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Abstract. The following result uses and generalizes a recent result of Ayache

on integrally closed domains. Let R be a commutative integral domain with

integral closure R′ (inside the quotient field K of R) such that each overring of

R (inside K) is a treed domain and there exists a finite maximal chain of rings

going from R to R′. Then R is a seminormal domain if and only if, for each

maximal ideal M of R, either RM is a pseudo-valuation domain or, for some

positive integer n, there exists a finite maximal chain, of length n, of rings

from RM to (RM )′ each step of which is (an integral minimal ring extension

which is) either decomposed or inert. Examples are given in which the latter

option holds where R is one-dimensional and Noetherian.
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1. Introduction

All rings considered below are commutative, with 1; and all inclusions of rings

are (unital) ring extensions. As usual, the set of all prime (resp., maximal) ideals

of a ring R is denoted by Spec(R) (resp., Max(R)). The “dim(ension)” of a ring R

will mean the Krull dimension of R. If R is a (commutative integral) domain with

quotient field K, then R′ denotes the integral closure of R (in K).

Let R be a domain with quotient field K. By an overring of R, we mean any

R-subalgebra of K, that is, any ring S such that R ⊆ S ⊆ K. As in [29], we say

that R is a pseudo-valuation domain if there is a valuation overring V of R such

that Spec(R) = Spec(V ) as sets; it is enough to require that R and the valuation

overring V have the same maximal ideal. When such a V exists, it is uniquely

determined by R and is called the canonically associated valuation overring of R.

As in [14] and [15], R is called a locally pseudo-valuation domain (for short, an

LPVD) if RP is a pseudo-valuation domain for each prime (equivalently, for each
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maximal) ideal P of R. A pseudo-valuation domain is the same as a quasi-local

LPVD. The most natural examples of LPVDs are Prüfer domains.

Let R be a domain. As in [10], R is said to be a divided domain if PRP = P

for each P ∈ Spec(R); and a locally divided domain if RP is a divided domain for

each prime (equivalently, for each maximal) ideal P of R. A divided domain is

the same as a quasi-local locally divided domain. The most natural examples of

locally divided domains are Prüfer domains and one-dimensional domains. If R

is a locally divided domain, it is a going-down domain (in the sense of [8], [18]),

but the converse is false [10, Proposition 2.1 and Example 2.9]. However, a partial

converse does hold, as any seminormal going-down domain must be a locally divided

domain (cf. [10, Corollary 2.6], [6, Corollary 3.5]). This explains in part our focus

on seminormality as a tractable weakening of the “integrally closed” property in this

work, as any LPVD is a seminormal domain (by [2, Lemma 2.1 (c) and Proposition

3.1 (a)]) and a locally divided domain [14, Corollary 2.3].

Recall that a domain R is said to be a treed domain if Spec(R), as a poset

under inclusion, forms a tree; that is, if no prime ideal of R contains incomparable

prime ideals of R. All the above-mentioned kinds of domains are examples of treed

domains, since any going-down domain is a treed domain [8, Theorem 2.2]. Interest

in domains R all of whose overrings (including R itself) are treed dates back to at

least [12, Example 2.3], where the author constructed a domain R all of whose

overrings are treed such that R is not a going-down domain. As that example was

not integrally closed, we were led to ask if a quasi-local integrally closed domain R

must be a going-down domain if R has valuative dimension 2 and is such that each

overring of R is treed (along with certain other conditions on R that turned out to be

extraneous). This question was answered in the affirmative by Ayache and Jarboui

[4, Corollary 1]. Subsequently, the investigation was deepened by Ayache, Jarboui

and Massaoud [5], in a study of pairs of domains all of whose intermediate rings

are treed. Very recently, Ayache [3, Theorem 10] has proved that if an integrally

closed domain R is such that each overring of R is a treed domain, then R is an

LPVD. This raises the following question, which returns to the spirit of [12]: what

can be said along the lines of [3] if R is not integrally closed (but is such that each

of its overrings is treed)? Put differently, to what, if any, extent can such R fail

to be an LPVD? The main result of this note answers that question (see Corollary

2.6), by showing, under some reasonable assumptions that control the size of the

extension R ⊆ R′, that if R is seminormal, the only alternative to R being an

LPVD involves finite chains of certain kinds of minimal ring extensions (in the

sense of [23]), including one kind that was first considered by Gilmer and Heinzer

[27, Example 4.3]. The domains in Example 2.7 illustrate the kind of complexity
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which is summarized in Corollary 2.6 but which cannot arise in [3]’s context of

integrally closed domains.

Our basic reference on seminormality will be [36], although the original reference

on the subject [38] has aged well. If R ⊆ S are rings, we may say (thanks to [36,

Theorem 2.5]) that R ⊆ S is a seminormal extension (or that R is seminormal in

S) if u ∈ S with u2, u3 ∈ R implies u ∈ R. While we will not need the definition of

a “seminormal ring” here, it should be noted that the class of seminormal rings con-

sists of certain reduced rings and that any integrally closed domain (in particular,

any field) is a seminormal ring. It follows (cf. [36, Theorem 2.5 and Corollary 3.4])

that if R is a domain with quotient field K, then R is seminormal if and only if R is

seminormal in K. Seminormality makes its first appearance below in Proposition

2.2, which gives a sufficient condition for pseudo-valuation domains. Remark 2.3

shows that Proposition 2.2 would fail without its seminormality hypothesis.

