ALMOST F-INJECTIVE MODULES AND ALMOST FLAT MODULES

Zhu Zhanmin

Received: 16 May 2014; Revised: 28 June 2014 Communicated by Abdullah Harmancı

ABSTRACT. A left *R*-module *M* is called *almost F-injective*, if every *R*-homomorphism from a finitely presented left ideal to *M* extends to a homomorphism of *R* to *M*. A right *R*-module *V* is said to be *almost flat*, if for every finitely presented left ideal *I*, the canonical map $V \otimes I \rightarrow V \otimes R$ is monic. A ring *R* is called *left almost semihereditary*, if every finitely presented left ideal of *R* is projective. A ring *R* is said to be *left almost regular*, if every finitely presented left ideal of *R* is a direct summand of *_RR*. We observe some characterizations and properties of almost *F*-injective modules and almost flat modules. Using the concepts of almost *F*-injectivity and almost flatness of modules, we present some characterizations of left coherent rings, left almost semihereditary rings, and left almost regular rings.

Mathematics Subject Classification (2010): 16E50, 16E60, 16D40, 16D50, 16P70 Keywords: Almost *F*-injective modules, almost flat modules, coherent rings, almost semihereditary rings, almost regular rings

1. Introduction

Throughout this paper, *R* denotes an associative ring with identity and all modules considered are unitary. For any *R*-module M, $M^+ = \text{Hom}(M, \mathbb{Q}/\mathbb{Z})$ will be the character module of *M*.

Recall that a left *R*-module *A* is said to be *finitely presented* if there is an exact sequence $F_1 \rightarrow F_0 \rightarrow A \rightarrow 0$ in which F_1, F_0 are finitely generated free left *R*-modules, or equivalently, if there is an exact sequence $P_1 \rightarrow P_0 \rightarrow A \rightarrow 0$, where P_1, P_0 are finitely generated projective left *R*-modules. Let *n* be a positive integer. Then a left *R*-module *M* is called *n*-presented [2] if there is an exact sequence of left *R*-modules $F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$ in which every F_i is a finitely generated free, equivalently, projective left *R*-module. A left *R*-module *M* is said to be *FP*-injective [9] if $\text{Ext}^1(A, M) = 0$ for every finitely presented left *R*-module *M* is called *F*-injective [4] if every *R*-homomorphism from a finitely generated left ideal to *M* extends to a homomorphism of *R* to *M*, or equivalently, if $\text{Ext}^1(R/I, M) = 0$ for every finitely presented left ideal to *M* extends to a homomorphism of *R* to *M*, or equivalently, if $\text{Ext}^1(R/I, M) = 0$ for every finitely generated left ideal to *M* extends the integer in the finitely if $\text{Ext}^1(R, A) = 0$ for every finitely generated left ideal to *M* extends the integer in the finitely for the finitely generated left ideal to *M*.

ZHU ZHANMIN

R-module *A* if and only if $\text{Tor}_1(M, R/I) = 0$ for every finitely generated left ideal *I*. We recall also that a ring *R* is called *left coherent* if every finitely generated left ideal of *R* is finitely presented. Coherent rings and their generations have been studied by many authors (see, for example, [1,2,6,7,9,10]).

In this paper, we shall extend the concepts of F-injective modules and flat modules to almost F-injective modules and almost flat modules respectively, and we shall give some characterizations and properties of almost F-injective modules and almost flat modules. Moreover, we shall call a ring R left almost semihereditary if every finitely presented left ideal of R is projective. And we shall call a ring R left almost regular if every finitely presented left ideal of R is a direct summand. Left coherent rings, left almost semihereditary rings and left almost regular rings will be characterized by almost F-injective left R-modules and almost flat right R-modules.

2. Almost F-injective modules and almost flat modules

We first extend the concept of *F*-injective modules as follows.

Definition 2.1. A left *R*-module *M* is called *almost F-injective*, if every *R*-homomorphism from a finitely presented left ideal to *M* extends to a homomorphism of *R* to *M*.

Recall that a submodule *A* of a left *R*-module *B* is said to be a pure submodule if for every right *R*-module *M*, the induced map $M \otimes_R A \to M \otimes_R B$ is monic, or equivalently, every finitely presented left *R*-module is projective with respect to the exact sequence $0 \to A \to B \to B/A \to 0$. In this case, the exact sequence $0 \to A \to B \to B/A \to 0$ is called pure. It is well known that a left *R*-module *M* is *FP*-injective if and only if it is pure in every module containing it as a submodule. We call a short exact sequence of left *R*-modules $0 \to A \to B \to C \to 0$ almost pure if for every finitely presented left ideal *I*, *R/I* is projective with respect to this sequence. In this case, we call *A* an almost pure submodule of *B*.

