
International Electronic Journal of Algebra

Volume 16 (2014) 72-88

PLANAR AND PROJECTIVE LINE GRAPHS OF COMAXIMAL

GRAPHS OF LATTICES

Mojgan Afkhami, Kazem Khashyarmanesh and Atossa Parsapour

Received: 11 February 2014; Revised: 18 March 2014

Communicated by A. Çiğdem Özcan
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1. Introduction

The concept of a comaximal graph of a commutative ring R was first defined in

[14]. In [14], Sharma and Bhatwadekar defined the comaximal graph of R, denoted

by Γ(R), with all elements of R being the vertices, and two distinct vertices a

and b are adjacent if and only if Ra + Rb = R. In [8] and [15], the authors

considered a subgraph Γ2(R) of Γ(R) consisting of non-unit elements of R, and

studied several properties of the comaximal graph. Also the comaximal graph

of a non-commutative ring was defined and studied in [16]. Recently, in [1], the

comaximal graph of a lattice was defined and studied.

The comaximal graph of a lattice L = (L,∧,∨), denoted by Γ(L), is an undi-

rected graph with all elements of L being the vertices, and two distinct vertices a

and b are adjacent if and only if a ∨ b = 1.

One important theorem due to Whitney about the line graphs is that with one

exceptional case, L(G) = K3, the structure of any connected graph can be recovered

from its line graphs, i.e., there is one-to-one correspondence between the class of

connected graphs and the class of connected line graphs (see [17]). Hence in this

paper we consider the line graph of the comaximal graph of a finite lattice.

In this work, we denote by L(Γ2(L)), the line graph associated to Γ2(L). In

Section 2, we study the planarity of the line graph associated to comaximal graph

of finite lattices. In Section 3, we characterize all finite lattice L that, the line graph

L(Γ2(L)) is projective.
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First we recall some definitions and notations on lattices and graphs. Recall that

a lattice is a set L = (L,∧,∨) with two binary operations ∧ and ∨, satisfying the

following conditions: for all a, b, c ∈ L,

1. a ∧ a = a, a ∨ a = a,

2. a ∧ b = b ∧ a, a ∨ b = b ∨ a,

3. (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and

4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

Note that in every lattice the equality a ∧ b = a always implies that a ∨ b = b.

Also, by [11, Theorem 2.1], one can define an order 6 on L as follows:

For any a, b ∈ L, we set a 6 b if and only if a∧ b = a. Then (L,6) is an ordered

set in which every pair of elements has a greatest lower bound (g.l.b.) and a least

upper bound (l.u.b.). Conversely, let P be an ordered set such that, for every pair

a, b ∈ P , g.l.b.(a,b) and l.u.b.(a,b) belong to P . For each a and b in P , we define

a ∧ b := g .l .b.(a, b) and a ∨ b := l .u.b.(a, b). Then (P,∧,∨) is a lattice.

Recall that in a partially ordered set (P,6), we say that a covers b or b is covered

by a, in notation b ≺ a, if and only if b < a and there is no element p in P such

that b < p < a. An element a in L is called a co-atom if a ≺ 1. We denote the

sets of all co-atoms in a lattice L by C(L). Also, for an element a ∈ L, we have

[a]l = {b ∈ L | b ≤ a}.
Now, we recall some definitions and notations on graphs. Let G be a simple

graph with vertex-set V (G) and edge-set E(G). In a graph G, for two distinct

vertices a and b in G, the notation a − b means that a and b are adjacent. Also,

the degree of a vertex x, denoted by deg(x), is the number of edges incident to x,

and an isolated vertex is a vertex with zero degree. A graph with no edges (but

at least one vertex) is called an empty graph. The graph with no vertices and no

edges is the null graph. For a positive integer r, an r-partite graph is one whose

vertex-set can be partitioned into r subsets, so that no edge has both ends in any

one subset. A complete r-partite graph is one in which each vertex is joined to

every vertex that is not in the same subset. For positive integers m and n, the

graph Kn is a complete graph with n vertices and the graph Km,n is a complete

bipartite graph, with parts of sizes m and n. A complete bipartite graph K1,n

is called star (see [3] and [7]). A graph G is said to be contracted to a graph H

if there exists a sequence of elementary contractions which transforms G into H,

where an elementary contraction consists of deletion of a vertex or an edge or the

identification of two adjacent vertices. A subdivision of a graph is any graph that

can be obtained from the original graph by replacing edges by paths. The line
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graph of a graph G is the graph L(G) with the edges of G as its vertices, and two

edges of G are adjacent in L(G) if and only if they are incident in G. In this work,

we denote wi,j for the vertex [vi, vj ] ∈ L(G), where vi and vj are adjacent vertices

in G.