We mentioned above that our main results are made possible by “control(ling)

the size of the extension R ⊆ R′”. More precisely, we assume in those results that

R ⊆ R′ satisfies the FCP property, in the sense that each chain (with respect to

inclusion) of rings contained between R and R′ is finite. (Of course, it is reasonable

to enlarge upon the domain-theoretic work in [3, Theorem 10] by requiring R ⊆ R′

to satisfy FCP, as this is trivially the case when R is an integrally closed domain.)

While there has been much work on ring extensions satisfying the FCP property,

especially for domains, during the past 15 years, everything that we will need

about FCP can be found in our recent paper [21] with G. Picavet and M. Picavet-

L’Hermitte. Note that if a ring extension R ⊆ S satisfies FCP, then there exist a

non-negative integer n and a finite maximal chain of rings R = A0 ⊂ . . . ⊂ An = S;

then, necessarily, Ai ⊂ Ai+1 is a minimal ring extension for all i = 0, . . . , n. The

background on minimal ring extensions that is needed for this paper is summarized

prior to Lemma 2.4.

Theorem 2.5 gives a characterization of the seminormal domains R such that

R ⊆ R′ satisfies FCP. It should be noted that the proof of this result uses some facts

from [21] about rings that may not be domains. (Thus, although our applications

are to domains, we deviate from some of the literature on the FCP property where

“ring” has tacitly meant “domain”.) Theorem 2.5 leads directly to Corollary 2.6,

where we give our extension of the motivating result of Ayache [3, Theorem 10].

Given the role of pseudo-valuation domains in [3, Theorem 10] and Corollary 2.6,

it seems worthwhile to deepen the study of pseudo-valuation domains; this work

does so through the inclusion of two results (Propositions 2.1 and 2.9) from the

unpublished dissertation of M. S. Gilbert [26]. These two results are not needed

for Theorem 2.5 or its applications, but as explained below, they do provide some

motivation for the formulation of Corollary 2.6.
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As usual, ⊂ denotes proper inclusion. Any unexplained material is standard, as

in [32].

2. Results

Recall from [34] that a domainR is called an i-domain if the canonical contraction

map Spec(T ) → Spec(R) is an injection for each overring T of R. A domain R is

an i-domain if and only if RM is an i-domain for each M ∈ Max(R). If R is a

quasi-local domain, then R is an i-domain if and only if R′ is a valuation domain

[34, Corollary 2.15]. Every overring of an i-domain is a going-down domain [34,

Corollary 2.13] (cf. also [9, Corollary 2.5]).

We will begin with a result from the unpublished doctoral dissertation of M. S.

Gilbert [26]. We next give that result and, for the sake of completeness, include

Gilbert’s proof.

Proposition 2.1. ( [26, Theorem 1.26]) Let (R,M) be a quasi-local i-domain which

is also a divided domain and is such that R′ is comparable (with respect to inclusion)

with each overring of R. Then:

(a) Spec(R) \Max(R) = Spec(R′) \Max(R′).

(b) If, in addition, R is not a field, then exactly one of the following two condi-

tions holds:

(i) Both R and R′ have a (unique) largest nonmaximal prime ideal; or

(ii) In both R and R′, the maximal ideal is the union of the nonmaximal prime

ideals.

(c) If the above condition (ii) holds, then R is a pseudo-valuation domain.

Proof. (a) Let P ∈ Spec(R) \Max(R). Then RP is a proper overring of R which

is not integral over R (cf. [32, Exercise 10, page 24]), and so the hypotheses give

that R′ ⊂ RP . Then RP , being an overring of the valuation domain R′, must

be a valuation domain. Since R is a divided domain, the maximal ideal of RP is

PRP = P . It follows that P = P ∩ R′ = PRP ∩ R′ is a prime ideal of R′. Since

R is an i-domain and R′ is an integral overring of R, there is a unique prime ideal

of R′ lying over any given prime ideal of R (cf. [32, Theorem 44]). This argument

shows that if P ∈ Spec(R) \Max(R), then P is the unique prime ideal of R′ that

lies over P ; and, by the going-up property of integral extensions (cf. [32, Theorem

44]), P 6∈ Max(R′). By the incomparability property of integral extensions (cf. [32,

Theorem 44]), each nonmaximal prime ideal of R′ must contract to a nonmaximal

prime ideal of R, and so the proof of (a) is complete.

(b) By the above comments, R′ is a valuation domain (hence, a quasi-local treed

domain); let M ′ denote the maximal ideal of R′. As the nonmaximal prime ideals

of R′ (equivalently, of R) form a chain, their union is a prime ideal, say Q, of R′

[32, Theorem 9]. By (a), Q is a prime ideal of both R and R′. Clearly, at most one
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of (i) and (ii) holds. To show that one of (i) and (ii) holds, it is enough to show

that if Q = M , then Q = M ′. Now if Q = M , then M is a prime ideal of R′ that

contracts to M , whence M = M ′ and Q = M ′.

