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Abstract. Let R be a (commutative integral) domain with quotient K; let

R′ be the integral closure of R (in K). Then each overring of R (inside K) is a

going-down domain if and only if R′ is a locally pseudo-valuation domain, T ⊆
T ′ satisfies going-down for every overring T of R, and tr. deg[VR′ (M)/M(R′)M :

R′/M ] ≤ 1 for every maximal ideal M of R′ (where VR′ (M) denotes the

valuation domain that is canonically associated to the pseudo-valuation do-

main (R′)M ). Additional equivalences are given in case R is locally finite-

dimensional. Applications include the case where R is integrally closed or R

is not a Jaffard domain or R[X] is catenarian.
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1. Introduction

All rings considered below are assumed to be commutative (integral) domains

(with 1). Throughout, R denotes a domain with quotient field K, with R′ denoting

the integral closure of R (in K). As usual, Spec(R) (resp., Max(R)) denotes the

set of prime (resp., maximal) ideals of R; and, by an overring of R, we mean an

R-subalgebra of K, that is, a ring T such that R ⊆ T ⊆ K. If an overring T

of R is such that T 6= R (resp., T = R[u] for some u ∈ K), we say that T is a

proper overring (resp., a simple overring) of R. We let dim(R) denote the (Krull)

dimension of R, while dimv(R) denotes the valuative dimension of R (that is, the

supremum, which may be∞, of dim(T ) as T ranges over the set of overrings of R).

Also, for a (ring) extension R ⊆ S of domains with corresponding quotient fields

F ⊆ L, we let tr. deg[S : R] denote the transcendence degree of S over R (that is,

the transcendence degree of L over F ).

Let us next recall some basic definitions and facts.
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As in [13] and [21], R is said to be a going-down domain if the extension R ⊆ T
satisfies the going-down property for each domain T that contains R (as a subring);

cf. also [32], [33], [15], [22], [17], [31]. By [21, Theorem 1], the rings T that need to

be tested (to check that R ⊆ T satisfies the going-down property) may be restricted

to be either valuation overrings of R or simple overrings of R. The most natural

examples of going-down domains are arbitrary Prüfer domains and domains of

(Krull) dimension at most 1.

R is called a treed domain if Spec(R), when viewed as a poset via inclusion, is

a tree; that is, if no prime ideal of R can contain incomparable prime ideals of R.

It was shown in [13, Theorem 2.2] that each going-down domain must be treed;

however, a construction of W. J. Lewis, reported in [22, Example 2.2], showed that

the converse is false.

Following Hedstrom and Houston ([28], [29]), R is called a pseudo-valuation

domain (or, in short, a PVD) if each prime ideal P of R is strongly prime; that

is, if xy ∈ P , with x ∈ K and y ∈ K, implies that either x ∈ P or y ∈ P . Each

PVD is a quasi-local going-down domain. (In fact, more was shown in [14, page

560], namely, that each PVD is a divided domain in the sense of [15].) Recall from

[29] (cf. also [1]) that R is a PVD if and only if there is a (uniquely determined)

valuation overring V of R such that Spec(R) = Spec(V ) (as sets); in this case,

V is called the canonically associated valuation overring of R. It is shown in [1,

Proposition 2.6] that PVDs can be characterized as the pullbacks V ×F k arising

from a valuation domain (V,M) and a field k ⊆ F := V/M . In order to globalize

the PVD concept, Dobbs and Fontana [18] introduced the following definition: R

is called a locally pseudo-valuation domain (in short, an LPVD) if RM is a PVD

for each maximal ideal M of R. The class of LPVDs clearly contains all Prüfer

domains, all PVDs (indeed, PVDs are the same as the quasi-local LPVDs), and an

abundance of other semi-quasi-local domains arising from pullback constructions

(see, for instance, [18, Example 2.5]).

Although each overring of a Prüfer domain must be a Prüfer domain, there exist

one-dimensional domains with overrings of dimension greater than 1. By applying

the classical D+M construction (as in [26]) to such examples, it was shown in [13]

that an overring of a going-down domain need not be a going-down domain. In fact,

by an iterated pullback construction, it was shown in [19] that an integral overring

of a going-down domain need not be a going-down domain. (Earlier, it had been

shown that each integral overring of a going-down domain is a going-down domain

if dimv(R) ≤ 2 [14] or if R is both locally divided and locally finite-conductor [16,
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Theorem 3.2].) The main goal of this paper is to characterize the domains which

are such that each overring is treed (or is itself a going-down domain).

