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Abstract. Let T be a triangular ring. We say that a family of maps δ =

{δn, δn : T → T , n ∈ N} is a Jordan higher derivable map (without as-

sumption of additivity or continuity) if δn(AB + BA) =
∑

i+j=n
[δi(A)δj(B) +

δj(B)δi(A)] for all A,B ∈ T . In this paper, we show that every Jordan higher

derivable map on a triangular ring is a higher derivation. As its application, we

get that every Jordan higher derivable map on an irreducible CDCSL algebra

or a nest algebra is a higher derivation, and new characterizations of higher

derivations on these algebras are obtained.
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1. Introduction

Let R be a ring and δ be a map from R into itself. We call δ is a derivable map

(without assumption of additivity or continuity) if δ(AB) = δ(A)B+Aδ(B) for all

A,B ∈ R; a Jordan derivable map if δ(AB+BA) = δ(A)B+Aδ(B)+δ(B)A+Bδ(A)

for all A,B ∈ R. An additive derivable map is called a derivation, and an additive

Jordan derivable map is called a Jordan derivation. It was shown in [1] that “each

derivable map on a 2-torsion free prime ring containing a nontrivial idempotent is a

derivation”. Later Hou in [3] proved that “every derivable map on triangular rings

is a derivation”. Lu in [5] characterized Jordan derivable maps on prime rings and

shown that “if R is a 2-torsion free unital prime ring which contains a nontrivial

idempotent, then every Jordan derivable map from R into itself is additive, thus

is a derivation”. In [7] the authors proved that “every Jordan derivable map on

triangular rings is an additive derivation”.

With the development of derivations, higher derivations and Jordan higher deriva-

tions have attracted much attention of mathematicians as an active subject of
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research in algebras. Let R be a unital ring and N be the set of non-negative inte-

gers. We say a family of maps (without assumption of additivity or continuity) δ =

{δn, δn : R → R, n ∈ N} is a higher derivable map if δn(ST ) =
∑

i+j=n

δi(S)δj(T )

for all n ∈ N, S, T ∈ R, a Jordan higher derivable map if δn(ST + TS) =∑
i+j=n

[δi(S)δj(T ) + δj(T )δi(S)] for all n ∈ N, S, T ∈ R, where δ0 = IR is the

identity map on R. For every n ∈ N, if δn is an additive map, then every (Jordan)

higher derivable map is called a (Jordan) higher derivation. Motivated by results in

[1,3,5,7], in this paper we characterize Jordan higher derivable maps on triangular

rings. We show that every Jordan higher derivable map on a triangular ring is a

higher derivation. As its application, we get every Jordan higher derivable map on

an irreducible CDCSL algebra or a nest algebra is a higher derivation, and new

characterizations of higher derivations on these algebras are obtained.

Let us recall and fix some notation in this paper. By a subspace lattice on H,

we mean a collection L of strongly closed projections on H that is closed under the

usual operation ∧ and ∨, and contains 0 and I. A totally ordered subspace lattice

is called a nest. A subspace lattice L is called a commutative subspace lattice, or

a CSL, if the projections in L commute with each other. A subspace lattice L is

said to be completely distributive if P = ∨{Q ∈ L : Q− 6≥ P} for every P ∈ L with

P 6= 0, which is also equivalent to the condition P = ∧{Q− : Q ∈ L, Q 6≤ P} for

every P ∈ L with P 6= I. Given a subspace lattice L on H, the associated subspace

lattice algebra AlgL is the set of operators in B(H) that leave every projection in

L invariant, that is,

AlgL = {T ∈ B(H), TP = PTP, ∀P ∈ L}.

Obviously, AlgL is a unital weakly closed subalgebra of B(H). We call AlgL is a

CSL algebra if L is a CSL, and a CDCSL algebra if L is a completely distributive

CSL (in short, CDCSL). Recall that a CSL algebra AlgL is irreducible if and only

if the commutant is trivial, i.e. (AlgL)′ = CI.