(c) Suppose that (ii) holds. Then M = Q = M ′. As R and its valuation overring

R′ then have a common maximal ideal, R is a pseudo-valuation domain by [29,

Theorem 2.7]. �

We next give an application of Proposition 2.1. We will often need the result [11,

Remark 4.8 (b)] that if R is a pseudo-valuation domain which is also an i-domain

(that is, which is such that R′ is a valuation domain), then R′ is the canonically

associated valuation overring of R.

Proposition 2.2. Let (R,M) be a quasi-local i-domain such that each overring of

R is comparable with R′ and is a treed domain. Suppose also that R is seminormal.

Then R is a pseudo-valuation domain.

Proof. Since the contraction map Spec(R′) → Spec(R) is an injection, it follows

from integrality (cf. [32, Theorem 44]) that R′ inherits the “quasi-local” property

from R. Let N denote the maximal ideal of R′. Next, since R is an i-domain, it is

a going-down domain. Hence, as R is also seminormal and quasi-local, it must be

a divided domain (as a consequence of [10, Corollary 2.6], as explained above).

Without loss of generality, R is not a field. Suppose that we are in case (i) of

Proposition 2.1 (b). Let P denote the unique largest nonmaximal prime ideal of

R (resp., of R′). As R is a divided domain, PRP = P . It is then easy to see

(for instance, by using the “u2, u3” criterion) that R/P is a seminormal domain.

Evidently, dim(R/P ) = 1. Furthermore, as noted in [34, page 3], R/P inherits

the “i-domain” property from R. Therefore, by [2, Corollary 3.6], each overring of

R/P is an LPVD. In particular, R/P is a pseudo-valuation domain. By the above

remark, since R/P is also an i-domain, it follows that its integral closure must be

its canonically associated valuation overring, V .

Now, as in the proof of Proposition 2.1 (a), we get R′ ⊂ RP . Therefore, applying

[24, Corollary 1.5(5)] to the pullback RP ×RP /P R/P = R, we get that R′ =

RP ×RP /P V , and so V = R′/P . Since R/P and V have the same maximal ideal,

it follows that M/P = N/P , and so M = N . As R′ is a valuation domain, R must

be a pseudo-valuation domain (cf. also [2, Lemma 3.4]).

By Proposition 2.1 (b), there is only one remaining case, namely, case (ii): in

both R and R′, the maximal ideal is the union of the nonmaximal prime ideals.

Hence, by Proposition 2.1 (a), the maximal ideals of R and of R′ are the same

(since they are each the union of the same set of nonmaximal prime ideals). Thus,

since R′ is a valuation domain, R must also be a pseudo-valuation domain in this

case. �



162 DOBBS

Recall (cf. [23]) that a pair of distinct ringsR ⊂ S forms a minimal ring extension

if there is no ring T such that R ⊂ T ⊂ S. This usage should not be confused with

[27]’s terminology of “unique minimal overring”, which we shall avoid (other than

to observe that if R ⊂ S and S is a/the “unique minimal overring” of R, in the

sense of [27], then R ⊂ S must be a minimal ring extension).

Remark 2.3. Proposition 2.2 would fail without the hypothesis that R is semi-

normal. To see this, let X be an analytic indeterminate over a field K, and put

R := K +X2K[[X]]. (This construction belongs to a family of domains introduced

by Gilmer and Huckaba in [28, page 429]. It was shown in [28, Proposition 11] that

the overrings of R are linearly ordered by inclusion, but we will give a direct proof of

the part of this that we need.) Then R′ = K[[X]] is a valuation domain, and so R

is a quasi-local i-domain. However, R is not a pseudo-valuation domain. (Indeed,

if R were a pseudo-valuation domain, it would follow, as in the proof of Proposi-

tion 2.2, that its maximal ideal is the same as the maximal ideal of R′, namely,

XK[[X]], but the maximal ideal of R is M := X2K[[X]].) Moreover, R is a Noe-

therian ring by Eakin’s Theorem [22, Theorem 2], since R′ = R ·1+RX is a finitely

generated R-module; and dim(R) = dim(R′) = 1 by integrality (cf. [32, Theorem

48]). Hence, by the Krull-Akizuki Theorem [32, Theorem 93], each overring of R

is of dimension at most 1 and, therefore, must be a treed domain. To complete the

proof that the “seminormal” hypothesis cannot be deleted from Proposition 2.2, it

suffices to show that each overring of R is comparable with R′ and is treed. Note

that since R′ is a valuation domain, each overring of R′ is a valuation domain

and, hence, treed. Therefore, since K[[X]] is a Prüfer domain, an application of

[27, Theorem 2.4] shows that it suffices to prove that R ⊂ R′ is a minimal ring

extension. Since R and R′ have M as a common ideal (in fact, (R : R′) = M),

it follows from [19, Lemma II.3] that it suffices to prove that R/M ⊂ R′/M is a

minimal ring extension, that is, that K ⊂ K ⊕ Kx is a minimal ring extension,

where x := X + M ∈ K[[X]]/M . As x2 = 0, we see that K ⊕Kx ∼= K[Y ]/(Y 2),

which is indeed a minimal ring extension of K since its dimension as a vector space

over K is 2 (cf. also [23, Lemme 1.2]). This completes the proof.

