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Abstract. For a Noetherian local ring (R,m) with p ∈ Spec(R), we denote the

R-injective hull of R/p by ER(R/p). We show that it has an R̂p-module struc-

ture, and there is an isomorphism ER(R/p) ∼= ER̂p (R̂p/pR̂p), where R̂p stands

for the p-adic completion of R. Moreover, for a complete Cohen-Macaulay ring

R, the module D(ER(R/p)) is isomorphic to R̂p provided that dim(R/p) = 1,

where D(·) denotes the Matlis dual functor HomR(·, ER(R/m)). Here, R̂p

denotes the completion of Rp with respect to the maximal ideal pRp. These

results extend those of Matlis (see [11]) shown in the case of the maximal ideal

m.
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1. Introduction

Throughout this paper R is a Noetherian local ring with the maximal ideal

m and the residue field k = R/m. We denote the (contravaraint) Hom-functor

HomR(·, ER(R/p)) by ∨, that is M∨ := HomR(M,ER(R/p)) for an R-module M

and ER(R/p) is a fixed R-injective hull of R/p where p ∈ Spec(R). Moreover we

denote the Matlis dual functor by D(·) := HomR(·, ER(k)). Also R̂p (resp. R̂p)

stands for the completion of Rp (resp. of R) with respect to the maximal ideal pRp

(resp. with respect to the prime ideal p).

Our main goal is to give the structure of ER(R/p) as an R̂p-module. In particular

we will show the following result (see Theorem 3.1):

Theorem. Let (R,m) be a ring and p ∈ Spec(R). Then ER(R/p) admits the

structure of an R̂p-module and ER(R/p) ∼= ER̂p(R̂p/pR̂p) as R̂p-modules.

In the case of the maximal ideal m, Matlis has shown (see [11]) that the injective

hull ER(k) of the residue field k has the structure of R̂-module and it is isomorphic

to the R̂-module ER̂(k). Here we will extend this result to an arbitrary prime ideal
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p, that is ER(R/p) admits the structure of an R̂p-module and it is isomorphic to

the R̂p-module ER̂p(R̂p/pR̂p).

Moreover, we know that HomR(ER(R/p), ER(R/q)) = 0 for any p, q ∈ Spec(R)

such that p ∈ V (q) and p 6= q. It was proven by Enochs (see [5, p. 183]) that the

module ER(R/q)∨ has the following decomposition:

ER(R/q)∨ ∼=
∏

Tp′ .

where p′ ∈ Spec(R) and Tp′ denotes the completion of a free Rp′ -module with

respect to p′Rp′ -adic completion. Here we prove the following result (see Theorem

3.3):

Theorem. Let (R,m) be a complete Cohen-Macaulay ring of dimension n. Suppose

that p ∈ Spec(R) with dim(R/p) = 1. Then there is an isomorphism

D(ER(R/p)) ∼= R̂p.

Recently Schenzel has shown (see [17, Theorem 1.1]) that if p is a one dimen-

sional prime ideal, then D(ER(R/p)) ∼= R̂p if and only if R/p is complete.

Furthermore Enochs (see [5, p. 183]) has shown that the module ER(R/q)∨ is a

flat cover of some cotorsion module. In the end of the Section 3 we will show the

following result (see Theorem 3.7):

Theorem. Let (R,m) be a ring and p, q ∈ Spec(R) such that p ∈ V (q). Then

ER(R/q)∨ is a flat precover of (R/q)∨.

2. Preliminaries

In this section we will fix the notation of the paper and summarize a few prelim-

inaries and auxiliary results. Notice that the following two propositions are known

for the maximal ideal m we will extend them to any prime ideal p ∈ Spec(R).

Proposition 2.1. Let (R,m) be a ring and p ∈ Spec(R). Then we have:

(a) ER(R/p) ∼= ERq
(Rq/pRq) for all q ∈ V (p).

(b) Suppose that M is an R-module and p ∈ SuppR(M). Then M∨ has a

structure of an Rp-module.

Proof. For the proof of the statement (a) we refer to [12, Theorem 18.4]. We only

prove the last claim. For this purpose note that ER(R/p) is an Rp-module. Now

we define ( rs · f)(m) := r
sf(m) where r

s ∈ Rp,m ∈M and f ∈M∨. Then it defines

the structure of M∨ to be an Rp-module which completes the proof. �



68 WAQAS MAHMOOD

Proposition 2.2. Let (R,m), (S, n) be local rings and R→ S be a surjective local

homomorphism i.e. S = R/I for some ideal I ⊆ R. Suppose that M is an R-module

and p ∈ Spec(R). Then the following are true:

(a) Suppose that N is an S-module. Then for any p ∈ V (I)

N∨ ∼= HomS(N,ES(S/pS)).