Recall that a graph is said to be planar if it can be drawn in the plane, such that

its edges intersect only at their ends. A remarkable characterization of the planar

graphs was given by Kuratowski in 1930. Kuratowski’s Theorem says that a graph

is planar if and only if it contains no subdivision of K5 or K3,3 (cf. [3, p. 153]).

In [13], the author characterized the planarity of a line graph L(G) by using the

planarity of G and its vertex degrees.

Theorem 1.1. [13, Lemma 2.6] A non-empty graph G has a planar line graph

L(G) if and only if

(i) G is planar,

(ii) 4(G) ≤ 4, and

(iii) if deg(v) = 4, then v is a cut-vertex in the graph G.

By a surface, we mean a connected compact 2-dimensional real manifold with-

out boundary, that is a connected topological space such that each point has a

neighbourhood homeomorphic to an open disc. It is well-known that every com-

pact surface is homeomorphic to a sphere, or to a connected sum of g tori, or to

a connected sum of k projective planes (see [9, Theorem 5.1]). This number k is

called the crosscap number of the surface. Also, we denote the crosscap number of

a graph G by γ(G). One easy observation is that γ(H) ≤ γ(G), for any subgraph

H of G. The projective plane can be though of as a sphere with one crosscap. This

means that the crosscap number of projective plane is 1.

A //

B

����

B

OOOO

A
oo

The canonical representation of a projective plane

A graph G is embeddable in a surface S if the vertices of G are distinct points

in S and every edge of G is a simple arc in S connecting the two vertices which is

joined in G. A projective graph is a graph that can be embedded in a projective
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plane. If G can not be embedded in S, then G has at least two edges intersecting

at a point which is not a vertex of G. We say a graph G is irreducible for a surface

S if G does not embed in S, but any proper subgraph of G embeds in S. The

set of 103 irreducible graphs for the projective plane has been found by H. Glover,

J.P. Huneke and C.S. Wang in [6], and D. Archdeacon in [2] proved that this list is

complete. This list also has been checked by W. Myrvold and J. Roth in [10]. Hence

a graph embeds in the projective plane if and only if it contains no subdivision of

103 graphs in [6]. Also, a complete graph Kn is projective if n = 5 or 6, and the only

projective complete bipartite graphs are K3,3 and K3,4 (see [4] or [12]). Note that

a planar graph is not considered as a projective graph. In this paper, we assume

that L is a finite lattice. The comaximal graph of a lattice L, denoted by Γ(L),

is an undirected graph with all elements of L being the vertices, and two distinct

vertices a and b are adjacent if and only if a ∨ b = 1 (see [1]). It is easy to see

that 1 is adjacent to all vertices, and so Γ(L) is a refinement of a star graph with

center 1. Thus we consider an induced subgraph of Γ(L) with vertex set L \ {1}.
Also the vertices in the set J(L) are isolated vertices in this subgraph, since they

are adjacent to 1, where J(L) is the set
⋂

m∈C(L)m. Thus we denote the induced

subgraph of Γ(L) with vertex set L \ (J(L)∪ {1}), by Γ2(L), and in the rest of the

paper we deal with the graph Γ2(L).

2. On the planarity of L(Γ2(L))

In this section, we explore the planarity of the line graph associated to the graph

Γ2(L), where L is a finite lattice. In fact, we characterize all finite lattices in terms

of the size of their co-atoms. If |C(L)| = 1, then Γ2(L) is an empty graph, and

hence L(Γ2(L)) is a null graph. We begin this section with the following notation,

which is needed in the rest of the paper.

Notation 2.1. Suppose that |C(L)| = t, where t > 1. To simplify notation, we

denote the set [m]l, where m ∈ C(L), by m. We set Sj := mj\
⋃

i 6∈{j}mi, where

1 ≤ i, j ≤ t. Also, Sj1j2...jk := (mj1 ∩ mj2 ∩ · · · ∩ mjk) \
⋃

i6∈{j1,j2,...,jk}mi, where

1 ≤ j1 < j2 < · · · < jk ≤ t. Note that each element in Si is adjacent to all

elements of Sj, for i 6= j, and also it is adjacent to all elements of Sj1j2···jk , where

j1, . . . , jk 6∈ {i}.