The preceding two results show one kind of advantage in assuming that a domain

is seminormal. Our main result, Corollary 2.6, will characterize the seminormal do-

mains amongst the domains that do not stray overly far from their integral closures

(in a sense that is made precise below) and have only treed overrings. Another

noteworthy aspect is that Corollary 2.6 generalizes (but uses) the motivating result

of Ayache [3, Theorem 10].

Prior to giving Corollary 2.6, we include an easy lemma for lack of a convenient

reference. To prepare for that, we need to recall the following background material.

It was shown in [23, Théorème 2.1 (i)] that each minimal ring extension R ⊂ S
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has a crucial maximal ideal M , that is, a maximal ideal M of R such that the

canonical injective ring homomorphism RP → SP is an isomorphism for all P ∈
Spec(R) \ {M} while the analogous map RM ↪→ SM is a minimal ring extension.

(Recall that if D ⊆ E are rings and P ∈ Spec(D), then EP := ED\P .) In fact,

the existence of such an ideal M ensures that a ring extension R ⊆ S is a minimal

ring extension [13, page 14]. Our interest here is on minimal ring extensions that

are integral. We next explain that there are three kinds of such extensions. Let

R ⊂ S be an integral minimal ring extension with crucial maximal ideal M . Then

(cf. [19, Corollary II.2]) M = (R : S); and, with K := R/M , we say that the

integral minimal ring extension R ⊂ S is respectively decomposed, inert, or ramified

according as to whether S/M is isomorphic as a K-algebra to K ×K, a minimal

field extension of K, or K[Y ]/(Y 2) for some indeterminate Y over K. (These three

cases correspond to the classification by Ferrand-Olivier [23, Lemme 1.2] of the

minimal ring extensions of a field.) For R ⊂ S and M as above, RM ⊂ SM is

the same kind of integral minimal ring extension (that is, decomposed, inert or

ramified) as R ⊂ S.

Lemma 2.4. If R ⊂ S is an integral minimal ring extension which is either de-

composed or inert, then R is seminormal in S.

Proof. Let M denote the crucial maximal ideal of R ⊂ S. By [36, Corollary 2.10],

it is enough to prove that RN is seminormal in SN for each N ∈ Max(R). This

is clear if N 6= M (for then RN = SN canonically). As the integral minimal ring

extension RM ⊂ SM would inherit the “decomposed” (resp., “inert”) property from

R ⊂ S, we can assume, without loss of generality, that (R,M) is quasi-local. We

will show that if u ∈ S with u2, u3 ∈ R, then u ∈ R. Note that if u2 6∈ M , then

(u2)−1 ∈ R and u = u3(u2)−1 ∈ R, as desired. Thus, without loss of generality,

u2 ∈M .

Suppose first that R ⊂ S is decomposed. Then there are distinct maximal ideals

N1 and N2 of S such that M = N1 ∩ N2. It suffices to prove that u ∈ N1 ∩ N2.

We fix i ∈ {1, 2} and proceed to show that u ∈ Ni. Put v := u+Ni ∈ S/Ni. Then

v2 = u2 +Ni = 0 ∈ (R+Ni)/Ni ⊆ S/Ni, since u2 ∈M ⊆ Ni. As S/Ni is reduced,

v = 0; that is, u ∈ Ni, as required.

Next, suppose that R ⊂ S is inert. Then R/M ↪→ S/M is a minimal field

extension. Put w := u+M ∈ S/M . Then w2 = u2 +M = 0 ∈ S/M since u2 ∈M .

Since S/M is reduced, it follows that w = 0; that is, u ∈M ⊆ R. �

For the sake of completeness, we note that if an integral minimal ring extension

R ⊂ S is ramified, then R is definitely not seminormal in S.

We next characterize the seminormal domains R such that R ⊆ R′ satisfies FCP.
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Theorem 2.5. Let R be a domain such that there exists a finite maximal chain of

rings going from R to R′. Then the following two conditions are equivalent:

(1) R is a seminormal domain;

(2) For each maximal ideal M of R, either (i) RM is integrally closed or (ii) for

some positive integer n, there exists a finite maximal chain of rings D0 = RM ⊂
D1 ⊂ . . . ⊂ Dn = (RM )′ such that for each i ∈ {0, . . . , n − 1}, Di ⊂ Di+1 is (an

integral minimal ring extension which is) either decomposed or inert.

Moreover, when the above condition (2) (ii) holds, then the positive integer n and

the finite maximal chain of rings {D0, . . . , Dn} may be chosen so that for some

integer j, 0 ≤ j ≤ n, we have that the integral minimal ring extension Dk ⊂ Dk+1

is decomposed whenever 0 ≤ k ≤ j − 1 and inert whenever j ≤ k ≤ n− 1.