There have been several previous attempts at answering the above question or

related questions, with success only under rather special additional hypotheses:

cf. [13, Proposition 3.5], [4, Theorem 5.30], [12, Corollary 2.6], [6, Theorem 1],

[7, Theorems 4.4 and 6.1] and [3, Theorem 10]. An underlying difficulty in such

studies is that the nature of R has very subtle influences on its overrings. In

addressing the general case, we have found inspiration from two sources: Ayache’s

recent result [3] that if an integrally closed domain R is such that each overring

of R is treed, then R must be an LPVD; and the role, in the above-cited result

from [12], of the transcendence degree of R/M ⊆ V/M , in case (R.M) is a PVD

with canonically associated valuation overring V . Our main result, Theorem 2.8,

provides the following characterization for the general case: each overring of (a

domain) R is a going-down domain if and only if R′ is an LPVD, T ⊆ T ′ satisfies

going-down for every overring T of R, and tr. deg[VR′(M)/M : R′/M ] ≤ 1 for

every maximal ideal M of R′ (where VR′(M) denotes the valuation domain that

is canonically associated to the pseudo-valuation domain (R′)M ). Theorem 2.8

also shows that in case R is locally finite-dimensional, the above conditions are

equivalent to: each overring T of R is treed and satisfies htT ′(Q) = htT (Q∩R) for

every Q ∈ Max(T ′). Some other interesting applications are also given along these

lines, including the case where R is integrally closed (Proposition 2.2) or R is not

a Jaffard domain (Proposition 2.5) or R[X] is catenarian (Corollary 2.11).

If R is an LPVD and M is a maximal ideal of R, it will be convenient to let

VR(M) denote the valuation domain which is canonically associated to the pseudo-

valuation domain RM . Also, ⊂ will denote proper inclusion. Any unexplained

material is standard, typically as in [26].

2. Results

For reference purposes, we begin by stating the above-mentioned recent result

of the first-named author.

Theorem 2.1. ([3, Theorem 10]) Let R be an integrally closed domain. If each

overring of R is treed, then R is an LPVD.

To appreciate the significance of the hypothesis in Proposition 2.2, note the

following consequence of [17, Example 2.3]: the implication (ii)⇒ (i) in Proposition

2.2 would fail if the domain R is not integrally closed. Also, for the proof of
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Proposition 2.2 (and later), we need to recall that a domain R is called a Jaffard

domain if dimv(R) = dim(R) <∞.

Proposition 2.2. Let R be an integrally closed domain. Then the following three

conditions are equivalent:

(i) Each overring of R is a going-down domain;

(ii) Each overring of R is treed;

(iii) R is an LPVD and tr. deg[VR(M)/MRM : R/M ] ≤ 1 for each maximal

ideal M of R.

If, in addition, R is locally finite-dimensional, then the above three con-

ditions are also equivalent to the following three conditions:

(iv) R is an LPVD and dimv(RM ) − dim(RM ) ≤ 1 for each maximal ideal M

of R;

(v) For each maximal ideal M of R, either RM is a valuation domain or

RM is a PVD (which is not a valuation domain) such that dimv(RM ) =

dim(RM ) + 1;

(vi) For each maximal ideal M of R, either RM is a valuation domain or RM

is a PVD (which is not a valuation domain) such that tr. deg[VR(M)/M :

R/M ] = 1.

Proof. By [13, Theorem 2.2], (i) ⇒ (ii). According to [4, Proposition 5.1] (resp.,

[6, Proposition 2.2]), each overring of R is a going-down domain (resp., treed) if

and only if RM inherits the same property for every maximal ideal M of R. So,

without loss of generality, we may assume that R is quasi-local with maximal ideal

M . Therefore, (ii) ⇒ (iii) comes from Theorem 2.1 and [7, Corollary 2.9], and (iii)

⇒ (i) results from [7, Corollary 3.7] or [12, Corollary 2.6].

Assume henceforth that R is locally finite-dimensional.