Now, we state the following lemma.

Lemma 2.2. If L(Γ2(L)) is planar, then the size of C(L) is at most four.
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Proof. Assume to the contrary that |C(L)| ≥ 5. Then the graph Γ2(L) contains

a copy of K5 with vertices v1 ∈ S1, v2 ∈ S2, v3 ∈ S3, v4 ∈ S4 and v5 ∈ S5. So the

graph L(Γ2(L)) contains a subdivision of K3,3 (see Figure 1).

w1,3 w1,4w1,5

w4,5 w1,2 w3,5

w2,3

w2,4w3,4

Figure 1

Therefore, it is not a planar graph, which is a contradiction. �

By Lemma 2.2, it is sufficient for us to investigate the planarity of the graph

L(Γ2(L)) in the cases in which the size of C(L) is 2, 3 and 4.

First we state the necessary and sufficient condition for the planarity of the graph

L(Γ2(L)), when |C(L)| = 2.

Theorem 2.3. Suppose that |C(L)| = 2. Then L(Γ2(L)) is a planar graph if and

only if |
⋃2

j=1 Sj | ≤ 5.

Proof. First, assume that L(Γ2(L)) is planar and assume on the contrary that

|
⋃2

j=1 Sj | ≥ 6. We know that as |C(L)| = 2, the graph Γ2(L) is a complete

bipartite graph. If Γ2(L) is a star graph, then the graph L(Γ2(L)) contains a

subgraph isomorphic to K5, which is not planar. Otherwise, Γ2(L) is not a star

graph. Then it contains a subgraph isomorphic to K2,4 or K3,3. In these two cases,

L(Γ2(L)) contains a subdivision of K3,3. Hence L(Γ2(L)) is not planar, which is a

contradiction.

Conversely, suppose that |
⋃2

j=1 Sj | ≤ 5. If |
⋃2

j=1 Sj | = 2, then L(Γ2(L)) is

isomorphic to L(K2), which is an empty graph with one vertex. Also if |
⋃2

j=1 Sj | =
3, then L(Γ2(L)) ∼= L(K1,2) ∼= K2. In addition, if |

⋃2
j=1 Sj | = 4, then Γ2(L)

is isomorphic to K1,3 or K2,2. Hence L(Γ2(L)) is isomorphic to K3 and K2,2,

respectively. Finally, assume that |
⋃2

j=1 Sj | = 5. If Γ2(L) is a star graph, then

L(Γ2(L)) ∼= K4. Otherwise, the graph Γ2(L) is isomorphic to K2,3 with vertices

v1, v2, v3 ∈ S1 and v4, v5 ∈ S2. In this case, the graph L(Γ2(L)) is pictured in

Figure 2.

In all of the above situations, L(Γ2(L)) is a planar graph. �



PLANAR AND PROJECTIVE LINE GRAPHS 77

w2,5w1,5

w2,4w1,4

w3,4

w3,5

Figure 2

Now, we investigate the planarity of L(Γ2(L)), when |C(L)| = 3. Let |
⋃3

j=1 Sj | ≥
5. It is easy to see that Γ2(L) contains a subgraph isomorphic to a complete 3-

partite graph K3,1,1 or K2,2,1. Therefore the graph L(Γ2(L)) contains a subdivision

of K3,3 and a subdivision of K5, respectively. Hence it is not planar, and so we

have the following lemma.

Lemma 2.4. If L(Γ2(L)) is planar, then |
⋃3

j=1 Sj | ≤ 4.

Theorem 2.5. Suppose that |C(L)| = 3. Then L(Γ2(L)) is a planar graph if and

only if one of the following conditions hold:

(i) |
⋃3

j=1 Sj | = 3 and |Sij | ≤ 2, for 1 ≤ i, j ≤ 3.

(ii) |
⋃3

j=1 Sj | = 4 and |Sij | ≤ 1, for 1 ≤ i, j ≤ 3.