Proof. Suppose that M ∈ Max(R). We know that (RM )′ = (R′)M and localization

converts minimal ring extensions to either equalities or minimal ring extensions [23,

Lemme 1.3]. It is now clear that RM inherits the hypotheses on R. As we have

already recalled that “seminormal ring” is a local property of domains [2, Lemma

2.1 (c)], we may assume, without loss of generality, that (R,M) is quasi-local.

(2) ⇒ (1): Assume (2). Then, since any integrally closed domain is seminormal,

we may assume, without loss of generality, that there exists a finite maximal chain

of rings D0 = RM = R ⊂ D1 ⊂ . . . ⊂ Dn = (RM )′ = R′ such that for each i ∈
{0, . . . , n−1}, the integral minimal ring extension Di ⊂ Di+1 is either decomposed

or inert. By Lemma 2.4, Di is seminormal in Di+1 for all i = 0, . . . , n− 1. So, by

[36, Corollary 2.7] (or [38, Lemma 1.2], or an easy induction on n), D0 is seminormal

in Dn; that is, R is seminormal in R′. Since R′ is a seminormal ring, it now follows

from [36, Corollary 3.4] that R is also a seminormal ring.

(1) ⇒ (2): Assume (1). Without loss of generality, R is not integrally closed.

Next, since R ⊂ R′ is an integral extension, [21, Theorem 4.2 (a)] shows that the

assumption that there exists a finite maximal chain of rings from R to R′ implies

that R ⊂ R′ satisfies FCP. Let T denote the t-closure of R in R′ (in the sense of, for

instance, [21, Proposition 4.5]). As R ⊆ T ⊆ R′, both R ⊆ T and T ⊆ R′ inherit

the FCP property from R ⊆ R′. Therefore, there exist a positive integer n and a

finite maximal chain of rings D0 = R = RM ⊂ D1 ⊂ . . . ⊂ Dn = R′ = (RM )′

such that T = Dj for some j, 0 ≤ j ≤ n. It suffices to prove that the integral

minimal ring extension Dk ⊂ Dk+1 is decomposed whenever 0 ≤ k ≤ j − 1 and

inert whenever j ≤ k ≤ n− 1.

The following observations will be useful. Since R is a seminormal domain, it is

the seminormalization of R in R′ (cf. [36, Corollary 4.2]). Thus, R is seminormal

in R′ and, a fortiori, seminormal in T . Also, R ⊆ T is an infra-integral extension.

(Recall that “infra-integral” means that R/(Q∩R) ↪→ T/Q have the same quotient

field for each Q ∈ Spec(T ).)



ON SEMINORMAL INTEGRAL DOMAINS WITH TREED OVERRINGS 165

We will show first that Dk ⊂ Dk+1 is a seminormal extension for each k. (The

argument in this paragraph is due to Gabriel Picavet and Martine L’Hermitte, and

the author is grateful to them for their kind permission to present that argument

here.) Since R ⊂ R′ satisfies FCP, it follows from [21, Theorem 4.2 (a)] that R′ is

a finitely generated R-module and R/(R : R′) is an Artinian ring. One can make

a similar conclusion if R′ is replaced by any R-subalgebra of R′. For each index

k, it is easy to check that that Dk ⊂ Dk+1 is a seminormal extension if and only

if Dk/(R : R′) ⊂ Dk+1/(R : R′) is a seminormal extension. Thus, by passing

from {Di} to {Di/(R : R′)}, we may assume (but only in this paragraph) that R

(while temporarily possibly no longer a domain) is an Artinian ring. Now, since

R ⊂ R′ is seminormal, [21, Lemma 4.8] (or [38, Lemma 1.3]) shows that if S is

any ring such that R ⊂ S ⊆ R′, we have that (R : S) is a radical ideal of S; being

module-finite over an Artinian ring, any such S is also an Artinian ring, and so

(R : S) is an intersection of finitely many maximal ideals of S. Fix an index k and

a ring S such that Dk ⊂ S ⊆ R′. We can write (R : S) = N1 ∩ · · · ∩Nm for some

finite nonempty subset {N1, . . . , Nm} of Max(S). Since (R : S) ⊆ (Dk : S), we

have a canonical surjective S-algebra homomorphism S/(R : S)→ S/(Dk : S). As

the Chinese Remainder Theorem gives S/(R : S) ∼=
∏m

i=1 S/Ni (and we know the

ideals of a finite direct product of fields), the First Isomorphism Theorem shows

that S/(Dk : S) is S-algebra isomorphic to the direct product of some of the S/Ni,

say (after relabeling)
∏r

i=1 S/Ni. Then, equating annihilators of these isomorphic

S-modules, we get (Dk : S) = ∩ri=1Ni, which is a radical ideal of S. Therefore,

by [21, Lemma 4.8], Dk is seminormal in R′. Thus, a fortiori, Dk ⊂ Dk+1 is a

seminormal extension.

To complete the proof that (1)⇒ (2), we need only show that Dk ⊂ Dk+1 cannot

be ramified. LetM denote the crucial maximal ideal of this minimal ring extension.