(b) For all q ∈ V (p) we have

M∨ ∼= HomRq(Mq, ERq
(Rq/pRq)).

Proof. For the proof see [9, Example 3.6 and Excercise 13]. �

Lemma 2.3. For a local ring R let M,N be any R-modules. Then for all i ∈ Z
the following hold:

(1) ExtiR(N,D(M)) ∼= D(TorRi (N,M)).

(2) If in addition N is finitely generated, then

D(ExtiR(N,M)) ∼= TorRi (N,D(M)).

(3) HomR(lim−→Mn,M) ∼= lim
←−

HomR(Mn,M), where {Mn : n ∈ N} is a direct

system of R-modules.

Proof. For the proof see [9, Example 3.6] and [18]. �

In order to prove the next results we need a few more preparations. Let I ⊆ R

be an ideal and for i = 1, . . . , s let qi belongs to a minimal primary decomposition

of the zero ideal in R where Rad(qi) = pi . Then we denote u(I) by the intersection

of all pi-primary components qi such that dimR(R/(pi + I)) > 0. Moreover we

denote the functor of the global transform by T (·) := lim
−→

HomR(mα, ·). Also note

that the local cohomology functor with respect to I is denoted by Hi
I(·), i ∈ Z, see

[3] for its definition and applications in local algebra.

Lemma 2.4. Let R be a local ring and I ⊆ R be an ideal. Then there is an exact

sequence:

0→ R̂I/u(IR̂I)→ lim
←−

T (R/Is)→ lim
←−

H1
m(R/Is)→ 0,

where R̂I denotes the I-adic completion of R.

Proof. Note that for each α ∈ N there is an exact sequence

0→ mα → R→ R/mα → 0.
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For s ∈ N apply the functor HomR(·, R/Is) to this sequence. Then it induces the

following exact sequence

0→ HomR(R/mα, R/Is)→ R/Is → HomR(mα, R/Is)→ Ext1R(R/mα, R/Is)→ 0.

Now take the direct limit of this we again get an exact sequence

0→ H0
m(R/Is)→ R/Is → T (R/Is)→ H1

m(R/Is)→ 0

for each s ∈ N. It induces the following two short exact sequences

0→ H0
m(R/Is)→ R/Is → R/Is : m→ 0 and

0→ R/Is : m→ T (R/Is)→ H1
m(R/Is)→ 0.

Note that the inverse systems at the left hand side of these short exact sequences

satisfy the Mittag-Leffler condition. So if we take the inverse limit to them, then

the resulting sequences will be exact also (see [1, Proposition 10.2]). If we combined

these resulting sequences, we get the following exact sequence

0→ lim
←−

H0
m(R/Is)→ R̂I → lim

←−
T (R/Is)→ lim

←−
H1

m(R/Is)→ 0.

But by [16, Lemma 4.1] there is an isomorphism lim
←−

H0
m(R/Is) ∼= u(IR̂I). Then

the exactness of the last sequence provides the required statement. �

In the next context we need the definition of the canonical module. To do this we

recall the Local Duality Theorem (see [8]). Let (S, n) be a local Gorenstein ring of

dimension t and N be a finitely generated R-module where R = S/I for some ideal

I ⊆ S. Then It was shown by Grothendieck (see [8]) that there is an isomorphism

Hi
m(N) ∼= HomR(Extt−iS (N,S), E)

for all i ∈ N (see [8]). For a slight extension of the Local Duality to an arbitrary

module M over a Cohen-macaulay local ring see [14, Lemma 3.1]. Note that a more

general result was proved by Hellus (see [10, Theorem 6.4.1]). Now we are able to

define the canonical module as follows:

Definition 2.5. With the notation of the above Local Duality Theorem we define

KN := Extt−rS (N,S),dim(N) = r

as the canonical module of N . It was introduced by Schenzel (see [15]) as the

generalization of the canonical module of a Cohen-Macaulay ring (see e.g. [2]).

Corollary 2.6. With the notation of Lemma 2.4, suppose that I is a one dimen-

sional ideal. Then the following are true:
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(a) There is an exact sequence

0→ R̂I/u(IR̂I)→ ⊕si=1R̂pi
→ lim
←−

H1
m(R/Is)→ 0,

where pi ∈ AssR(R/I) such that dim(R/pi) = 1 for i = 1, . . . , s.