(iii) ⇔ (iv): Let M be a maximal ideal of R. Then RM is a PVD. So, if

K(M) := VR(M)/MRM , then RM is isomorphic to the pullback ring VR(M)×K(M)

RM/MRM . Next, recall that each overring of the pseudo-valuation domain RM

is comparable with VR(M) (cf. the proof of [8, Theorem 3.1]); that valuative

dimension can be found by taking the supremum of the dimensions of valuation

overrings; and that the supremum of the dimensions of valuation domains that

are intermediate between two given fields is the transcendence degree of the field

extension (cf. [26, Theorem 20.9]). Therefore, it follows from [23, Proposition

2.1] that dimv(RM ) = dim(VR(M)) + tr. deg[VR(M)/MRM : R/M ] = dim(RM ) +

tr. deg[VR(M)/MRM : R/M ]. Thus, tr. deg[VR(M)/MRM : R/M ] ≤ 1 if and only

if dimv(RM )− dim(RM ) ≤ 1.
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(v) ⇒ (iv): Clear (as any finite-dimensional valuation domain is a Jaffard do-

main).

(iv) ⇒ (v): Let M be a maximal ideal of R. Then RM is a PVD such that

either dimv(RM ) = dim(RM ) or dimv(RM ) = dim(RM ) + 1. It suffices to show

that if dimv(RM ) = dim(RM ), then RM is a valuation domain. By the above

reasoning, the assumed condition gives that tr. deg[VR(M)/MRM : R/M ] = 0, and

so RM ⊆ VR(M) is an integral extension. Then, since RM is integrally closed, it

follows that RM = VR(M).

(v) ⇔ (vi): As in the proof that (iii) ⇔ (iv), tr. deg[VR(M)/MRM : R/M ] = 1

if and only if dimv(RM )− dim(RM ) = 1. �

If M ∈ Max(R) and dimv(R) ≤ 2, then

dimv(RM )− dim(RM ) ≤ dimv(R)− dim(RM ) ≤ 1,

and we can then immediately deduce the following result from Proposition 2.2.

Corollary 2.3. Let R be an integrally closed domain such that dimv(R) ≤ 2. Then

the following conditions are equivalent:

(i) Each overring of R is a going-down domain;

(ii) Each overring of R is treed;

(iii) R is an LPVD.

Recall that R is coequidimensional if R is finite-dimensional and htR(M) =

dim(R) for every maximal ideal of R.

If each overring of R is treed, then dimv(R) ≤ dim(R) + 1 [7, Corollary 2.12].

If, in addition, R is coequidimensional and M ∈ Max(R), then dimv(RM ) −
dim(RM ) ≤ dimv(R) − dim(R) ≤ 1. When combined with Proposition 2.2 and

[26, Corollary 19.7 (2)] (noting that the latter can be used to show that dimv(R) =

supM∈Max(R) dimv(RM ) for all domains R), this easily leads to the following result.

Corollary 2.4. Let R be an integrally closed coequidimensional domain. Then the

following conditions are equivalent:

(i) Each overring of R is a going-down domain;

(ii) Each overring of R is treed;

(iii) R is an LPVD and dimv(R) ≤ dim(R) + 1.

Let R be a finite-dimensional quasi-local integrally closed domain. It is known

that if R is a Jaffard domain, then each overring of R is a going-down domain (or

treed) if and only if R is a valuation domain [6, Lemma 1]. Our next proposition
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concerns the case where R is not a Jaffard domain (where it will turn out that,

for a finite-dimensional quasi-local integrally closed domain which is not a Jaffard

domain, having each overring being a going-down domain is equivalent to being

a certain kind of PVD). This result points out that the domains that are quasi-

local and integrally closed with all their overrings being going-down domains (or

treed) are intimately connected to the domains for which each proper overring

is (or satisfies) ℘, where ℘ is a ring-theoretic property, which means “(locally)

Jaffard domain” or “(stably) strong S-domain” or “universally catenarian domain”

or “satisfying the altitude formula”. We will assume familiarity with results on all

these concepts, as in [2], [5], [30], [10], but pause to collect the relevant definitions.

R is said to be catenarian in case, for each pair P ⊂ Q of prime ideals of R, all

saturated chains of prime ideals going from P to Q have a common finite length;

R is called universally catenarian if the polynomial rings R[X1, X2, . . . , Xn] are

catenarian for each positive integer n.

R is said to be a strong S-domain if, for each pair of consecutive prime ideals

P ⊂ Q of R, the extended primes P [X] ⊂ Q[X] of R[X] are consecutive; R is called

a stably strong S-domain if the polynomial rings R[X1, X2, . . . , Xn] are strong S-

domains for each positive integer n.