If Dk ⊂ Dk+1 were ramified, then the extension F := Dk/M⊂ Dk+1/M would be

both seminormal and ramified, necessarily with Dk+1/M = F [y] where y ∈ F [y]\F
satisfies 0 = y2 (= y3 ∈ F ), which contradicts that F ⊂ F [y] is seminormal.

It remains only to prove the “Moreover” assertion. As above, choose the chain

{Di} so that T = Dj for some index j. If 0 ≤ k ≤ j − 1, then the extension

Dk ⊂ Dk+1 is seminormal (by the above argument) and clearly infra-integral,

and hence decomposed (cf. [21, page 406]). On the other hand, if k = j, then

T = Dk ⊂ Dk+1 inherits the “t-closed” property from T ⊂ R′, and then Dk ⊂ Dk+1

must be inert, since each integral t-closed minimal ring extension is inert [21, page

406]. Finally, suppose that j < k ≤ n−1. Then, since T ⊂ R′ is a t-closed extension

that satisfies FCP, it follows from [21, Lemma 5.6] that Dk ⊂ Dk+1 is inert. The

proof is complete. �

We now present our extension of [3, Theorem 10].
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Corollary 2.6. Let R be a domain such that each overring of R is a treed domain

and there exists a finite maximal chain of rings going from R to R′. Then the

following two conditions are equivalent:

(1) R is a seminormal domain;

(2) For each maximal ideal M of R, either (i) RM is a pseudo-valuation domain

or (ii) for some positive integer n, there exists a finite maximal chain of rings

D0 = RM ⊂ D1 ⊂ . . . ⊂ Dn = (RM )′ such that for each i ∈ {0, . . . , n − 1},
Di ⊂ Di+1 is (an integral minimal ring extension which is) either decomposed or

inert.

Moreover, when the above condition (2) (ii) holds, then the positive integer n and

the finite maximal chain of rings {D0, . . . , Dn} may be chosen so that for some

integer j, 0 ≤ j ≤ n, we have that the integral minimal ring extension Dk ⊂ Dk+1

is decomposed whenever 0 ≤ k ≤ j − 1 and inert whenever j ≤ k ≤ n− 1.

Proof. We will adapt the proof, and use the statement, of Theorem 2.5. Suppose

that M ∈ Max(R). Since each overring of RM is an overring of R, it is now clear

that RM inherits each of the hypotheses on R. Hence, as above, we may assume,

without loss of generality, that (R,M) is quasi-local.

We recalled in the Introduction that any pseudo-valuation domain must be semi-

normal [2, Proposition 3.1 (a)]. Thus, by Theorem 2.5, it remains only to prove

that if R is integrally closed, then R is a pseudo-valuation domain. Therefore, as

R is quasi-local (and all its overrings are assumed to be treed), an application of

[3, Theorem 10] completes the proof. �

We next give two examples of one-dimensional Noetherian seminormal domains

R that satisfy the second alternative (ii) in Corollary 2.6 (2). The ring R in Example

2.7 (a) illustrates a paradigm suggested by [27, Corollary 2.4], inasmuch as R ⊂ R′ is
not a minimal ring extension but each localization at a maximal ideal of R converts

R ⊂ R′ into either an identity or a minimal ring extension. On the other hand, the

ring R in Example 2.7 (b) shows the need for the alternative (ii) in Corollary 2.6

(2), as this R is not an LPVD. (Of course, its integral closure is an LPVD, by the

motivating result of Ayache [3, Theorem 10].) One also needs the alternative (i) in

Corollary 2.6 (2), as there do exist integrally closed pseudo-valuation domains all

of whose overrings are treed. (Indeed, for an integrally closed domain, the assertion

that (1) ⇒ (2) in Corollary 2.6 is precisely the result of Ayache [3, Theorem 10].)

We note also that these rings illustrate the final conclusion of Corollary 2.6 (or of

Theorem 2.5).

First, we review some notation that is useful in dealing with quadratic algebraic

number fields. Let d be a nonzero square-free integer. Define ωd to be either

(1 +
√
d)/2 or

√
d, according as to whether d ≡ 1 (mod 4) or d ≡ 2, 3 (mod 4). It

is well known that the ring of algebraic integers of Q(
√
d) is Z[ωd] = Z + Zωd.



ON SEMINORMAL INTEGRAL DOMAINS WITH TREED OVERRINGS 167

Example 2.7. (a) R := Z[6ω17] is a one-dimensional Noetherian seminormal do-

main that satisfies the hypotheses of Corollary 2.6. Moreover, E0 := R ⊂ E1 :=

Z[3ω17] ⊂ E2 := Z[ω17] = R′ is a finite maximal chain of rings from R to R′, with

E0 ⊂ E1 decomposed and E1 ⊂ E2 inert. However, for each maximal ideal M of

R, the extension RM ⊆ (E2)R\M is either an identity or a minimal ring extension.

(b) R := Z[2ω17] is a one-dimensional Noetherian seminormal domain that sat-

isfies the hypotheses of Corollary 2.6. Moreover, there exists a maximal ideal M

of R such that D0 := RM ⊂ D1 = Z[ω17]R\M = (RM )′ is a decomposed (integral

minimal ring) extension and RM is not a pseudo-valuation domain.