Next, we give some characterizations of almost F-injective modules.

Theorem 2.2. Let M be a left R-module. Then the following statements are equivalent.

- (1) M is almost F-injective.
- (2) $\operatorname{Ext}^{1}(R/I, M) = 0$ for every finitely presented left ideal I.
- (3) *M* is injective with respect to every exact sequence $0 \to C \to B \to R/I \to 0$ of left *R*-modules with *I* a finitely presented left ideal.
- (4) M is injective with respect to every exact sequence 0 → K → P → R/I → 0 of left R-modules with P projective and I a finitely presented left ideal.
- (5) Every exact sequence of left R-modules $0 \to M \to M' \to M'' \to 0$ is almost pure.

- (6) *M* is an almost pure submodule of its injective envelope E(M).
- (7) There exists an almost pure exact sequence $0 \to M \to M' \to M'' \to 0$ of left *R*-modules with *M'* injective.
- (8) There exists an almost pure exact sequence $0 \to M \to M' \to M'' \to 0$ of left *R*-modules with *M'* almost *F*-injective.
- **Proof.** (1) \Leftrightarrow (2) By the exact sequence $\operatorname{Hom}(R, M) \to \operatorname{Hom}(I, M) \to \operatorname{Ext}^1(R/I, M) \to 0$.
 - (2) \Rightarrow (3) By the exact sequence Hom(B, M) \rightarrow Hom(C, M) \rightarrow Ext¹(R/I, M) = 0.
 - $(3) \Rightarrow (4) \Rightarrow (1)$ are clear.
 - $(2) \Rightarrow (5)$ Assume (2). Then we have an exact sequence

$$\operatorname{Hom}(R/I, M') \to \operatorname{Hom}(R/I, M'') \to \operatorname{Ext}^{1}(R/I, M) = 0$$

for every finitely presented left ideal *I*, and so (5) follows.

 $(5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8)$ are obvious.

 $(8) \Rightarrow (2)$ By (8), we have an almost pure exact sequence $0 \to M \to M' \xrightarrow{f} M'' \to 0$ of left *R*-modules where *M'* is almost *F*-injective, and so, for every finitely presented left ideal *I*, we have an exact sequence $\operatorname{Hom}(R/I, M') \xrightarrow{f_*} \operatorname{Hom}(R/I, M'') \to \operatorname{Ext}^1(R/I, M) \to$ $\operatorname{Ext}^1(R/I, M') = 0$ with f_* epic. This implies that $\operatorname{Ext}^1(R/I, M) = 0$, and (2) follows. \Box

Proposition 2.3. *The class of almost F-injective left R-modules is closed under direct limits and almost pure submodules.*

Proof. It is easy to see that the class of almost *F*-injective left *R*-modules is closed under direct limits by [1, Lemma 2.9(2)] and Theorem 2.2(2). Now let *A* be an almost pure submodule of an almost *F*-injective left *R*-module *B*. For any finitely presented left ideal *I*, we have an exact sequence

 $\operatorname{Hom}(R/I, B) \to \operatorname{Hom}(R/I, B/A) \to \operatorname{Ext}^{1}(R/I, A) \to \operatorname{Ext}^{1}(R/I, B) = 0.$

Since *A* is almost pure in *B*, the sequence $\text{Hom}(R/I, B) \to \text{Hom}(R/I, B/A) \to 0$ is exact. Hence $\text{Ext}^1(R/I, A) = 0$, and so *A* is almost *F*-injective.

Proposition 2.4. Let $\{M_i \mid i \in I\}$ be a family of left *R*-modules. Then the following statements are equivalent.

- (1) Each M_i is almost F-injective.
- (2) $\prod_{i \in I} M_i$ is almost *F*-injective.
- (3) $\bigoplus_{i \in I} M_i$ is almost *F*-injective.

Proof. (1) \Leftrightarrow (2) by the isomorphism $\operatorname{Ext}^{1}(A, \prod_{i \in I} M_{i}) \cong \prod_{i \in I} \operatorname{Ext}^{1}(A, M_{i})$ and Theorem 2.2(2). (1) \Leftrightarrow (3) is obvious.