R is said to satisfy the altitude formula if, for each finite-type R-algebra S con-

taining R and each prime ideal Q of S that lies over P , we have

htS(Q) + tr. deg[S/Q : R/P ] = htR(P ) + tr. deg[S : R].

With the above definitions recorded, we can give the following interesting char-

acterizations.

Proposition 2.5. Let (R,M) be a finite-dimensional quasi-local integrally closed

domain. If R is not a Jaffard domain, then the following conditions are equivalent:

(i) Each overring of R is a going-down domain;

(ii) Each overring of R is treed;

(iii) Each proper overring of R is a Jaffard domain;

(iv) Each proper overring of R is a locally Jaffard domain;

(v) Each proper overring of R is a strong S-domain;

(vi) Each proper overring of R is a stably strong S-domain;

(vii) Each proper overring of R is a universally catenarian domain;

(viii) Each proper overring of R satisfies the altitude formula;

(ix) R is a PVD and dimv(R) = dim(R) + 1.

(x) R is a PVD and tr. deg[VR(M)/M : R/M ] = 1.
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Proof. The assertions (iii), (iv), (v), (vi), (vii), (viii), (ix), and (x) are equivalent

by combining [9, Theorem 1.4, Theorem 1.8 and Proposition 2.2].

(x) ⇒ (i) ⇔ (ii): These assertions follow directly from Proposition 2.2.

(ii) ⇒ (ix): Assume (ii). Then R is a PVD by Theorem 2.1. As R is not a

Jaffard domain, then R is not a valuation domain. Thus, dimv(R) = dim(R) + 1,

by Proposition 2.2. �

We turn next to the case where R is not necessarily integrally closed. First, it

will be convenient to provide a characterization of the integral extensions R ⊆ S

such that each intermediate ring between R and S is treed. Notice that the next

result improves [7, Theorem 6.4] since the extension R ⊂ S in it is not assumed to

satisfy the going-down property.

Lemma 2.6. Let R ⊂ S be an integral extension of domains. Then the following

conditions are equivalent:

(i) Each intermediate ring T between R and S (that is, each ring T such that

R ⊆ T ⊆ S) is treed;

(ii) R is treed and every non-maximal prime ideal of R is unibranched in S.

Proof. [7, Lemma 6.3] handles the implication (i)⇒ (ii). For the converse, assume,

by way of contradiction, that there exists a non-treed intermediate ring T between R

and S. It is easy to see, by the lying-over property and (ii), that each non-maximal

prime ideal of R is unibranched in T . Choose q and q′ to be incomparable prime

ideals of T that are contained in some maximal ideal m′ of T , and let p := q ∩ R
and p′ := q′ ∩ R be their contractions to R. Then p and p′ are each contained

in the maximal ideal m := m′ ∩ R of R. As R is treed, then p and p′ must be

comparable, say p ⊆ p′ ⊂ m. If p = p′, then q = q′ (since p is unibranched in T ), a

contradiction. Now, suppose that p ⊂ p′. As R ⊆ T enjoys the going-up property,

there is a prime ideal q′′ of T such that q ⊂ q′′ and q′′ ∩R = p′. Again, since p′ is

unibranched in T , we conclude that q′ = q′′, and so q ⊂ q′, another contradiction.

Hence, T is treed, as desired. �

Lemma 2.7. Let R be a domain such that each overring of R is treed. Then the

following conditions are equivalent:

(i) R is a going-down domain;

(ii) R ⊆ R′ satisfies going-down;

If, in addition, R is locally finite-dimensional, then the above two condi-

tions are equivalent to the following condition:

(iii) For each M ∈ Max(R′), htR′(M) = htR(M ∩R).
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Proof. It is clear that (i) ⇒ (ii). Conversely, suppose (ii). Then, by [3, Theorem

10], R′ is an LPVD, hence a going-down domain. A standard argument (which, for

the sake of completeness, is given in the following paragraph) can be used to show

that R ⊆ T satisfies going-down for each overring T of R. Thus, (ii) ⇒ (i).