2. The main result and its proof

In this section, we show that every Jordan higher derivable map on a triangu-

lar ring is a higher derivation. As its application, we characterize Jordan higher

derivable maps on some reflexive algebras.

Definition 2.1. Consider two rings A and B with unit I1 and I2 respectively, and a

faithful (A,B)-bimoduleM, that is,M is a (A,B)-bimodule satisfying, for A ∈ A,

AM = {0} ⇒ A = 0 and for B ∈ B, MB = {0} ⇒ B = 0. The ring

T = Tri(A,B,M) = {

(
A M

0 B

)
: A ∈ A,M ∈M, B ∈ B}
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under the usual matrix addition and formal matrix multiplication is called a trian-

gular ring.

Clearly, T is unital with the unit I =

(
I1 0

0 I2

)
, and contains a nontrivial

idempotent P =

(
I1 0

0 0

)
, which we call the standard idempotent.

We shall consider A, B and M as subsets of T = Tri(A,B,M), i.e. we shall

identify them by their copies inside T . The following is our main result in this

article.

Theorem 2.2. Let T = Tri(A,M,B) be a triangular ring of characteristic not 2.

Then δ = {δn, δn : T → T , n ∈ N} is a Jordan higher derivable map, that is,

δn(AB + BA) =
∑

i+j=n

(δi(A)δj(B) + δj(B)δi(A)) for all A,B ∈ T if and only if it

is a higher derivation.

Proof. We only check the “only if” part. The main idea is to use the induction on

n.

In what follows, let P be the standard idempotent in T . It is obvious that δ1 is

a Jordan derivable map if δ = (δn)n∈N is a Jordan higher derivable map. It follows

from [7] that δ1 is an additive map, and hence a Jordan derivation. Thus by [8] we

have δ1 satisfies

δ1(0) = 0, δ1(P ) = Pδ1(P )(I − P ).

δ1(M) = Pδ1(M)(I − P ), δ1(I − P ) = Pδ1(I − P )(I − P ), ∀M ∈M.

δ1(A) = Pδ1(A)P + Pδ1(A)(I − P ), ∀A ∈ A.
δ1(B) = Pδ1(B)(I − P ) + (I − P )δ1(B)(I − P ), ∀B ∈ B.

Now let n ∈ N with n ≥ 1 and we assume that Theorem 2.2 holds for all m < n.

This implies that δ = {δi}i=m
i=0 is a higher derivation. Thus by [6] we have for any

0 < m < n,

δm(0) = 0, δm(P ) = Pδm(P )(I − P ).

δm(M) = Pδm(M)(I − P ), δm(I − P ) = Pδm(I − P )(I − P ), ∀M ∈M.

δm(A) = Pδm(A)P + Pδm(A)(I − P ), ∀A ∈ A. (2.1)

δm(B) = Pδm(B)(I − P ) + (I − P )δm(B)(I − P ), ∀B ∈ B.
The induction process can be realized through a series of lemmas.

Claim 1. δn(0) = 0.

For anyA ∈ T , it follows from Eq.(2.1) and δn(0) = δn(A0+0A) =
∑

i+j=n

(δi(A)δj(0)+

δj(0)δi(A)) =
∑i,j≥1

i+j=n(δi(A)δj(0) + δj(0)δi(A)) + Aδn(0) + δn(A)0 + δn(0)A +

0δn(A) = Aδn(0) + δn(0)A that δn(0) = 0.
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Claim 2. δn(P ) = Pδn(P )(I − P ).

For any M ∈M, by Eq.(2.1) we have

δn(M) = δn(PM +MP ) =
∑

i+j=n

(δi(P )δj(M) + δj(M)δi(P ))

=
∑i,j≥1

i+j=n(δi(P )δj(M) + δj(M)δi(P )) +Mδn(P ) + δn(M)P + Pδn(M) + δn(P )M

= Mδn(P ) + Pδn(M) + δn(M)P + δn(P )M.