Definition 2.5. A right *R*-module *V* is said to be *almost flat*, if for every finitely presented left ideal *I*, the canonical map $V \otimes I \rightarrow V \otimes R$ is monic.

Clearly, a right *R*-module *V* is almost flat if and only if $\text{Tor}_1(V, R/I) = 0$ for every finitely presented left ideal *I*.

Proposition 2.6. Let $\{V_i \mid i \in I\}$ be a family of right *R*-modules. Then the following statements are equivalent.

- (1) Each V_i is almost flat.
- (2) $\bigoplus_{i \in I} V_i$ is almost flat.
- (3) $\prod_{i \in I} V_i$ is almost flat.

Proof. (1) \Leftrightarrow (2) by the isomorphism $\text{Tor}_1(\bigoplus_{i \in I} V_i, A) \cong \bigoplus_{i \in I} \text{Tor}_1(V_i, A)$.

(1) \Leftrightarrow (3) For any finitely presented right ideal *T*, by [1, Lemma 2.10], there is an isomorphism $\text{Tor}_1(\prod_{i \in I} V_i, R/T) \cong \prod_{i \in I} \text{Tor}_1(V_i, R/T)$, so the conditions (1) and (3) are equivalent.

Theorem 2.7. *The following are true for any ring R.*

- (1) A left R-module M is almost F-injective if and only if M^+ is almost flat.
- (2) A right R-module M is almost flat if and only if M^+ is almost F-injective.
- (3) The class of almost F-injective left R-modules is closed under pure submodules, pure quotients, direct sums, direct summands, direct products and direct limits.
- (4) The class of almost flat right *R*-modules is closed under pure submodules, pure quotients, direct sums, direct summands, direct products and direct limits.

Proof. (1) Let *I* be a finitely presented left ideal. Then R/I is 2-presented. So, by [1, Lemma 2.7(2)], we have

$$\operatorname{Tor}_1(M^+, R/I) \cong \operatorname{Ext}^1(R/I, M)^+,$$

and then (1) follows.

(2) This follows from the duality formula

$$\operatorname{Ext}^{n}(N, M^{+}) \cong \operatorname{Tor}_{n}(M, N)^{+},$$

where *M* is a right *R*-module and *N* is a left *R*-module.

(3) By Proposition 2.3 and Proposition 2.4, we need only to prove that the class of almost *F*-injective left *R*-modules is closed under pure quotients. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a pure exact sequence of left *R*-modules with *B* almost *F*-injective. Then we get the split exact sequence $0 \rightarrow C^+ \rightarrow B^+ \rightarrow A^+ \rightarrow 0$. Since B^+ is almost flat by (1), C^+ is also almost flat, and so *C* is almost *F*-injective by (1) again.

(4) By Proposition 2.6, the class of almost flat right *R*-modules is closed under direct sums, direct summands and direct products. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a pure exact sequence of right *R*-modules with *B* almost flat. Since B^+ is almost *F*-injective by (2), A^+ and C^+ are also almost *F*-injective, and so *A* and *C* are almost flat by (2) again. So the class of almost flat right *R*-modules is closed under pure submodules and pure quotients. By the isomorphism formula

$$\operatorname{Tor}_n(N, \lim M_k) \cong \lim \operatorname{Tor}_n(N, M_k),$$

we see that the class of almost flat right *R*-modules is closed under direct limits.

Theorem 2.8. *The following statements are equivalent for a ring R.*

- (1) *R* is left coherent.
- (2) Every almost F-injective left R-module is F-injective.
- (3) Every almost F-injective left R-module is FP-injective.
- (4) Every almost flat right R-module is flat.

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (2) are obvious.

(2) \Rightarrow (4) Let *M* be an almost flat right *R*-module. Then by Theorem 2.7(2), M^+ is almost *F*-injective, so M^+ is *F*-injective by (2). And thus *M* is flat.

(4) \Rightarrow (1) Assume (4). Then since the direct products of almost flat right *R*-modules is almost flat, the direct products of flat right *R*-modules is flat, and so *R* is left coherent.

 $(1), (2) \Rightarrow (3)$ By the proof of [7, Theorem 4], every *F*-injective left *R*-module over a left coherent ring *R* is *FP*-injective, and so (3) follows from (1) and (2).