In this paragraph, we provide the above-promised “standard argument.” Con-

sider prime ideals P2 ⊂ P1 of R and Q1 of T such that Q1 ∩ R = P1. Our task is

to find Q2 ∈ Spec(T ) such that Q2 ∩ R = P2 and Q2 ⊆ Q1. Put A := R′T . Note

that A is integral over T . By the lying-over property of integrality, there exists

W1 ∈ Spec(A) such that W1 ∩ T = Q1. Then q1 := W1 ∩ R′ ∈ Spec(R′) satisfies

q1 ∩R = P1. As R ⊆ R′ satisfies going-down, there exists q2 ∈ Spec(R′) such that

q2∩R = P2 and q2 ⊆ q1. Next, since R′ ⊆ A satisfies going-down, there exists W2 ∈
Spec(A) such that W2 ∩R′ = q2 and W2 ⊆W1. Then Q2 := W2 ∩T ∈ Spec(T ) has

the desired properties, thus completing the proof of the “standard argument.”

It follows from Lemma 2.6 that if R is a locally finite-dimensional domain and

each overring of R is treed, then htR′(P ) = htR(P ∩ R) for every non-maximal

prime ideal P of R′. Therefore, by combining Lemma 2.6 with [32, Propositions 1

and 3], we obtain the equivalence of (iii) with (i) and (ii). �

Contrary to the case where R is integrally closed, if each overring of R is treed,

it need not be the case that each overring of R is a going-down domain. Indeed,

in [17, Example 2.3], the second-named author built a two-dimensional domain R

such that R is not a going-down domain and each overring of R is treed. This ring

R was not integrally closed and did not satisfy the conditions in Lemma 2.7.

We can now present our main result. To motivate condition (ii) in Theorem

2.8, we mention the following consequence of [12, Theorem 2.5]. Let R be a PVD

whose canonically associated valuation overring is R′. (So, R′ is an LPVD.) Then

tr. deg[VR′(M)/M(R′)M : R′/M ] ≤ 1 for each (that is, for the) maximal ideal M

of R′ if and only if T ⊆ T ′ satisfies the going-down property for every overring T

of R.

Theorem 2.8. Let R be a domain. Then the following two conditions are equiva-

lent:

(i) Each overring of R is a going-down domain;

(ii) R′ is an LPVD, tr. deg[VR′(M)/M(R′)M : R′/M ] ≤ 1 for each maximal

ideal M of R′, and T ⊆ T ′ satisfies the going-down property for every

overring T of R.

If, in addition, R is locally finite-dimensional, then the above conditions

are equivalent to the following condition:
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(iii) Each overring T of R is treed and satisfies htT ′(Q) = htT (Q∩T ) for every

Q ∈ Max(T ′).

Proof. (i) ⇒ (ii) is immediate from Proposition 2.2.

(ii) ⇒ (i): Assume (ii). Then, in view of the hypotheses, Proposition 2.2 gives

that each overring of R′ is a going-down domain. Now, let T be any overring of

R. Then T ′ is an overring of R′, and so T ′ is a going-down domain. As T ⊆ T ′

satisfies going-down, [32, Lemma B] gives that T must be a going-down domain.

Assume henceforth that R is locally finite-dimensional.

(i) ⇒ (iii): Assume (i). Then each overring of R is treed, by [13, Theorem 2.2].

Hence, by Lemma 2.7, htT ′(Q) = htT (Q ∩ T ) for every Q ∈ Max(T ′).

(iii) ⇒ (ii): By Proposition 2.2, tr. deg[VR′(M)/M(R′)M : R′/M ] ≤ 1 for each

maximal ideal M of R′ and R′ is an LPVD. Let T be an overring of R. It remains

to prove that T ⊆ T ′ satisfies going-down. Note that each overring of T is treed.

We claim that T is locally finite-dimensional. Indeed, if Q is a maximal ideal of T ′,

P := Q ∩R′ is its contraction to R′, and M is a maximal ideal of R′ that contains

P , we have overring inclusions (R′)M ⊆ (R′)P ⊆ (T ′)Q. But (T ′)Q is comparable to

VR′(M) under containment by [24, Proposition 1.3(a)]. So, either VR′(M) ⊆ (T ′)Q

(in which case, dim((T ′)Q) ≤ dim(VR′(M)) = dim((R′)M ) < ∞ since R′ is locally

finite-dimensional), or (R′)M ⊆ (T ′)Q ⊆ VR′(M) (in which case, dim((T ′)Q) ≤

dimv((T ′)Q) ≤ dimv((R′)M ) = dim(VR′(M)) + tr. deg[VR′(M)/M(R′)M : R′/M ] =

dim((R′)M ) + tr. deg[VR′(M)/M(R′)M : R′/M ] ≤ dim((R′)M ) + 1 < ∞. Thus, T ′

is locally finite-dimensional. Hence, T is locally finite-dimensional, since T ⊆ T ′

satisfies htT ′(Q) = htT (Q∩T ) for each Q ∈ Max(T ′). This proves the above claim.

