · · · , rn ∈ D. This means gn(axa−1x−1, y1, y2, · · · , yn) is nontrivial.

�

A polynomial identity ring is a ring R with a non-zero polynomial P vanishing

on all permissible substitutions from R. In this case, P is called polynomial identity

of R or we say that R satisfies P . There is a well-known result: a division ring is a

polynomial identity division ring if and only if it is centrally finite (see [7, Theorem

6.3.1]). We have a similar property for generalized rational identity division rings.

Lemma 2.5. Let D be a division ring with the center F . If there exists a nontrivial

generalized rational identity of D, then either D is centrally finite or F is finite.

Proof. See [9, Theorem 8.2.15]. �

Now we are ready to prove our Theorem.

Proof of Theorem 1.1. Suppose that N is not contained in F . Then, there

exists a ∈ N\F . For any d + 1 elements r, r1, r2, · · · , rd of D with r 6= 0, since

ara−1r−1 ∈ N is na,r-central element for some 0 < na,r ≤ d, by Lemma 2.3,

gd(ara
−1r−1, r1, r2, · · · , rd) = 0.

By Lemma 2.4, gd(axa
−1x−1, y1, y2, · · · , yd) is a nontrivial generalized rational

identity of D. Now, in view of Lemma 2.5, either D is centrally finite or F is

finite. If D is centrally finite, then N ⊆ F by [3, Theorem 3.1]. If F is finite, then

N is torsion, so by [5, Theorem 8], N ⊆ F . Thus, in both cases we have N ⊆ F , a

contradiction. �
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