Proof. First, assume that one of the conditions (i) or (ii) holds. Suppose that

|
⋃3

j=1 Sj | = 3 and |S23| = |S12| = |S13| = 2. The graph Γ2(L) with vertices

v1 ∈ S1, v2 ∈ S2, v3 ∈ S3, v4, v5 ∈ S23, v6, v7 ∈ S12 and v8, v9 ∈ S13 is pictured in

Figure 3.

v5v4

v1

v2

v8

v9

v6

v7v3

Figure 3

Hence the graph L(Γ2(L)) is pictured in Figure 4, which is planar.

Now, suppose that |
⋃3

j=1 Sj | = 4, |S1| = 2 and |S23| = |S13| = |S12| = 1. The

graph Γ2(L) with vertices v1, v2 ∈ S1, v3 ∈ S2, v4 ∈ S3, v5 ∈ S23, v6 ∈ S13,

v7 ∈ S12 is pictured in Figure 5 and L(Γ2(L)) is pictured in Figure 6, which is a

planar graph.

Conversely, suppose that L(Γ2(L)) is a planar graph. By Lemma 2.4, |
⋃3

j=1 Sj | ≤
4. Hence we have the following cases.
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w1,2

w2,3 w1,3

w3,7

w3,6

w2,9

w2,8

w1,5

w1,4

Figure 4

v7

v4

v1

v3
v2

v6
v5

Figure 5

w3,6

w2,3

w2,5

w1,5

w1,3 w3,4
w1,4

w2,4

w4,7

Figure 6

Case 1. |
⋃3

j=1 Sj | = 3. If S12, S13 or S23 has at least three elements, then

there exists at least a vertex of degree five in the graph Γ2(L). Hence the graph

L(Γ2(L)) contains a subgraph isomorphic to K5, and so it is not planar, which is a

contradiction.

Case 2. |
⋃3

j=1 Sj | = 4. Without loss of generality, we may assume that |S1| = 2.

If S12 or S13 has at least two elements, then there exists at least a vertex of degree

five in the graph Γ2(L). Hence the graph L(Γ2(L)) contains a copy of K5, and so it

is not planar, which is a contradiction. In addition, if S23 has at least two elements,

then Γ2(L) contains a subgraph isomorphic to K2,4. Therefore Γ2(L) has a vertex
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of degree four which is not a cut-vertex. By Theorem 1.1, L(Γ2(L)) is not a planar

graph, which is a contradiction. �

Now, we study the planarity of L(Γ2(L)), when |C(L)| = 4.

Lemma 2.6. If L(Γ2(L)) is planar, then |
⋃4

j=1 Sj | = 4.

Proof. Suppose on the contrary that |
⋃4

j=1 Sj | ≥ 5. Then the graph Γ2(L) has a

vertex of degree four which is not a cut-vertex. Hence, by Theorem 1.1, L(Γ2(L))

is not a planar graph, which is a contradiction. �

Theorem 2.7. Suppose that |C(L)| = 4. Then L(Γ2(L)) is a planar graph if and

only if Sij = ∅ and |Sijk| ≤ 1, for all i, j, k ∈ {1, 2, 3, 4}.

Proof. First, assume that the graph L(Γ2(L)) is planar. By Lemma 2.6, we have

|
⋃4

j=1 Sj | = 4. If there exists at least one element in Sij , for i, j ∈ {1, 2, 3, 4},
then one can easily check that the graph L(Γ2(L)) contains a subdivision of K3,3,

which is not planar. Also if one of the sets Sijk has at least two elements, for

i, j, k ∈ {1, 2, 3, 4}, then the graph Γ2(L) has a vertex of degree five. Hence the

graph L(Γ2(L)) contains a copy of K5, which is impossible.

Conversely, suppose that S12 = S13 = S23 = ∅ and |S123| = |S124| = |S134| =

|S234| = 1. The graph Γ2(L) with vertices v1 ∈ S1, v2 ∈ S2, v3 ∈ S3, v4 ∈ S4,

v5 ∈ S123, v6 ∈ S124, v7 ∈ S134 and v8 ∈ S234 is pictured in Figure 7. Hence

v5

v4

v1

v2

v8

v6

v7
v3

Figure 7

L(Γ2(L)) is pictured in Figure 8, which is a planar graph. Therefore, in the case

that Sij = ∅ and |Sijk| ≤ 1, for all i, j, k ∈ {1, 2, 3, 4}, we have L(Γ2(L)) is

planar. �

3. On the projectivity of L(Γ2(L))

In this section, we investigate the projectivity of the line graph of the graph

Γ2(L), where L is a finite lattice. We begin this section with the following lemma.