Multiplying this equality by P and I − P from the left and right side respectively,

we get Pδn(P )M + Mδn(P )(I − P ) = 0. For any B ∈ B, by claim 1 and Eq.(2.1)

we get

0 = δn(PB +BP ) =
∑

i+j=n

(δi(P )δj(B) + δi(B)δj(P ))

=
∑i,j≥1

i+j=n(δi(B)δj(P ) + δj(P )δi(B)) + Pδn(B) +Bδn(P ) + δn(P )B + δn(B)P

=
∑i,j≥1

i+j=n δi(P )δj(B) + Pδn(B) +Bδn(P ) + δn(P )B + δn(B)P.

Multiplying this equality by I − P from both sides, we get Bδn(P )(I − P ) + (I −
P )δn(P )B = 0. Thus 2(I−P )δn(P )(I−P ) = 0 and (I−P )δn(P )(I−P ) = 0 since

the characteristic of T is not 2. Together with M(I−P )δn(P )(I−P )+Pδn(P )M =

Pδn(P )M = 0, we obtain Pδn(P )P = 0 and δn(P ) = Pδn(P )(I − P ).

Claim 3. For any M ∈M, δn(M) = Pδn(M)(I − P ).

For any M ∈ M, by Eq.(2.1) and claim 2 we get δn(M) = δn(PM + MP ) =∑
i+j=n

(δi(M)δj(P )+δj(P )δi(M)) =
∑i,j≥1

i+j=n(δi(M)δj(P )+δj(P )δi(M))+Pδn(M)+

δn(P )M + Mδn(P ) + δn(M)P = Pδn(M) + Mδn(P ) + δn(P )M + δn(M)P =

Pδn(M)+δn(M)P.Multiplying this equality by P from both sides, we get Pδn(M)P =

0. Multiplying this equality by I−P from both sides, we get (I−P )δn(M)(I−P ) =

0. Therefore δn(M) = Pδn(M)(I − P ).

Claim 4. δn(I − P ) = Pδn(I − P )(I − P ).

Note that 0 = δn(P (I − P ) + (I − P )P ) =
∑i,j≥1

i+j=n(δi(P )δj(I − P ) + δi(I −
P )δj(P )) + δn(P )(I − P ) + (I − P )δn(P ) + δn(I − P )P + Pδn(I − P ) = Pδn(I −
P ) + δn(P )(I − P ) + δn(I − P )P. Multiplying this equality by P from both sides,

we get 2Pδn(I − P )P = 0. Thus Pδn(I − P )P = 0 since the characteristic of T is

not 2. On the other hand, for any M ∈M, we have

δn(M) = δn(M(I − P ) + (I − P )M)

=
∑i,j≥1

i+j=n(δi(M)δj(I − P ) + δj(I − P )δi(M))

+δn(I − P )M + (I − P )δn(M) + δn(M)(I − P ) +Mδn(I − P )

= δn(M)(I − P ) +Mδn(I − P ).
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Multiplying this equality by I−P from the right side, we get δn(I−P )M(I−P ) +

Mδn(I−P )(I−P ) = 0, and thus Mδn(I−P )(I−P ) = 0. SinceM is a faithful B-

right module, thus (I−P )δn(I−P )(I−P ) = 0 and δn(I−P ) = Pδn(I−P )(I−P ).

Claim 5. δn(A) = Pδn(A)P +Pδn(A)(I−P ) for all A ∈ A. δn(B) = Pδn(B)(I−
P ) + (I − P )δn(B)(I − P ) for all B ∈ B.