Finally, Lemma 2.7 shows that T ⊆ T ′ satisfies going-down. �

It is known that if the integral closure of R is a valuation domain, then each

overring of R is a going-down domain [14, Corollary 2.5]. However, as [17, Example

2.3] illustrates, this conclusion need not follow if the integral closure of R is a Prüfer

domain. We next characterize when each overring of R is a going-down domain,

provided that R′ is a Prüfer domain. As mentioned in the introduction, condition

(vi) in Corollary 2.9 has been much-studied in the literature and need not hold for

an arbitrary going-down domain R.

Corollary 2.9. If the integral closure R′ of R is a Prüfer domain, then the follow-

ing two conditions are equivalent:

(i) Each overring of R is a going-down domain;
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(ii) T ⊆ T ′ satisfies going-down for each overring T of R.

If, in addition, R is locally finite-dimensional, then the above conditions

are equivalent to the following four conditions:

(iii) Each integral overring T of R (that is, each ring T such that R ⊆ T ⊆ R′)

is treed and htR′(Q) = htR(Q ∩R) for every Q ∈ Max(R′);

(iv) R is treed, and for each prime ideal Q of R′, one has

either Q /∈ Max(R′) and Q is the unique prime ideal of R′ lying over Q∩R
or Q ∈ Max(R′) and htR′(Q) = htR(Q ∩R).

(v) R is a going-down domain and every non-maximal prime ideal of R is

unibranched in R′;

(vi) Each integral overring of R is a going-down domain.

Proof. (i) ⇒ (ii): Trivial.

(ii) ⇒ (i): Since R′ is a Prüfer domain, R′ is locally finite-dimensional and

VR′(M) = (R′)M for all M ∈ Max(R′). Thus, (ii) ⇒ (i) by Theorem 2.8.

Assume henceforth that R is locally finite-dimensional.

(ii) ⇒ (iii): Assume (ii). By combining (i) with Theorem 2.8, we get (iii).

(iii) ⇒ (iv): Apply Lemma 2.6.

(iv) ⇒ (v): Assume (iv). By [32, Lemma D], it suffices to prove that if Q ∈
Spec(R′), with n := htR′(Q) (<∞), and q := Q∩R (∈ Max(R)), with m := htR(q)

(<∞), then n = m. In view of the conditions in (iv), we can assume, without loss

of generality, that Q is a non-maximal prime ideal of R′ and that q is unibranched

in R′. As the assertion is trivial if Q (or q) is (0), we can also assume that n 6= 0

and m 6= 0. Note, by the incomparable property of integrality, that m ≥ n. Thus,

it suffices to prove that m ≤ n.

Since R is treed, note that the set of prime ideals of R which are contained

in q forms a (finite maximal) chain, (0) = q0 ⊂ . . . ⊂ qm = q. By using the

lying-over, going-up and incomparable properties of integrality, we can find a chain

(0) = Q0 ⊂ . . . ⊂ Qm of prime ideals of R′ such that Qi ∩ R = qi for all i =

0, . . . ,m. Necessarily, Qm = Q since q is unibranched in R′. Thus, n = htR′(Q) =

htR′(Qm) ≥ m.

(v) ⇒ (vi): Let T be an integral overring of R. Since (v) gives that R is treed,

Lemma 2.6 gives that T is treed. Then it follows by reasoning as in the proof of

[33, Proposition 2.12] that T is a going-down domain.

(vi)⇒ (i): As R′ is a Prüfer domain, it follows easily from [33, Proposition 2.12]

that A ⊆ B satisfies the incomparable property, for all overrings A ⊆ B of R. In

addition, each integral overring of R is treed, and so we get that each overring of
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R is treed, by [7, Theorem 5.5]. Let T be an overring of R. Set To := R′ ∩ T .