Lemma 3.1. If L(Γ2(L)) is projective, then the size of C(L) is at most four.
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w2,4

w4,5
w3,4 w2,3 w2,7
w3,6

w1,3

w1,8w1,4 w1,2

Figure 8

Proof. Assume to the contrary that |C(L)| ≥ 5. Then the graph Γ2(L) contains

a copy of K5 with vertices v1 ∈ S1, v2 ∈ S2, v3 ∈ S3, v4 ∈ S4 and v5 ∈ S5. So

the contraction of the graph L(Γ2(L)) contains a copy of E20, one of the listed

graphs in [6] (see Figure 9). Therefore L(Γ2(L)) is not a projective graph, which is

a contradiction. �

w1,3

w3,4w2,3

w2,4 − w1,4

w1,5

w1,2

w2,5

w3,5 w4,5

Figure 9

By Lemma 3.1, it is sufficient to investigate the projectivity of the graph L(Γ2(L))

in the cases that the size of C(L) is 2, 3 and 4.

Theorem 3.2. Suppose that |C(L)| = 2. Then L(Γ2(L)) is a projective graph if

and only if one of the following conditions holds:

(i) |
⋃2

j=1 Sj | = 6 and |Si| = 1, for some unique i ∈ {1, 2} or |Si| = |Sj | = 3, for

i, j ∈ {1, 2}.
(ii) |

⋃2
j=1 Sj | = 7 and |Si| = 1, for some unique i ∈ {1, 2}.

Proof. First, assume that the graph L(Γ2(L)) is projective and on the contrary,

|
⋃2

j=1 Sj | ≤ 5. Then, by Theorem 2.3, the graph L(Γ2(L)) is planar, which is not
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projective. Now, assume that |
⋃2

j=1 Sj | = 6 and Γ2(L) ∼= K2,4. By [5, Example

2.14], γ(L(K2,4)) = 2, and so the graph L(Γ2(L)) is not projective. Hence, if

|
⋃2

j=1 Sj | = 6, then the statement (i) holds. Now, suppose that |
⋃2

j=1 Sj | = 7. If

Γ2(L) is not a star graph, then it is isomorphic to K2,5 or K3,4. By [5, Corollary

2.11], γ(L(K2,5)) = 2 and, by [5, Example 2.14], γ(L(K3,4)) = 2. So if |
⋃2

j=1 Sj | =
7, then the statement (ii) holds. Finally, we may assume that |

⋃2
j=1 Sj | ≥ 8. If

Γ2(L) is a star graph, then the graph L(Γ2(L)) contains a subgraph isomorphic to

K7, which is not projective. Otherwise, Γ2(L) is not a star graph. Then it contains

a subgraph isomorphic to K2,6, K3,5 or K4,4. In these cases, Γ2(L) contains a copy

of K2,4. Clearly, γ(L(Γ2(L))) ≥ γ(L(K2,4)), and we have γ(L(K2,4)) = 2. It means

that the graph L(Γ2(L)) is not projective. Therefore, if L(Γ2(L)) is projective, then

one of the conditions (i) or (ii) holds.

Conversely, suppose that |
⋃2

j=1 Sj | = 6, and the graph Γ2(L) is a star graph.

Then L(Γ2(L)) ∼= K5, and so it is a projective graph. Now, suppose that Γ2(L) ∼=
K3,3. By [5, Example 2.12], γ(L(K3,3)) = 1, and so the graph L(Γ2(L)) is projec-

tive. Finally, suppose that |
⋃2

j=1 Sj | = 7, and the graph Γ2(L) is a star graph.

Then L(Γ2(L)) ∼= K6, and so it is a projective graph. �

Now, we investigate the projectivity of L(Γ2(L)), when |C(L)| = 3.

Suppose that |
⋃3

j=1 Sj | ≥ 6. Then the graph Γ2(L) contains a subgraph isomorphic

to K4,1,1, K3,2,1 or K2,2,2. If Γ2(L) contains a subgraph isomorphic to K4,1,1, then

one can easily find a copy of A1, one of the listed graphs in [6], in the graph

L(Γ2(L)), which is not projective. Also if Γ2(L) contains a subgraph isomorphic

to K3,2,1, then one can easily find a copy of E20, one of the listed graphs in [6],

in the contraction of L(Γ2(L)), which is not projective. Now, if Γ2(L) contains a

subgraph isomorphic to K2,2,2, then the contraction of L(Γ2(L)) contains a copy of

E3, one of the listed graphs in [6], which is not projective. Therefore L(Γ2(L)) is

not a projective graph.