Proof. (a) Note that R′ = Z[ω17] is one-dimensional, and hence so is R. Also, as

in Remark 2.3, it follows from Eakin’s Theorem that R is Noetherian. Hence, by

the Krull-Akizuki Theorem, each overring of R is treed. Moreover, R is seminormal

by [16, Corollary 4.5] (with n = m = 6 and d = 17). Also, since each subring of

a ring of the form Z[ωd] with quotient field Q[
√
d] must be of the form Z[nωd] for

some positive integer n, it is clear that E0 := R ⊂ E1 := Z[3ω17] ⊂ Z[ω17] is a finite

maximal chain of rings from R to R′. The minimality of the ring extensions E0 ⊂ E1

and E1 ⊂ E2 can also be seen via [35, Theorem 5.2], which also shows that E0 ⊂ E1

is decomposed (since 2 splits in Q(
√

17)). Similarly, we check that E1 ⊂ E2 is inert.

(The point here is that 3 is inert in Q(
√

17). As 3 is an odd prime distinct from

17, this is a matter of checking that the Legendre symbol ( 17
3 ) = −1. By the Law

of Quadratic Reciprocity, as in [31, Theorem 1 (c), page 53], ( 17
3 ) = ( 3

17 ), which

explains in part how we were led to the choice of D1 in building this example.)

Let N denote the crucial maximal ideal of E0 ⊂ E1, and let M ∈ Max(R). If

M 6= N , then RM = (E1)R\M and the extension RM ⊆ (E2)R\M is just (E1)R\M ⊆
(E2)R\M , which, by [23, Lemme 1.3], is either an identity or a minimal ring exten-

sion. Finally, suppose that M = N . It suffices to show that (E1)R\N = (E2)R\N .

By the proof of [35, Theorem 5.2] (and [19, Corollary II.2]), N = (R : E1) = 2E1.

Hence, 1/3 ∈ (E1)R\N , and it follows that (E1)R\N = (E2)R\N , as desired.

(b) Arguing as in (a), we see that R is one-dimensional and Noetherian, with

all its overrings being treed domains. Moreover, R is seminormal by [16, Corollary

4.5] (with n = m = 2 and d = 17); cf. also [33, Example 1] and [37, Theorem 4.4].

Also as above, we see that A0 := R ⊂ A1 := Z[ω17] is a minimal ring extension;

and one can use [35, Theorem 5.2] to check that A0 ⊂ A1 is decomposed. Let M

denote the crucial maximal ideal of A0 ⊂ A1. Then the minimal ring extension

(A0)M = RM = D0 ⊂ (A1)R\M = (RM )′ = D1 is also decomposed. But [15,

Example 4, especially page 71] shows that RN is not a pseudo-valuation domain,

for some uniquely determined prime ideal N of R that lies over 2Z. Necessarily,

N = M , since the localization of R at any maximal ideal other than the crucial



168 DOBBS

maximal ideal M coincides with a (quasi-local) localization of Z[ω17] (which must be

a discrete rank one valuation domain and, hence, a pseudo-valuation domain). �

Remark 2.8. Condition (2) in Corollary 2.6 cannot be used to characterize arbi-

trary seminormal domains, because a seminormal domain R need not be such that

R ⊆ R′ satisfies FCP. We next give an example of what is perhaps the simplest

kind of pseudo-valuation domain R that illustrates this point. Let k ⊂ F be an

infinite-dimensional algebraic field extension and V = F + M a valuation domain

with maximal ideal M 6= 0. By [29, Example 2.1], R := k+M is a pseudo-valuation

domain and, hence, seminormal. (For a more baroque proof that R is seminormal,

one could use [1, Proposition 2.1], as applied to the pullback V ×F k = R, noting

that V and k are seminormal and F is reduced.) However, there is an infinite chain

of fields between k and F and so, since k ∼= R/M and F ∼= V/M canonically, it

follows from [20, Proposition 3.2] that R ⊂ V (= R′) does not satisfy FCP.

By Proposition 2.2, if R is a quasi-local i-domain satisfying the hypotheses and

condition (1) in Corollary 2.6, then R must be a pseudo-valuation domain. On the

other hand, Proposition 2.9 will show that if one wished to generalize [3, Theo-

rem 10] to some quasi-local domains D that are neither i-domains nor integrally

closed, then it would be necessary to consider some D that are not pseudo-valuation

domains. To some extent, we feel that this result explains intuitively why condi-

tion (2) in Corollary 2.6 needed to bifurcate into a first condition (i), which had

an LPVD favor, and another condition (ii), whose formulation was not apparent

from the existing literature. In this vein, note that the quasi-local domain RM in

Example 2.7 (b) is neither an i-domain nor a pseudo-valuation domain.

Proposition 2.9 is taken from the unpublished dissertation [26]. For the sake of

completeness, we include a proof.

Proposition 2.9. ([26, Theorem 1.31]) Let (R,M) be a pseudo-valuation domain.