For any A ∈ A, it follows from Eq.(2.1), claim 1 and claim 4 that 0 = δn(0) =

δn(A(I −P ) + (I −P )A) =
∑i,j≥1

i+j=n δi(A)δj(I −P ) +Aδn(I −P ) + (I −P )δn(A) +

δn(A)(I − P ). Multiplying this equality by I − P from both sides, we get (I −
P )δn(A)(I − P ) = 0. Therefore δn(A) = Pδn(A)P + Pδn(A)(I − P ). Similarly

δn(B) = Pδn(B)(I − P ) + (I − P )δn(B)(I − P ) for all B ∈ B.

Claim 6. For any A ∈ A, B ∈ B and M ∈ M, δn(A+M) = δn(A) + δn(M) and

δn(B +M) = δn(B) + δn(M).

Let A ∈ A and M ∈ M be fixed. For any B ∈ B, by Eq.(2.1) and claims 4-5

we have δn((A+M)B+B(A+M)) =
∑i,j≥1

i+j=n δi(A+M)δj(B) + (A+M)δn(B) +

δn(A + M)B + Bδn(A + M). On the one hand δn((A + M)B + B(A + M)) =

δn(MB +BM) =
∑i,j≥1

i+j=n δi(M)δj(B) +Mδn(B) + δn(M)B. Thus we get

0 =
∑i,j≥1

i+j=n δi(A)δj(B) +Aδn(B) + δn(A+M)B − δn(M)B +Bδn(A+M)

=
∑i,j≥1

i+j=n(δi(A)δj(B) + δj(B)δi(A)) + δn(A)B +Bδn(A) +Aδn(B) + δn(B)A

−δn(A)B −Bδn(A)− δn(B)A+ δn(A+M)B − δn(M)B +Bδn(A+M)

−Bδn(M)

=
∑

i+j=n

δn(AB +BA)− δn(A)B −Bδn(A)− δn(B)A

+δn(A+M)B − δn(M)B +Bδn(A+M)−Bδn(M),

Therefore for any B ∈ B, [δn(A+M)− δn(A)− δn(M)]B+B[δn(A+M)− δn(A)−
δn(M)] = 0. This entails P2(δn(A+M)− δn(A)− δn(M))P2 = 0 since the charac-

teristic of T is not 2, and thus P1(δn(A + M) − δn(A) − δn(M))P2 = 0. For any

Y ∈M,

δn((A+M)Y + Y (A+M))

=
∑i,j≥1

i+j=n(δi(A+M)δj(Y ) + δi(Y )δj(A+M)) + δn(A+M)Y

+Y δn(A+M) + (A+M)δn(Y ) + δn(Y )(A+M)

=
∑i,j≥1

i+j=n δi(A)δj(Y ) + Y δn(A+M) +Aδn(Y ) + δn(A+M)Y.

On the other hand by Eq.(2.1) and claim 3, δn((A+M)Y +Y (A+M)) = δn(AY +

Y A) =
∑i,j≥1

i+j=n δi(A)δj(Y ) + Y δn(A) +Aδn(Y ) + δn(A)Y. Therefore

Y δn(A+M) + δn(A+M)Y = δn(A)Y + Y δn(A).
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The equation implies that for any Y ∈M

(δn(A+M)− δn(A)− δn(M))Y + Y (δn(A+M)− δn(A)− δn(M)) = 0.

Thus P1(δn(A+M)− δn(A)− δn(M))P1 = 0 and δn(A+M) = δn(A) + δn(M). By

similar arguments, we obtain δn(B +M) = δn(B) + δn(M) for all B ∈ B, M ∈M.

Claim 7. δn(M1 +M2) = δn(M1) + δn(M2) for all M1,M2 ∈M.