Let \mathcal{F} be a class of left (right) *R*-modules and *M* a left (right) *R*-module. Following [3], we say that a homomorphism $\varphi : M \to F$ where $F \in \mathcal{F}$ is an \mathcal{F} -preenvelope of *M* if for any morphism $f : M \to F'$ with $F' \in \mathcal{F}$, there is a $g : F \to F'$ such that $g\varphi = f$. An \mathcal{F} -preenvelope $\varphi : M \to F$ is said to be an \mathcal{F} -envelope if every endomorphism $g : F \to F$ such that $g\varphi = \varphi$ is an isomorphism. Dually, we have the definitions of \mathcal{F} -precovers and \mathcal{F} -covers. \mathcal{F} -envelopes (\mathcal{F} -covers) may not exist in general, but if they exist, they are unique up to isomorphism.

Theorem 2.9. The following hold for any ring R.

- (1) Every left R-module has an almost F-injective cover and an almost F-injective preenvelope.
- (2) Every right R-module has an almost flat cover and an almost flat preenvelope.
- (3) If A → B is an almost F-injective (resp. almost flat) preenvelope of a left (resp. right) R-module A, then B⁺ → A⁺ is an almost flat (resp. almost F-injective) precover of A⁺.

Proof. (1) Since the class of almost *F*-injective left *R*-modules is closed under direct sums and pure quotients by Theorem 2.7(3), every left *R*-module has an almost *F*-injective cover by [5, Theorem 2.5]. Since the class of almost *F*-injective left *R*-modules is closed under direct summands, direct products and pure submodules by Theorem 2.7(3), every left *R*-module has an almost *F*-injective preenvelope by [8, Corollary 3.5(c)].

(2) is similar to that of (1).

(3) Let $A \to B$ be an almost *F*-injective preenvelope of a left *R*-module *A*. Then B^+ is almost flat by Theorem 2.7(1). For any almost flat right *R*-module *M*, M^+ is an almost *F*-injective left *R*-module by Theorem 2.7(2), and so Hom(B, M^+) \to Hom(A, M^+) is epic. Consider the following commutative diagram:

$$\begin{array}{ccc} \operatorname{Hom}(B, M^{+}) & \longrightarrow & \operatorname{Hom}(A, M^{+}) \\ & & & & & \downarrow^{\tau_{2}} \\ & & & & & \downarrow^{\tau_{2}} \end{array} \\ \operatorname{Hom}(M, B^{+}) & \longrightarrow & \operatorname{Hom}(M, A^{+}) \end{array}$$

Since τ_1 and τ_2 are isomorphisms, $\text{Hom}(M, B^+) \to \text{Hom}(M, A^+)$ is an epimorphism. So $B^+ \to A^+$ is an almost flat precover of A^+ . The other is similar. \Box

Proposition 2.10. The following statements are equivalent for a ring R.

- (1) $_{R}R$ is almost F-injective.
- (2) Every left R-module has an epic almost F-injective cover.
- (3) Every right R-module has a monic almost flat preenvelope.
- (4) Every injective right R-module is almost flat.
- (5) Every FP-injective right R-module is almost flat.

Proof. (1) \Rightarrow (2) Let *M* be a left *R*-module. Then *M* has an almost *F*-injective cover φ : $C \rightarrow M$ by Theorem 2.9. On the other hand, there is an exact sequence $A \xrightarrow{\alpha} M \rightarrow 0$ with *A* free. Note that *A* is almost *F*-injective by (1), there exists a homomorphism $\beta : A \rightarrow C$ such that $\alpha = \varphi\beta$. This follows that φ is epic.

(2) \Rightarrow (1) Let $f : N \rightarrow {}_{R}R$ be an epic almost *F*-injective cover. Then the projectivity of ${}_{R}R$ implies that ${}_{R}R$ is isomorphic to a direct summand of *N*, and so ${}_{R}R$ is almost *F*-injective.

(1) \Rightarrow (3) Let *M* be any right *R*-module. Then *M* has an almost flat preenvelope f: $M \to F$ by Theorem 2.9(2). Since $(_RR)^+$ is a cogenerator, there exists an exact sequence $0 \to M \xrightarrow{g} \prod (_RR)^+$. Since $_RR$ is almost *F*-injective, by Theorem 2.7(1) and Theorem 2.6, $\prod (_RR)^+$ is almost flat, and so there exists a right *R*-homomorphism $h: F \to \prod (_RR)^+$ such that g = hf, which shows that *f* is monic.