(b) Suppose in addition that R is complete Cohen-Macaulay. Then there is an

exact sequence

0→ R/u(I)→ ⊕si=1R̂pi
→ D(Hn−1

I (KR))→ 0.

Proof. Note that for the proof of the statement (a) it will be enough to prove the

following isomorphism

lim
←−

T (R/Is) ∼= ⊕si=1R̂pi

(by Lemma 2.4). Since dim(R/I) = 1 it implies that there exists an element x ∈ m

such that x is a parameter of R/Is for all s ∈ N. Then it induces the following

isomorphism

T (R/Is) ∼= Rx/I
sRx for all s ∈ N.

Now suppose that S = ∩si=1(R \ pi). Then x ∈ S and by Local Global Principal for

each s ∈ N there is an isomorphism

Rx/I
sRx ∼= RS/I

sRS .

Since RS is a semi local ring, there is an isomorphism

RS/I
sRS ∼= ⊕si=1Rpi

/IsRpi
for all s ∈ N.

(by Chinese Remainder Theorem). Since dim(R/pi) = 1 for i = 1, . . . , s, it follows

that Rad(IRpi
) = piRpi

. By passing to the inverse limit of the last isomorphism

we have

lim
←−

T (R/Is) ∼= ⊕si=1R̂pi
,

which is the required isomorphism. To prove (b), note that the canonical module

of KR of R exists (since R is complete Cohen-Macaulay). So by [14, Lemma 3.1]

there is an isomorphism

D(Hi
m(R/Is)) ∼= Extn−iR (R/Is,KR)

for each i ∈ N. Since Hi
m(R/Is) is an Artinian R-module and R is complete, by

Matlis Duality, its double Matlis dual is itself. That is for each s ∈ N there is an

isomorphism

Hi
m(R/Is) ∼= D(Extn−iR (R/Is,KR)).
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By passing to the inverse limit of this isomorphism induces the following isomor-

phism

lim
←−

Hi
m(R/Is) ∼= lim

←−
D(Extn−iR (R/Is,KR)).

Now take the Matlis dual of the isomorphism Hn−i
I (KR) ∼= lim

−→
Extn−iR (R/Is,KR).

It induces that

lim
←−

Hi
m(R/Is) ∼= D(Hn−i

I (KR))

(by Lemma 2.3 (3)). For i = 1, by the exact sequence in (a), we can get the exact

sequence of (b) (since R is complete). This finishes the proof of the Corollary. �

3. On Matlis Duality

In this section, we will prove one of the main results. Actually this result was

proved by Matlis for the maximal ideal m. Here we will extend this to any prime

ideal p ∈ Spec(R).

Theorem 3.1. Let (R,m) be a ring and p ∈ Spec(R). Then ER(R/p) admits the

structure of an R̂p-module and ER(R/p) ∼= ER̂p(R̂p/pR̂p).

Proof. If x ∈ ER(R/p), then by [11] AssR(Rx) = {p}. It follows that some power

of p annihilates x.

Now let r̂ ∈ R̂p. Then r̂ = (r1 + p, . . . , rn + pn, . . .) such that rn+1 − rn ∈ pn

where ri + p ∈ R/pi for all i ≥ 1. Since x ∈ ER(R/p), then there exists a fixed

n ∈ N such that pnx = 0. Choose r ∈ R such that r̂ − r ∈ pn (by definition of

the completion). Define r̂x = rx. Then it is clear that this gives a well-defined

R̂p-module structure to ER(R/p) which agrees with its R-module structure. Since

ER(R/p) is an essential extension of R/p as an R-module then it necessarily is also

an essential extension of R̂p/pR̂p as an R̂p-module. So ER(R/p) ⊆ ER̂p(R̂p/pR̂p).

To show that ER(R/p) is an injective hull of R̂p/pR̂p as an R̂p-module, it is

enough to prove that ER(R/p) = ER̂p(R̂p/pR̂p). To do this it suffices to see that

ER̂p(R̂p/pR̂p) is an essential extension of R/p as an R-module since ER(R/p) is an

extension of R/p as an R-module (see [11]).

Let x ∈ ER̂p(R̂p/pR̂p) and choose an element r̂ ∈ R̂p such that 0 6= r̂x ∈ R̂p/pR̂p.