By hypothesis, To is a going-down domain; and the extension To ⊆ T satisfies the

incomparable property, by the above comments. Since, in addition, T is treed, a

standard argument (which, for the sake of completeness, is included in the next

paragraph) shows that T is a going-down domain, as desired.

By [21, Theorem], it is enough to prove that T ⊆ V satisfies going-down for

each valuation overring (V,P) of T . Put J := P ∩ R′. As R′ is a Prüfer domain,

V = (R′)J . Consider prime ideals P1 ⊂ P2 of T and Q2 of V such that Q2∩T = P2.

Our task is to find Q1 ∈ Spec(V ) such that Q1∩T = P1 and Q1 ⊆ Q2. By replacing

V with VQ2
, we may suppose that Q2 = P. Put pi := Pi ∩ To, for i = 1, 2. Note

that p1 ⊂ p2 by the incomparable property of the extension To ⊆ T . Also note that

J ∩ To = p2. Since (vi) ensures that To ⊆ R′ satisfies going-down, we therefore get

I ∈ Spec(R′) such that I ∩ To = p1 and I ⊂ J . Consider P3 := IV ∩ T ∈ Spec(T ).

We have that P3∩To = I ∩To = p1 and P3 ⊆ P2. Then, since the extension To ⊆ T
satisfies the incomparable property, either P1 = P3 or P1 and P3 are incomparable.

But P1 and P3 are not incomparable, since T is treed. Hence P1 = P3. Then

Q1 := I(R′)J = IV has the desired properties, which completes the proof. �

Remark 2.10. (a) We point out how the quasi-local QQR-domain (D,M) of [27,

Example 4.3] relates to conditions (i) and (ii) in Corollary 2.9. Note that D is not

a pseudo-valuation domain, by [28, Theorem 1.7], since its integral closure D′ is

not quasi-local. In fact, D′ is a Prüfer domain with exactly two maximal ideals,

and D′ is the only integral proper overring of D. Moreover, D ⊂ D′ is the special

kind of minimal (over)ring extension that was studied in [27], namely, the type

of ring extension where every proper overring of D contains D′. Consequently,

each proper overring of D is a Prüfer domain (hence a going-down domain, hence

a treed domain). However, D fails to be a treed domain (and so D is the only

overring of D which is not a going-down domain, thus showing that D “narrowly”

fails to satisfy condition (i) in Corollary 2.9). Indeed, [25, Remark 3.3] established,

i.a., the following more general fact: if (A,N) is a quasi-local QQR-domain and

A ⊂ A′ is (an integral minimal ring extension which is) decomposed (in the sense

that A′/N ∼= A/N × A/N as algebras over A/N), then A is not a treed domain.

(In contrast, note that each of the base rings denoted by R in [17, Examples 2.1

and 2.3] is a treed domain.) Similarly, D “narrowly” fails to satisfy condition (ii)

in Corollary 2.9, since D is the only overring T of D such that T ⊆ T ′ does not

satisfy going-down.
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(b) With respect to condition (ii) in Corollary 2.9, we can use the fact that

(filtered) direct limits preserve going-down [20] to show that an arbitrary domain R

(whose integral closure need not be a Prüfer domain) is such that T ⊆ T ′ satisfies

going-down for each overring T of R if and only if A = R[u1, ... , un] ⊂ A[u] satisfies

going-down for all finite lists u1, ... , un, u in (the quotient field) K such that u is

integral over A.

We close with the following interesting case, which generalizes [6, Corollary 2]

to the context of an arbitrary domain (with arbitrary valuative dimension). Recall

from [10, Lemma 2.3] that if R[X] is catenarian, then R is a strong S-domain, so

htR[X](P [X]) = htR(P ) for each prime ideal P of R (cf. [30]).

Corollary 2.11. Assume that at least one of the following two conditions holds:

(1) R[X] is a catenarian domain,

(2) R′ is coequidimensional and htR[X](M [X]) = htR(M) for each maximal

ideal M of R.

Then the following three conditions are equivalent:

(i) Each overring of R is a going-down domain;

(ii) Each overring of R is treed;

(iii) R is a going-down domain and every non-maximal prime ideal of R is

unibranched in R′.

Proof. (1) Note that each catenarian domain is locally finite-dimensional, by def-

inition.

(i) ⇒ (ii): Apply [13, Theorem 2.2].

(ii)⇒ (iii): Assume (ii). Then, by Theorem 2.1, R′ is a going-down domain. We

claim that R ⊆ R′ satisfies going-down.