(3) \Rightarrow (4) Assume (3). Then for every injective right *R*-module *E*, *E* has a monic almost flat preenvelope *F*, so *E* is isomorphic to a direct summand of *F*, and thus *E* is almost flat.

(4) \Rightarrow (1) Since $(_RR)^+$ is injective, by (4), it is almost flat. Thus $_RR$ is almost *F*-injective by Theorem 2.7(1).

(4) \Rightarrow (5) Let *M* be an *FP*-injective right *R*-module. Then *M* is a pure submodule of its injective envelope *E*(*M*). By (4), *E*(*M*) is almost flat. So *M* is almost flat by Theorem 2.7(4).

 $(5) \Rightarrow (4)$ is clear.

Theorem 2.11. Let *F* be an almost flat module and $0 \rightarrow K \rightarrow F \rightarrow B \rightarrow 0$ be an exact sequence of right *R*-modules. Then the following conditions are equivalent.

- (1) B is almost flat.
- (2) For every finitely presented left ideal I, the canonical map $K \otimes R/I \rightarrow F \otimes R/I$ is a monomorphism.
- (3) For every finitely presented left ideal $I = Rc_1 + Rc_2 + \dots + Rc_n$, $K \cap F^n C = K^n C$, where $C = (c_1, c_2, \dots, c_n)'$.
- (4) $K \cap FI = KI$ for every finitely presented left ideal I.

Proof. (1) \Leftrightarrow (2) This follows from the exact sequence

$$0 = Tor_1(F, R/I) \to Tor_1(B, R/I) \to K \otimes R/I \to F \otimes R/I.$$

(2) \Rightarrow (3) Let $k \in K \cap F^n C$. Then there exist $x_1, x_2, \dots, x_n \in F$ such that $k = \sum_{j=1}^n x_j c_j$, and so we have $k \otimes (1 + I) = \sum_{j=1}^n (x_j \otimes (c_j + I)) = \sum_{j=1}^n (x_j \otimes 0) = 0$ in $F \otimes R/I$. By (2), $k \otimes (1 + I) = 0$ in $K \otimes R/I$. This implies that $k \in KI \subseteq K^n C$ since the map $\varphi : K/KI \rightarrow K \otimes R/I$ defined by $x + KI \mapsto x \otimes (1 + I)$ is an isomorphism. Thus $K \cap F^n C \subseteq K^n C$. But $K^n C \subseteq K \cap F^n C$, so $K \cap F^n C = K^n C$.

(3) \Rightarrow (4) Let $I = Rc_1 + Rc_2 + \dots + Rc_n$ be a finitely presented left ideal. Let $k \in K \cap FI$. Then there exist $x_1, x_2, \dots, x_n \in F$ such that $k = \sum_{j=1}^n x_j c_j$. Write $C = (c_1, c_2, \dots, c_n)'$. Then $k \in K \cap F^nC$, and so $k \in K^nC$ by (3). Thus, $k \in KI$. The inverse inclusion is clear.

(4) \Rightarrow (2) Let $I = Rc_1 + Rc_2 + \dots + Rc_n$ be a finitely presented left ideal. If $\sum_{i=1}^{s} k_i \otimes (r_i + I) = 0$ in $F \otimes R/I$, where $k_i \in K$, $r_i \in R$, then $(\sum_{i=1}^{s} k_i r_i) \otimes (1 + I) = 0$ in $F \otimes R/I$. So $\sum_{i=1}^{s} k_i r_i \in K \cap FI$. By (4), $\sum_{i=1}^{s} k_i r_i \in KI$, and so there exist $u_1, u_2, \dots, u_n \in K$ such that $\sum_{i=1}^{s} k_i r_i = \sum_{i=1}^{n} u_i c_i$. Thus $\sum_{i=1}^{s} k_i \otimes (r_i + I) = \sum_{i=1}^{n} u_i \otimes (c_i + I) = 0$ in $K \otimes R/I$, and (2) follows.

3. Almost semihereditary rings and almost regular rings

Recall that a ring R is called *left semihereditary* [4] if every finitely generated left ideal of R is projective, or equivalently, if every finitely generated submodule of a projective left R-modules is projective. Next, we define left almost semihereditary rings as follows.

Definition 3.1. A ring *R* is called *left almost semihereditary*, if every finitely presented left ideal of *R* is projective.

Clearly, a ring R is left semihereditary if and only if R is left almost semihereditary and left coherent.