By the argument used in the beginning of the proof applied to R̂p, ER̂p(R̂p/pR̂p)

and x there is an n ∈ N such that pnx = 0. Choose r ∈ R such that r̂ − r ∈ pn.

Then r̂x = rx ∈ R/p ∼= R̂p/pR̂p (see [1]) and rx 6= 0. Hence ER̂p(R̂p/pR̂p) is an

essential extension of R/p as an R-module and ER(R/p) = ER̂p(R̂p/pR̂p) which

completes the proof. �
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Remark 3.2. (1) If p ∈ Spec(R), then by Theorem 3.1 for any finitely generated

R-module M we have

M∨ ∼= HomR(M,HomR̂p(R̂p, ER̂p(R̂p/pR̂p))).

By Lemma 2.3 the later module is isomorphic to HomR̂p(M̂p, ER̂p(R̂p/pR̂p)). Here

we use that M̂p ∼= M ⊗R R̂p. By Proposition 2.1 it implies that M∨ has an R̂p-

module structure.

(2) Since SuppR(ER(R/p)) = V (p), where p ∈ Spec(R) (by Proposition 2.1(a)),

ER(R/p) is p-torsion. So from [13, Remark A.30] the natural homomorphism

ER(R/p)→ ER(R/p)⊗R R̂p.

is an isomorphism. But ER(R/p) is isomorphic to the module ER̂p(R̂p/pR̂p) and

it admits the structure of an R̂p-module (see Theorem 3.1). Moreover the above

natural homomorphism is compatible with this structure. It implies that the p-adic

completion of R commutes with the injective hull of R/p.

It is well known that HomR(ER(R/p), ER(R/q)) = 0 for any p ∈ V (q) and p 6= q.

Moreover Enochs has proved that

ER(R/q)∨ ∼=
∏

Tp′ .

where p′ ∈ Spec(R) and Tp′ denotes the completion of a free Rp′ -module with

respect to p′Rp′ -adic completion. Here we will show the following theorem:

Theorem 3.3. Let (R,m) be a complete Cohen-Macaulay ring and q ∈ Spec(R) be

a one dimensional prime ideal. Then there is an isomorphism

D(ER(R/q)) ∼= R̂q.

Proof. Since R is complete Cohen-Macaulay, KR exists, and we have

Hi
q(KR) = 0 for all i < height(q) = n− 1.

This is true, because KR is a maximal Cohen-Macaulay R-module of finite injec-

tive dimension and SuppR(KR) = Spec(R). Let E·R(KR) be a minimal injective

resolution of KR. Then by [7, Theorem 1.1], we have

E·R(KR)i ∼=
⊕

height(p)=i

ER(R/p).

Moreover, Γq(ER(R/p)) = 0 for all p /∈ V (q) and Γq(ER(R/p)) = ER(R/p) for all

p ∈ V (q). Then apply Γq to E·R(KR). It induces the following exact sequence

0→ Hn−1
q (KR)→ ER(R/q)→ ER(k)→ Hn

q (KR)→ 0.
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Applying Matlis dual to this sequence yields the following exact sequence

0→ D(Hn
q (KR))→ R→ D(ER(R/q))→ D(Hn−1

q (KR))→ 0. (1)

Here we use that D(ER(k)) ∼= R (since R is complete). By the proof of Corollary

2.6 (b) and [16, Lemma 4.1], there are isomorphisms

D(Hn
q (KR)) ∼= lim

←−
H0

m(R/qs) ∼= u(q).

So the exact sequence (1) provides the following exact sequence

0→ R/u(q)→ D(ER(R/q))→ D(Hn−1
q (KR))→ 0. (2)

Now the module D(ER(R/q)) is an Rq-module, so there is a natural homomorphism

Rq → D(ER(R/q)). Then tensoring with Rq/q
sRq, this homomorphism induces

the following homomorphism

Rq/q
sRq → D(ER(R/q))/qsD(ER(R/q))

for each s ∈ N. Now take the inverse limit of it to get

R̂q → lim
←−

D(ER(R/q))/qsD(ER(R/q)).

On the other side, since SuppR(ER(R/q)) = V (q), the module ER(R/q) is iso-

morphic to lim
−→

HomR(R/qs, ER(R/q)). Then by Proposition 2.3 (3) there is an

isomorphism

D(ER(R/q)) ∼= lim
←−

D(HomR(R/qs, ER(R/q))).