By Eq.(2.1), claim 4 and claim 6, we have

δn(M1 +M2) = δn((P1 +M1)(P2 +M2) + (P2 +M2)(P1 +M1))

=
∑i,j≥1

i+j=n[(δi(P1) + δi(M1))(δj(P2) + δj(M2)) + (δj(P2) + δj(M2))(δi(P1) + δi(M1))]

+P1δn(P2 +M2) + δn((P1 +M1))(P2 +M2)

= P1(δn(P2) + δn(M2)) + (δn(P1) + δn(M1))(P2 +M2)

= δn(M2) + P1δn(P2) + δn(P1)P2 + δn(M1)

= δn(M1) + δn(M2) +
∑

i+j=n

(δi(P1)δj(P2) + δi(P2)δj(P1))

= δn(M1) + δn(M2) + δn(P1P2 + P2P1) = δn(M1) + δn(M2)

Claim 8. δn(A1 + A2) = δn(A1) + δn(A2) for all A1, A2 ∈ A. δn(B1 + B2) =

δn(B1) + δn(B2) for all B1, B2 ∈ B.

We only check the first equation, the second is similar. For any M ∈ M, by

Eq.(2.1) we have

δn((A1 +A2)M) = δn((A1 +A2)M +M(A1 +A2))

=
∑i,j≥1

i+j=n δi(A1 +A2)δj(M) + δn((A1 +A2))M + (A1 +A2)δn(M) +Mδn(A1 +A2).

On the one hand by Eq.(2.1) and claim 7,

δn((A1 +A2)M) = δn(A1M +MA1) + δn(A2M +MA2)

=
∑i,j≥1

i+j=n(δi(A1)δj(M) + δi(A2)δj(M)) +A1δn(M) +Mδn(A1)

+δn(A1)M +A2δn(M) + δn(A2)M +Mδn(A2).

Therefore δn((A1 +A2))M +Mδn(A1 +A2) = δn(A1)M +Mδn(A1) + δn(A2)M +

Mδn(A2).

We can obtain [δn((A1+A2))−(δn(A1)+δn(A2))]M+M [δn((A1+A2))−(δn(A1)+

δn(A2))] = 0.
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Thus P1[δn(A1 +A2)− (δn(A1) + δn(A2))]P1 = 0. It follows from

0 = δn(0) = δn((A1 +A2)P2 + P2(A1 +A2))

=
∑i,j≥1

i+j=n(δi(A1 +A2)δj(P2) + δi(P2)δj(A1 +A2)) + (A1 +A2)δn(P2)

+δn(P2)(A1 +A2) + P2δn(A1 +A2) + δn(A1 +A2)P2

=
∑i,j≥1

i+j=n δi(A1 +A2)δj(P2) + (A1 +A2)δn(P2) + P2δn(A1 +A2) + δn(A1 +A2)P2,

0 = δn(0) = δn(A1P2 + P2A1)

=
∑i,j≥1

i+j=n(δi(A1)δj(P2) + δi(P2)δj(A1)) +A1δn(P2) + δn(P2)A1 + δn(A1)P2 + P2δn(A1)

=
∑i,j≥1

i+j=n δi(A1)δj(P2) +A1δn(P2) + P2δn(A1) + δn(A1)P2 = 0,

and 0 = δn(0) = δn(A2P2+P2A2) =
∑i,j≥1

i+j=n δi(A2)δj(P2)+A2δn(P2)+δn(A2)P2+

P2δn(A2) that
∑i,j≥1

i+j=n(δi(A1)δj(P2)+δi(A2)δj(P2))+(A1 +A2)δn(P2)+(δn(A1)+

δn(A2))P2 +P2(δn(A1) + δn(A2)) = 0. Thus [δn(A1 +A2)− (δn(A1) + δn(A2))]P2 +

P2[δn(A1 + A2) − (δn(A1) + δn(A2))] = 0. This implies that P1[δn(A1 + A2) −
(δn(A1) + δn(A2))]P2 = 0 and P2[δn(A1 +A2)− (δn(A1) + δn(A2))]P2 = 0 since the

characteristic of T is not 2. Therefore δn(A1 +A2) = δn(A1) + δn(A2).

Claim 9. δn(A + M + B) = δn(A) + δn(M) + δn(B) for all A ∈ A, M ∈ M
and B ∈ B.