Theorem 3.2. *The following statements are equivalent for a ring R.*

- (1) *R* is left almost semihereditary.
- (2) $pd_R(R/I) \le 1$ for every finitely presented left ideal I of R.
- (3) Every submodule of an almost flat right R-modules is almost flat.
- (4) Every finitely generated right ideal of R is almost flat.
- (5) Every quotient module of an almost F-injective left R-module is almost F-injective.
- (6) Every quotient module of an F-injective left R-module is almost F-injective.
- (7) Every quotient module of an injective left *R*-module is almost *F*-injective.
- (8) Every left R-module has a monic almost F-injective cover.
- (9) Every right R-module has an epic almost flat envelope.
- (10) For every left R-module A, the sum of an arbitrary family of almost F-injective submodules of A is almost F-injective.

Proof. (1) \Leftrightarrow (2) It follows from the exact sequence $0 = \text{Ext}^1(R, M) \rightarrow \text{Ext}^1(I, M) \rightarrow \text{Ext}^2(R/I, M) \rightarrow \text{Ext}^2(R, M) = 0.$

 $(1) \Rightarrow (3)$ Let *A* be a submodule of an almost flat right *R*-module *B*. Then for any finitely presented left ideal *I*, by (1), *I* is projective and hence flat. So the exactness of the sequence $0 = \text{Tor}_2(B/A, R) \rightarrow \text{Tor}_2(B/A, R/I) \rightarrow \text{Tor}_1(B/A, I) = 0$ implies that $\text{Tor}_2(B/A, R/I) = 0$. And thus from the exactness of the sequence $0 = \text{Tor}_2(B/A, R/I) \rightarrow \text{Tor}_1(A, R/I) \rightarrow \text{Tor}_1(A, R/I) \rightarrow \text{Tor}_1(B, R/I) = 0$ we have $\text{Tor}_1(A, R/I) = 0$, this follows that *A* is almost flat.

 $(3) \Rightarrow (4) \text{ and } (5) \Rightarrow (6) \Rightarrow (7) \text{ are trivial.}$

 $(4) \Rightarrow (1)$ Let *I* be a finitely presented left ideal. Then for any finitely generated right ideal *K*, the exact sequence $0 \rightarrow K \rightarrow R \rightarrow R/K \rightarrow 0$ implies the exact sequence $0 \rightarrow \text{Tor}_2(R/K, R/I) \rightarrow \text{Tor}_1(K, R/I) = 0$ since *K* is almost flat. So $\text{Tor}_2(R/K, R/I) = 0$, and then we obtain an exact sequence $0 = \text{Tor}_2(R/K, R/I) \rightarrow \text{Tor}_1(R/K, I) \rightarrow 0$. Thus, $\text{Tor}_1(R/K, I) = 0$, and so *I* is a finitely presented flat left *R*-module. Therefore, *I* is projective.

 $(2) \Rightarrow (5)$ Let *M* be an almost *F*-injective left *R*-module and *N* a submodule of *M*. Then for any finitely presented left ideal *I*, by (2), $\text{Ext}^2(R/I, N) = 0$. Thus the exact sequence $0 = \text{Ext}^1(R/I, M) \rightarrow \text{Ext}^1(R/I, M/N) \rightarrow \text{Ext}^2(R/I, N) = 0$ implies that $\text{Ext}^1(R/I, M/N) = 0$. Consequently, *M*/*N* is almost *F*-injective. $(7) \Rightarrow (1)$ Let *I* be a finitely presented left ideal. Then for any left *R*-module *M*, by hypothesis, E(M)/M is almost *F*-injective, and so $\text{Ext}^1(R/I, E(M)/M) = 0$. Thus, the exactness of the sequence $0 = \text{Ext}^1(R/I, E(M)/M) \rightarrow \text{Ext}^2(R/I, M) \rightarrow \text{Ext}^2(R/I, E(M)) = 0$ implies that $\text{Ext}^2(R/I, M) = 0$. And so, the exactness of the sequence $0 = \text{Ext}^1(R, M) \rightarrow \text{Ext}^1(I, M) \rightarrow \text{Ext}^2(R/I, M) = 0$ implies that $\text{Ext}^1(I, M) = 0$, this shows that *I* is projective, as required.