As a consequence of the above discussion, we state the following lemma.

Lemma 3.3. If L(Γ2(L)) is projective, then |
⋃3

j=1 Sj | ≤ 5.

Theorem 3.4. Suppose that |C(L)| = 3. Then L(Γ2(L)) is a projective graph if

and only if one of the following conditions holds:

(i) |
⋃3

j=1 Sj | = 3, there exist unique i and j, with 1 ≤ i, j ≤ 3, such that 3 ≤
|Sij | ≤ 4 and |Skk′ | ≤ 2, for k ∈ {i, j} and {k′} = {1, 2, 3} \ {i, j}.

(ii) |
⋃3

j=1 Sj | = 4, there exists unique i, with 1 ≤ i ≤ 3, such that |Si| = 2, and

for {j, k} = {1, 2, 3} \ {i}, if 2 ≤ |Sij | ≤ 3, then |Sik| ≤ 1 and Sjk = ∅.
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(iii) |
⋃3

j=1 Sj | = 5,

(a) there exists unique i, with 1 ≤ i ≤ 3, such that |Si| = 3, and for all

1 ≤ j, k ≤ 3, Sjk = ∅.

(b) there exists unique i, with 1 ≤ i ≤ 3, such that |Si| = 1, and for {j, k} =

{1, 2, 3} \ {i}, |Sjk| ≤ 1 and Sij = Sik = ∅.

Proof. First we assume that L(Γ2(L)) is a projective graph. By Lemma 3.3,

|
⋃3

j=1 Sj | ≤ 5. We have the following cases.

Case 1. |
⋃3

j=1 Sj | = 3. In this case, if |Sij | ≤ 2, for all i, j ∈ {1, 2, 3}, then by

Theorem 2.5, the graph L(Γ2(L)) is planar, which is not projective. Also without

loss of generality we may assume that |S12|, |S13| ∈ {3, 4}. Then one can easily

check that the graph L(Γ2(L)) contains a copy of A1, one of the listed graphs in

[6], which is not projective. In addition, if we assume that S12, S13 or S23 has at

least five elements, then the graph L(Γ2(L)) contains a subgraph isomorphic to K7,

which is not projective. Therefore, for the projectivity of L(Γ2(L)), it is necessary

that there exist unique i and j, with 1 ≤ i, j ≤ 3, such that 3 ≤ |Sij | ≤ 4 and

|Skk′ | ≤ 2, for k ∈ {i, j} and {k′} = {1, 2, 3} \ {i, j}.
Case 2. |

⋃3
j=1 Sj | = 4. In this case, if |Sij | ≤ 1, for all i, j ∈ {1, 2, 3}, then, by

Theorem 2.5, the graph L(Γ2(L)) is planar, which is not projective. Now, suppose

that there exists unique Si, with 1 ≤ i ≤ 3, say S1, such that |S1| = 2. If |S23| ≥ 2,

then Γ2(L) contains a copy of K2,4. Clearly, γ(L(Γ2(L))) ≥ γ(L(K2,4)), and we

have γ(L(K2,4)) = 2. It implies that the graph L(Γ2(L)) is not projective. Also if

|S12| = 2 and |S23| = 1, then the contraction of L(Γ2(L)) contains B1, one of the

listed graphs in [6], which is not projective. Now, we may assume that S23 = ∅. If

S12 or S13 has at least four elements, then the graph L(Γ2(L)) contains a subgraph

isomorphic to K7, which is not projective. Also if |S12| = |S13| = 2, then the

graph L(Γ2(L)) contains a copy of A1, one of the listed graphs in [6], which is

not projective. Therefore, for the projectivity of L(Γ2(L)), it is necessary that

2 ≤ |Sij | ≤ 3, |Sik| ≤ 1 and Sjk = ∅, for {j, k} = {1, 2, 3} \ {i}, when |Si| = 2.