For any W ∈ B, by Eq.(2.1) and claim 5 we have

δn((A+M +B)W +W (A+M +B))

=
∑i,j≥1

i+j=n(δi(A+M +B)δj(W ) + δj(W )δi(A+M +B)) + δn(W )(A+M +B)

+Wδn(A+M +B) + δn(A+M +B)W + (A+M +B)δn(W )

=
∑i,j≥1

i+j=n(δi(A)δj(W ) + δi(M)δj(W ) + δi(B)δj(W ) + δj(W )δi(B))

+(A+M +B)δn(W ) + δn(W )B +Wδn(A+M +B) + δn(A+B +W )W.

On the other hand, by claim 5 and claim 6

δn((A+M +B)W +W (A+M +B)) = δn(MW +BW +WB)

= δn(MW ) + δn(BW +WB) = δn(MW +WM) + δn(BW +WB)

=
∑i,j≥1

i+j=n(δi(M)δj(W ) + δi(B)δj(W ) + δj(W )δi(B) + δj(W )δi(M)) + δn(M)W

+Wδn(M) +Mδn(W ) + δn(W )M +Wδn(B) + δn(B)W +Bδn(W ) + δn(W )B

=
∑i,j≥1

i+j=n(δi(M)δj(W ) + δi(B)δj(W ) + δj(W )δi(B))

+δn(M)W +Wδn(M) +Bδn(W ) + δn(W )B +Wδn(B) + δn(B)W.

That implies
∑i,j≥1

i+j=n δi(A)δj(W )+(A+M+B)δn(W )+Wδn(A+M+B)+δn(A+

M +B)W = δn(M)W +Wδn(M) +Bδn(W ) +Wδn(B) + δn(B)W. Thus∑i,j≥1
i+j=n δi(A)δj(W ) + (A+M)δn(W ) +Wδn(A+M +B) + δn(A+M +B)W

= (δn(M) + δn(B))W +W (δn(M) + δn(B))

= (δn(A) + δn(M) + δn(B))W +W (δn(A) + δn(M) + δn(B))− δn(A)W −Wδn(A).
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Therefore for any W ∈ B, (δn(A+M+B)−δn(A)−δn(M)−δn(B))W +W (δn(A+

M +B)− δn(A)− δn(M)− δn(B)) + δn(AW +WA) = 0. It entails that P2(δn(A+

M +B)− δn(A)− δn(M)− δn(B))P2 = 0 since the characteristic of T is not 2, and

hence P1(δn(A+M+B)−δn(A)−δn(M)−δn(B))P2 = 0. Similarly for any Y ∈M,

we have (δn(A+M +B)−δn(A)−δn(M)−δn(B))Y +Y (δn(A+M +B)−δn(A)−
δn(M)− δn(B)) = 0, and thus P1(δn(A+M +B)− δn(A)− δn(M)− δn(B))P1 = 0.

Therefore we obtain δn(A + M + B) = δn(A) + δn(M) + δn(B) for all A ∈ A,

M ∈M and B ∈ B.

Now, by claims 7-9 we obtain δn is an additive map. Thus δn is a Jordan higher

derivation. By main results in [6], we have δ = {δn}n∈N is a higher derivation. �

By Theorem 2.2, we can characterize Jordan higher derivable maps on some

reflexive algebras AlgL. Recall that an element P ∈ L is comparable for L if for

every Q ∈ L either P ≥ Q or P ≤ Q.

Corollary 2.3. If L is a subspace lattice containing a nontrivial comparable element

P , then

(1) P ∈ AlgL, PB(H)(I − P ) ⊂ AlgL.

(2) P is faithful, that is, for T in AlgL, TPAlgL(I − P ) = {0} implies TP = 0

and PAlgL(I − P )T = {0} implies (I − P )T = 0.