 $(6) \Rightarrow (8)$ Let *M* be a left *R*-module. Then by Theorem 2.9(1), there is an almost *F*-injective cover $f : E \to M$. Since im(f) is almost *F*-injective by (6), and $f : E \to M$ is an almost *F*-injective precover, for the inclusion map $i : im(f) \to M$, there is a homomorphism $g : im(f) \to E$ such that i = fg. Hence f = f(gf). Observing that $f : E \to M$ is an almost *F*-injective cover and *gf* is an endomorphism of *E*, so *gf* is an automorphism of *E*, and hence $f : E \to M$ is a monic almost *F*-injective cover.

(8) \Rightarrow (6) Let *M* be an almost *F*-injective left *R*-module and *N* be a submodule of *M*. By (8), *M*/*N* has a monic almost *F*-injective cover $f : E \to M/N$. Let $\pi : M \to M/N$ be the natural epimorphism. Then there exists a homomorphism $g : M \to E$ such that $\pi = fg$. Thus *f* is an isomorphism, and whence $M/N \cong E$ is almost *F*-injective.

(3) \Rightarrow (9) Let *M* be a right *R*-module and Let $\{K_i\}_{i \in I}$ be the family of all submodules of *M* such that M/K_i is almost flat. Let $F = M/\bigcap_{i \in I} K_i$ and π be the natural epimorphism of *M* to *F*. Define $\alpha : F \rightarrow \prod_{i \in I} M/K_i$ by $\alpha(m + \bigcap_{i \in I} K_i) = (m + K_i)$ for $m \in M$, then α is a monomorphism. By Theorem 2.7(4), $\prod_{i \in I} M/K_i$ is almost flat. By (3), we have that *F* is almost flat. For any almost flat right *R*-module *F'* and any homomorphism $f : M \rightarrow F'$, since $M/Ker(f) \cong Im(f) \subseteq F'$, M/Ker(f) is almost flat by (3), and thus $Ker(f) = K_j$ for some $j \in I$. Now we define $g : F \rightarrow F'; x + \bigcap_{i \in I} K_i \mapsto f(x)$, then *g* is a homomorphism such that $f = g\pi$. Hence, π is an almost flat preenvelope of *M*. Note that epic preenvelope is an envelope, so $\pi : M \rightarrow F$ is an epic almost flat envelope of *M*.

 $(9) \Rightarrow (3)$ Assume (9). Then for any submodule *K* of an almost flat right *R*-module *M*, *K* has an epic almost flat envelope $\varphi : K \to F$. So there exists a homomorphism $h : F \to M$ such that $i = h\varphi$, where $i : K \to M$ is the inclusion map. Thus φ is monic, and hence $K \cong F$ is almost flat.

(6) \Rightarrow (10) Let *A* be a left *R*-module and $\{A_{\gamma} \mid \gamma \in \Gamma\}$ be an arbitrary family of almost *F*-injective submodules of *A*. Since the direct sum of almost *F*-injective modules is almost *F*-injective and $\sum_{\gamma \in \Gamma} A_{\gamma}$ is a homomorphic image of $\bigoplus_{\gamma \in \Gamma} A_{\gamma}$, by (6), $\sum_{\gamma \in \Gamma} A_{\gamma}$ is almost *F*-injective.

 $(10) \Rightarrow (7)$ Let *E* be an injective left *R*-module and $K \le E$. Take $E_1 = E_2 = E, N = E_1 \oplus E_2, D = \{(x, -x) \mid x \in K\}$. Define $f_1 : E_1 \rightarrow N/D$ by $x_1 \mapsto (x_1, 0) + D, f_2 : E_2 \rightarrow N/D$ by $x_2 \mapsto (0, x_2) + D$ and write $\overline{E}_i = f_i(E_i), i = 1, 2$. Then $\overline{E}_i \cong E_i$ is injective,

i = 1, 2, and so $N/D = \overline{E}_1 + \overline{E}_2$ is almost *F*-injective. By the injectivity of $\overline{E}_i, (N/D)/\overline{E}_i$ is isomorphic to a direct summand of N/D and thus it is almost *F*-injective. Now we define $f : E \to (N/D)/\overline{E}_1$ by $e \mapsto f_2(e) + \overline{E}_1$. Then *f* is epic with Ker(f) = K, and therefore $E/K \cong (N/D)/\overline{E}_1$ is almost *F*-injective.

Following [2], we call a ring *R* a *left* (n, d)-*ring* if every *n*-presented left *R*-module has projective dimension at most *d*. An (n, 1)-domain is called an *n*-*Prüfer domain* [2]. By Theorem 3.2, a left (2, 1)-ring is a left almost semihereditary ring.