Case 3. |
⋃3

j=1 Sj | = 5. Suppose that |S1| = 3. If S12 or S13 has at least

one element, then the graph L(Γ2(L)) contains a copy of D17, one of the listed

graphs in [6], which is not projective. Also if S23 has at least one element, then

the contraction of L(Γ2(L)) contains a copy of E20, one of the listed graphs in [6],

which is not a projective graph. Therefore, for the projectivity of L(Γ2(L)), it is

necessary that S12 = S13 = S23 = ∅, when |S1| = 3. On the other hand, suppose

that there exists unique Si, with 1 ≤ i ≤ 3, say S1, such that |S1| = 1. If S12 or S13

has at least one element, then the contraction of L(Γ2(L)) contains a copy of E20,
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one of the listed graphs in [6], which is not a projective graph. Also if |S23| ≥ 2,

then the contraction of L(Γ2(L)) contains a copy of D17, one of the listed graphs

in [6], which is not a projective graph. Therefore, for the projectivity of L(Γ2(L)),

it is necessary that S12 = S13 = ∅ and |S23| ≤ 1, when |S1| = 1.

Conversely, if one of the statements (i), (ii) or (iii) holds, then we show that

L(Γ2(L)) is a projective graph.

First suppose that |
⋃3

j=1 Sj | = 3. If |S12| = |S13| = 2 and |S23| = 4, then the

graph Γ2(L) is pictured in Figure 10, which is planar and the graph L(Γ2(L)) is

pictured in Figure 11, which is projective. We have v1 ∈ S1, v2 ∈ S2, v3 ∈ S3,

v4, v5 ∈ S12, v6, v7 ∈ S13 and v8, v9, v10, v11 ∈ S23.

v5v4

v3

v2

v6

v7

v8
v9

v1 v10
v11

Figure 10

w1,2w1,3

w2,3
w2,6

w2,7

w3,4

w3,5

w1,8

w1,9

w1,10

w1,11

Figure 11

Now, suppose that |
⋃3

j=1 Sj | = 4 and |S1| = 2. If |S12| = 1, |S13| = 3 and

S23 = ∅, then the graph Γ2(L) with vertices v1, v2 ∈ S1, v3 ∈ S2, v4 ∈ S3, v5 ∈ S12

and v6, v7, v8 ∈ S13 is planar and the graph L(Γ2(L)) is projective (see Figure 12).

Finally, suppose that |
⋃3

j=1 Sj | = 5 and consider the following cases.

Case 1. There exists unique Si, with 1 ≤ i ≤ 3, say S1, such that |S1| = 3,

and also S12 = S13 = S23 = ∅. Then the graph Γ2(L) with vertices v1, v2, v3 ∈ S1,
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w1,3

w1,4 w2,3
w2,4

w3,4

w3,6

w3,7

w3,8

w4,5

Figure 12

v4 ∈ S2 and v5 ∈ S3 is planar. As observed, in Figure 13, the graph L(Γ2(L)) is

projective.

w1,5

w1,4

w1,4

w2,5

w2,5

w3,5

w3,5

w3,4

w4,5

w2,4

Figure 13

Case 2. There exists unique Si, with 1 ≤ i ≤ 3, say S1, such that |S1| = 1,

also S12 = S13 = ∅ and |S23| = 1. Then the graph Γ2(L) with vertices v1 ∈ S1,

v2, v3 ∈ S2, v4, v5 ∈ S3 and v6 ∈ S23 is planar, and so L(Γ2(L)) is pictured in

Figure 14, is a projective graph. �

In the following, we assume that |C(L)| = 4. Firstly, consider that |
⋃4

j=1 Sj | = 5

and |S1| = 2. Then L(Γ2(L)) contains a subgraph isomorphic to E20, one of the

listed graphs in [6], which is not a projective graph. Therefore we have the following

lemma.

Lemma 3.5. If L(Γ2(L)) is projective, then |
⋃4

j=1 Sj | = 4.

In the sequel, suppose that |
⋃4

j=1 Sj | = 4. We have the following situations.
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w1,2

w1,4 w1,5

w1,3

w1,6

w2,4

w2,5

w2,5 w3,4

w3,4

w3,5

Figure 14

(i) There exist i, j, with 1 ≤ i, j ≤ 4, such that |Sij | ≥ 2. Then L(Γ2(L)) contains

a copy of A1, one of the listed graphs in [6], which is not a projective graph.

(ii) There exist i 6= i′, j 6= j′, with 1 ≤ i, i′, j, j′ ≤ 4, such that |Sij | = |Si′j′ | = 1.