But again Proposition 2.3 (2) implies that the module D(HomR(R/qs, ER(R/q)))

is isomorphic to D(ER(R/q))/qsD(ER(R/q)). Therefore, there is a natural homo-

morphism

R̂q → D(ER(R/q)).

Since R is complete Cohen-Macaulay, by Corollary 2.6 (b), there is an exact se-

quence

0→ R/u(q)→ R̂q → D(Hn−1
q (KR))→ 0.

Then this sequence together with the sequence (2) induces the following commuta-

tive diagram with exact rows

0 → R/u(q) → R̂q → D(Hn−1
q (KR)) → 0

|| ↓ ||
0 → R/u(q) → D(ER(R/q)) → D(Hn−1

q (KR)) → 0

Then by Five Lemma, there is an isomorphism D(ER(R/q)) ∼= R̂q which is the

required isomorphism. �
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Corollary 3.4. Fix the notation of Theorem 3.3. Then the following hold:

(a) There is an exact sequence

0→ R/u(q)→ D(ER(R/q))→ D(Hn−1
q (K(R)))→ 0.

(b) Suppose in addition that R is a domain. Then there is an isomorphism

D(Hn−1
q (K(R))) ∼= R̂q/R.

Proof. Since R is complete, we apply Corollary 2.6 (b) for I = q. Then it implies

that there is an exact sequence

0→ R/u(q)→ R̂q → D(Hn−1
q (K(R)))→ 0.

Then the statement (a) is easily follows from Theorem 3.3. Note that the statement

(b) follows from the above short exact sequence. Recall that u(q) = 0 since R is a

domain. �

In the next context we need the following definition of flat covers.

Definition 3.5. Let M be an R-module and F any flat R-module. Then the linear

map φ : F →M is called a flat cover of M if the following conditions hold:

(i) For any flat R-module G the following sequence is exact

HomR(G,F )→ HomR(G,M)→ 0

(ii) If φ = φ ◦ f for some f ∈ HomR(F, F ), then f is an automorphism of F.

Note that if condition (i) holds, then F is called a flat precover. Enochs proved

in his paper (see [4, Theorem 3.1]) that if M has a flat precover, then it also admits

a flat cover and it is unique up to isomorphism.

The following lemma is an easy consequence of chasing diagram ( see [5, Lemma

1.1]).

Lemma 3.6. Let M be an R-module and F, F ′ any flat R-modules. Then we have:

(a) If φ′ : F ′ →M is a flat precover of M and φ : F →M is a flat cover of M

such that φ′ = φ ◦ f for some f ∈ HomR(F ′, F ), then f is surjective and

ker(f) is a direct summand of F ′.

(b) If φ : F →M is a flat precover of M , then it is a cover if and only if ker(φ)

contains no non-zero direct summand of F .

Enochs (see [5, p. 183]) showed that the module HomR(ER(R/q), ER(R/p)) is

a flat cover of some cotorsion module. Here we will show the following result:
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Theorem 3.7. Let (R,m) be a ring and p, q ∈ Spec(R) such that p ∈ V (q). Then

ER(R/q)∨ is a flat precover of (R/q)∨.

Proof. Note that ER(R/q) is as essential extension of R/q. Let F be any flat R-

module. Then the inclusion map R/q⊗RF ↪→ ER(R/q)⊗RF induces the following

exact sequence

HomR(ER(R/q)⊗R F,ER(R/p))→ HomR(R/q⊗R F,ER(R/p))→ 0.

By the adjunction formula (see Lemma 2.3), we conclude that the following homo-

morphism is surjective for any flat R-module F

HomR(F,ER(R/q)∨)→ HomR(F, (R/q)∨),

which proves that ER(R/q)∨ is a flat precover of (R/q)∨. �

Remark 3.8. Note that if R is a complete local ring, then R is a flat cover of the

residue field k (see [6, Example 5.3.19]).

Problem 3.9. (1) Let R be a complete local ring and p ∈ V (q) and p 6= q. It would

be of some interest to see whether ER(R/q)∨ is a flat cover of (R/q)∨ or not?

(2) Note that it was shown in [17, Theorem 1.1] that if dim(R/p) = 1, then R/p

is complete if and only if D(ER(R/p)) ∼= R̂p. Let R be a complete local Cohen-

Macaulay ring. Is it possible to generalize Theorem 3.3 for arbitrary prime ideals

q ( p ?

Acknowledgement. The author is grateful to the reviewer for suggestions which

improve the manuscript.
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