Example 3.3. Let K be a field, and let T = K + M be a valuation ring with maximal ideal M. Let k be a subfield of K with $k \neq K$, and let R = k + M. Then

- (1) If $[K : k] = \infty$, then by [2, Corollary 5.2 (1)], R is a 2-Prüfer domain but not a Prüfer domain. So R is a commutative almost semihereditary ring, but R is not a semihereditary ring.
- (2) If $[K : k] < \infty$ and $M = M^2$, then by [2, Corollary 5.2 (1)], R is a 2-Prüfer domain but not a Prüfer domain. So R is an almost semihereditary ring, but R is not a semihereditary ring.
- (3) If [K : k] < ∞ and M ≠ M², then by [2, Corollary 5.2 (3)], R is a coherent ring but not a 2-Prüfer domain. So R is a coherent ring, but R is not an almost semihereditary ring.

Next, we generalize the concept of regular rings.

Definition 3.4. A ring *R* is called *left almost regular*, if every finitely presented left ideal of *R* is a direct summand of $_RR$.

Theorem 3.5. *The following conditions are equivalent for a ring R.*

- (1) *R* is a left almost regular ring.
- (2) For every finitely presented left ideal I, R/I is a projective left R-module.
- (3) Every left R-module is almost F-injective.
- (4) Every right R-module is almost flat.
- (5) *R* is left almost semihereditary and $_RR$ is almost *F*-injective.
- (6) R is left almost semihereditary and every injective right R-module is almost flat.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3), and (2) \Leftrightarrow (4) as well as (1), (4) \Rightarrow (6) are obvious.

(5) \Leftrightarrow (6) by Proposition 2.10.

(6) \Rightarrow (4) Let *M* be any right *R*-module. Then for any finitely presented left ideal *I*, since *R* is left almost semihereditary, *I* is projective, and so $pd_R(R/I) \leq 1$. Thus, from the exact sequence $0 = \text{Tor}_2(R/I, E(M)/M) \rightarrow \text{Tor}_1(R/I, M) \rightarrow \text{Tor}_1(R/I, E(M)) = 0$, we get that $\text{Tor}_1(R/I, M) = 0$. Therefore, *M* is almost flat.

Example 3.6. Let *K* be a field and *E* be a *K*-vector space with infinite rank. Set $B = K \propto E$ the trivial extension of *K* by *E*. Then by [6, Theorem 3.4], *R* is a commutative (2,0)-ring which is not regular. So, *R* is a commutative almost regular ring, but it is not regular.

Recall that a ring R is called *left* (1,1)-*coherent* [10] if every left principal ideal is finitely presented.

Theorem 3.7. The following conditions are equivalent for a ring R.

- (1) *R* is a regular ring.
- (2) *R* is a left almost regular left coherent ring.
- (3) *R* is a left almost regular left (1,1)-coherent ring.

Proof. Obvious.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

- J. L. Chen and N. Q. Ding, On n-coherent rings, Comm. Algebra, 24 (1996), 3211-3216.
- [2] D. L. Costa, Parameterizing families of non-noetherian rings, Comm. Algebra, 22 (1994), 3997-4011.
- [3] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin-New York, 2000.
- [4] R. N. Gupta, On f-injective modules and semihereditary rings, Proc. Nat. Inst. Sci. India, Part A, 35 (1969), 323-328.
- [5] H. Holm and P. Jørgensen, *Covers, precovers, and purity*, Illinois J. Math., 52 (2008), 691-703.
- [6] N. Mahdou, On Costa's conjecture, Comm. Algebra, 29 (2001), 2775-2785.
- [7] C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc., 26 (1970), 561-566.
- [8] J. Rada and M. Saorin, *Rings characterized by (pre)envelopes and (pre)covers of their modules*, Comm. Algebra, 26 (1998), 899-912.
- [9] B. Stenström, *Coherent rings and FP-injective modules*, J. London Math. Soc., 2 (1970), 323-329.
- [10] X. X. Zhang, J. L. Chen and J. Zhang, On (m, n)-injective modules and (m, n)coherent rings, Algebra Colloq., 12 (2005), 149-160.

Zhu Zhanmin

Department of Mathematics College of Mathematics Physics and Information Engineering Jiaxing University Jiaxing, Zhejiang Province, 314001, P.R.China e-mail: zhanmin_zhu@hotmail.com