Then the contraction L(Γ2(L)) contains a copy of D17, one of the listed graphs

in [6], which is not a projective graph.

(iii) There exist i 6= i′, j, with 1 ≤ i, i′, j ≤ 4, such that |Sij | = |Si′j | = 1. Then

L(Γ2(L)) contains a copy of D17, one of the listed graphs in [6], which is not

a projective graph.

(iv) For all 1 ≤ i, j, k ≤ 4, |Sijk| ≤ 1 and Sij = ∅. Then, by Theorem 2.7, the

graph L(Γ2(L)) is planar, which is not projective.

(v) There exist i, j, k, with 1 ≤ i, j, k ≤ 4, such that |Sijk| ≥ 4. Then L(Γ2(L))

contains a copy of K7, which is not projective.

(vi) There exist unique i 6= i′, j, k, with 1 ≤ i, i′, j, k ≤ 4, such that 2 ≤ |Sijk| ≤ 3

and |Si′ij | = |Si′ik| = |Si′jk| = 1. Then the graph Γ2(L), with vertices

v1 ∈ S1, v2 ∈ S2, v3 ∈ S3, v4 ∈ S4, v5, v6, v7 ∈ S123, v8 ∈ S124, v9 ∈ S134

and v10 ∈ S234 is planar. Therefore the graph L(Γ2(L)), which is pictured in

Figure 15, is projective.

(vii) There exist i 6= i′, j, k, with 1 ≤ i, i′, j, k ≤ 4, such that |Sijk| = |Si′jk| = 2.

Then L(Γ2(L)) contains a copy of A1, one of the listed graphs in [6], which is

not a projective graph.

(viii) There exist i, j 6= j′, k 6= k′, with 1 ≤ i, j, j′, k, k′ ≤ 4, |Sij | = 1 and |Sij′k′ | =
2. Then the contraction of L(Γ2(L)) contains a copy of B1, one of the listed

graphs in [6], which is not a projective graph.
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w1,2

w1,4

w1,3

w2,4

w2,4

w2,3

w3,4 w4,5

w4,5

w4,6

w2,9

w4,7

w1,10

w4,7

w3,8

Figure 15

(ix) There exist i, j, k, with 1 ≤ i, j, k ≤ 4, |Sij | = |Sijk| = 1. Then L(Γ2(L))

contains a copy of E19, one of the listed graphs in [6], which is not a projective

graph.

(x) There exist unique i, i′, j, j′, with {i′, j′} = {1, 2, 3, 4}\{i, j}, such that |Sij | =
|Sii′j′ | = |Sji′j′ | = 1. Then the graph Γ2(L), with vertices v1 ∈ S1, v2 ∈ S2,

v3 ∈ S3, v4 ∈ S4, v5 ∈ S12, v6 ∈ S134 and v7 ∈ S234 is planar. Therefore the

graph L(Γ2(L)), which is pictured in Figure 16, is projective.

w3,4 w2,4

w1,4

w2,3

w2,3

w1,3

w1,3 w1,2

w4,5

w3,5

w3,5

w2,6

w1,7

Figure 16

As a consequence of the above discussion and Lemma 3.5, we state the necessary

and sufficient conditions for the projectivity of L(Γ2(L)), when |C(L)| = 4.
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Theorem 3.6. Suppose that |C(L)| = 4. Then L(Γ2(L)) is a projective graph if

and only if |
⋃4

j=1 Sj | = 4 and one of the following conditions holds:

(i) There exist unique i 6= i′, j, k, with 1 ≤ i, i′, j, k ≤ 4, such that 2 ≤ |Sijk| ≤ 3

and |Si′ij | = |Si′ik| = |Si′jk| = 1.

(ii) There exist unique i, i′, j, j′, with {i′, j′} = {1, 2, 3, 4}\{i, j}, such that |Sij | =
|Sii′j′ | = |Sji′j′ | = 1.

Remark 3.7. Lattices have some connections to the family of group like structures.

Because meet (∧) and join (∨) both are commutative and associative, a lattice can

be viewed as consisting of two commutative semigroups having the same domain.

For a finite lattice, these semigroups are in fact commutative monoids. The concept

of the comaximal graph was first defined for commutative rings and the semigroup

properties of the two operations of rings were used. Hence if we have a semigroup

with two operations, then the comaximal graph can be defined.
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