Then R′ is comparable with each overring of R if and only if either R is integrally

closed or R is an i-domain.

Proof. Let V be the canonically associated valuation overring of R. Suppose first

that R′ is comparable with each overring of R. Without loss of generality, R 6= R′.

Our task is to show that R′ = V . We have that R ⊂ R′ ⊆ V and M is the

unique maximal ideal of each of these three rings. Put k := R/M , F := R′/M

and L := V/M . It suffices to prove that F = L. As F ⊆ L, we need only

obtain a contradiction from the existence of an element α ∈ L \ F . By hypothesis

(and a standard homomorphism theorem), F is comparable with each ring that is

contained between k and L. As α 6∈ F , it follows that k[α] 6⊆ F , and so F ⊂ k[α].

In addition (cf. [24, Corollary 1.5(5)]), F is the integral (algebraic) closure of k in

L, and so α is transcendental over k. Then k is algebraically closed in k[α] and, a
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fortiori, algebraically closed in F , although k ⊂ F and F is algebraic over k, the

desired contradiction.

For the converse, assume that either R is integrally closed or R is an i-domain.

Our task is to prove that R′ is comparable with each overring of R. As this is clear

if R = R′, we may assume that R is an i-domain; that is, R′ is a valuation domain.

Then, by [11, Remark 4.8 (b)], R′ = V . In any event, since R is a pseudo-valuation

domain, we see from the proof of [7, Theorem 3.1] that V is comparable with each

overring of R, and so the proof is complete. �

Remark 2.10. (a) We cannot replace the hypothesis in Proposition 2.9 that R is

a pseudo-valuation domain with the hypothesis that R is an LPVD. To see this, use

the ring R constructed in [17, Theorem 3.2], subject to the parenthetical comment

in the statement of that result that we use data for the construction that satisfy

Vi = L + Mi and W = k + M1 where k ⊂ L is a minimal field extension. That

construction is predicated on any integer n > 1. As R has exactly n maximal ideals,

R is not a pseudo-valuation domain. However, R is an LPVD, by parts (b) and

(c) of [17, Theorem 3.2]. Moreover, R is an i-domain because it is locally so (again

by part (b) of [17, Theorem 3.2]). However, part (f) of [17, Theorem 3.2] produces

exactly one overring of R which is not comparable with R′. In view of Example 2.7,

it is interesting to note (via parts (e) and (d) of [17, Theorem 3.2]) that R has the

property that dim(R) = 1 and R′ (6= R) is a Prüfer domain.

(b) It is interesting to point out why the quasi-local i-domain R := K+X2K[[X]]

of Remark 2.3 cannot be used to illustrate Corollary 2.6. Recall that R ⊂ R′ is a(n

integral) minimal ring extension and that R′ = K[[X]] is a Prüfer domain. Thus,

by [27, Theorem 2.4], R′ is comparable with each overring of R. Since R is a one-

dimensional domain, it is now clear that each overring of R is treed. However we

have seen that R is not a pseudo-valuation domain; so condition (2) (i) of Corollary

2.6 is not satisfied by R. Also, condition (2) (ii) of Corollary 2.6 is not satisfied

by R, since R ⊂ R′ is neither decomposed nor inert. Indeed, R ⊂ R′ is ramified,

since the proof of Remark 2.3 showed that K := R/M ⊂ R′/M ∼= K[Y ]/(Y 2).

Invoking either Proposition 2.2 or Corollary 2.6, we could conclude that R is not a

seminormal ring, but of course, the most natural way to get this conclusion would

be to use the “u2, u3” criterion.

(c) In closing, we point out why the quasi-local QQR-domain (D,M) of [27,

Example 4.3] cannot be used to illustrate Corollary 2.6. Note that D is not a

pseudo-valuation domain, by [29, Theorem 1.7], since its integral closure D′ is not

quasi-local. Thus, D does not satisfy condition (2) (i) in the statement of Corollary

2.6. However, D does satisfy condition (2) (ii) in that statement, because it was

essentially proved in [27] that D ⊂ D′ is a decomposed (integral minimal ring)

extension such that each proper overring of D is a Prüfer (hence treed) domain. In
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addition, D satisfies condition (1) in the statement of Corollary 2.6; that is, D is

seminormal. One way to see that D is seminormal is to combine Lemma 2.4 with

[36, Corollary 3.4]; a second way is to let k := D/M and apply [1, Proposition 2.1] to

the pullback D′×k×k k = D; and a third way is to use the following straightforward

consequence of [25, Proposition 3.1] which was indicated to the author by Evan

Houston [30]: each QQR-domain is seminormal. However, D cannot be used to

illustrate Corollary 2.6 because D fails to satisfy one of the riding hypotheses of

that result. Indeed, D fails to be a treed domain. Moreover, [25, Remark 3.3]

establishes, i.a., the following more general fact: if A is a quasi-local QQR-domain

and A ⊂ A′ is (an integral minimal ring extension which is) decomposed, then A is

not a treed domain. In contrast, note that each of the base rings denoted by R in

[12, Examples 2.1 and 2.3] is a treed domain.
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