Proof. (1) P ∈ AlgL since it commutes with every element of L. Suppose Q ∈ L
and A = PA(I − P ) is an arbitrary member in PB(H)(I − P ). If Q ≤ P , then

AQ = QAQ = 0. If Q ≥ P , then AQ = QAQ. So PA(I − P ) ∈ AlgL and

PB(H)(I − P ) ⊂ AlgL.

(2) By (1), (2) is true since B(H) is a prime algebra. �

By Theorem 2.2 and Corollary 2.3 we have the following.

Theorem 2.4. Let L be a subspace lattice containing a nontrivial comparable ele-

ment P , and let AlgL be the associated subspace lattice algebra. Then δ = {δn, δn :

AlgL → AlgL, n ∈ N} is a Jordan higher derivable map if and only if it is a higher

derivation.

It is obvious that a lattice is a nest if and only if its elements are comparable.

Thus by Theorem 2.4, we have the following.

Theorem 2.5. Let N be a nest on Hilbert space H of dimension at least 2, and

let AlgN be the associated nest algebra. Then δ = {δn, δn : AlgL → AlgL, n ∈ N}
is a Jordan higher derivable map if and only if it is a higher derivation.

Next we characterize Jordan higher derivable map δ = {δn}n∈N on irreducible

CDCSL algebra. To prove this result, the following lemma from Theorem 2.10 in

[4] is needed.
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Corollary 2.6. Let AlgL be an irreducible CDCSL algebra on a Hilbert space H.

Then there is a faithful projection P in L.

By Corollary 2.6, if taking the faithful projection P in L, and setting A =

PAlgLP , M = PAlgL(I − P ) and B = (I − P )AlgL(I − P ), we see that every

irreducible CDCSL algebra is a triangular ring. Thus we obtain the following.

Theorem 2.7. Let AlgL be an irreducible CDCSL algebra on a Hilbert space H.

Then δ = {δn, δn : AlgL → AlgL, n ∈ N} is a Jordan higher derivable map if and

only if it is a higher derivation.

Remark 2.8. There are faithful projections in irreducible CDCSL algebras which

are not comparable, thus Theorem 2.7 can not be obtained by Theorem 2.4. For ex-

ample, let e1, e2, . . . , e6 be an orthonormal basis of C6. The lattice L, generated by

the subspaces span{e1}, span{e3}, span{e5}, span{e1, e2, e3}, span{e3, e4, e5} and

span{e1, e5, e6}, is completely distributive and commutative. Moreover AlgL is ir-

reducible. Let P = span{e1, e3, e5}. Then P is faithful projection. But P is not

comparable with Q = span{e1, e2, e3}. Further, it is not difficult to check P is a

unique faithful projection. In fact, in [4], Lu show that if AlgL be an irreducible

CDCSL algebra, then P ∈ L is faithful if and only if P is quasi-comparable (that

is, PQ 6= 0 and P ∨Q 6= I for all non-trivial projections Q ∈ L).

In [2], Gilfeather and Larson introduced a concept of nest subalgebras of von

Neumann algebras. Let R be a von Neumann algebra acting on a complex Hilbert

space H. A nest N in R is a totally ordered family of orthogonal projections in R
which is closed in the strong operator topology, and which includes 0 and I. The

nest subalgebra of R associated to a nest N , denoted by AlgN , is the set of all

elements A ∈ R satisfying PAP = AP for each P ∈ N . When R = B(H), AlgN
is the usual Hilbert space nest algebra.

Theorem 2.9. Let N be a non-trivial nest in a factor von Neumann algebra R,

and let AlgN be the associated nest subalgebra. Then a family of maps δ = {δn, δn :

AlgN → AlgN , n ∈ N} a Jordan higher derivable map if and only if it is a higher

derivation.

Proof. Fix a non-trivial projection P in N . By similar arguments as that in

the proof of Corollary 2.3 we have PR(I − P ) ⊂ PAlgL(I − P ). Thus AlgN is a

triangular ring since R is a prime algebra. Now by Theorem 2.2 we see this theorem

is true. �
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