By a result of McAdam, the claim will follow if we show that R ⊆ R[u] satisfies

going-down for all u ∈ R′. Identify R[u] = R[X]/Qo, where Qo is some nonzero

prime ideal of the polynomial ring R[X] such that Qo ∩ R = (0). Since R is treed

and locally finite-dimensional and R ⊆ R[u] has the incomparable property, it

follows from [32, Lemma C] that the claim will follow if we prove that htR[u](Q
′) =

htR(Q′ ∩ R) for each prime ideal Q′ of R[u]. In fact, since R[u] is catenarian (as

a homomorphic image of the catenarian domain R[X]), it is enough to test ideals

Q′ which are maximal ideals of R[u]. (To see this, it follows from the proof of [32,

Lemma C] that it is enough to know that, if Q′ is a prime ideal of R[u] which is

contained in a maximal ideal M ′ of R[u] such that n := htR[u](M
′), then there

is a chain C of length n (i.e., with n + 1 elements) consisting of prime ideals of
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R[u] such that both M ′ and Q′ are members of C. This, in turn, follows from the

catenariaty of R[u], as one need only take C to be the union of a maximal chain

of primes descending from M ′ to Q′ with a maximal chain of primes descending

from Q′.) For convenience, we will denote Q′, now that it can be assumed to be a

maximal ideal of R[u], by M ′. We can write M ′ = M/Qo, for some maximal ideal

M of R[X] that contains Qo. Then, since R[X] is catenarian,

htR[u](M
′) = htR[X]/Qo

(M/Qo) = htR[X](M)− htR[X](Qo) = htR[X](M)− 1. (λ)

Set m := M ∩R. Then m is a maximal ideal of R and m[X] ⊂M , and so

htR[X]/m[X](M/m[X]) = 1. (µ)

Furthermore, the strong S-domain property of R gives that htR[X](M) = htR(m).

Thus, since R[X] is catenarian, htR[X](M) =

htR[X](m[X]) + htR[X]/m[X](M/m[X]) = htR(m) + htR[X]/m[X](M/m[X]). (ν)

By combining (λ), (µ) and (ν), we obtain htR[u](M
′) = htR(m), thus proving the

above claim that R ⊆ R′ satisfies going-down.

Now, it follows from Lemma 2.7 that R is a going-down domain and that

htR′(M ′) = htR(M ′ ∩ R) for all M ′ ∈ Max(R′). As htR[X](M [X]) = htR(M)

for each maximal ideal M of R, it follows from [4, Corollary 5.28] that R′ is a

Prüfer domain. (Note that R satisfies the tacit hypothesis in [4, Corollary 5.28] of

being locally finite-dimensional.) Also, by [32, Lemma C], htR′(Q) = htR(Q ∩ R)

for all Q ∈ Spec(R′). The proof of Corollary 2.9 now permits us to infer (iii).

(iii)⇒ (i): Assume (iii). Once again, [4, Corollary 5.28] shows that R′ is a Prüfer

domain. Then Corollary 2.9 yields (i).

(2) Assume that R′ is coequidimensional and htR[X](M [X]) = htR(M) for every

maximal ideal M of R. We need only prove that (ii) ⇒ (iii), as one can prove that

(i) ⇒ (ii) and that (iii) ⇒ (i) by reasoning as above with (1). Assume (ii). If M ′

is any maximal ideal of R′, then

dim(R′) = htR′(M ′) ≤ htR(M ′ ∩R) ≤ dim(R) = dim(R′),

and so htR′(M ′) = htR(M ∩ R). Therefore, an application of Corollary 2.9 yields

(iii), thus completing the proof. For an alternate way to end the proof without

appealing to Corollary 2.9, apply Lemma 2.7 to get that R is a going-down domain,

and then apply Lemma 2.6 to get that every non-maximal prime ideal of R is

unibranched in R′. �
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Lastly, we note a motivation for condition (2) in Corollary 2.11. Recall the result

[11] that a going-down domain R is universally catenarian if (and only if) R is a

locally finite-dimensional strong S-domain. It follows that, if we assume slightly

more than condition (2) in Corollary 2.11, specifically that R′ is coequidimensional

and R is a strong S-domain, then whenever the equivalent conditions (i)-(iii) in

Corollary 2.11 hold, then condition (1) in Corollary 2.11 also holds.
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