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1. Introduction

Let G be a finite abelian group written multiplicatively with identity element e.
Let A1, . . . , An be subsets of G. The product of A1, . . . , An is defined to be the set
{a1 · · · an : a1 ∈ A1, . . . , an ∈ An}. The product A1 · · ·An is direct if

a1 · · · an = a′1 · · · a′n, a1, a
′
1 ∈ A1, . . . , an, a

′
n ∈ An

imply a1 = a′1, . . . , an = a′n. If the product A1 · · ·An is direct and it is equal to
G, then we say that G is factored into the subsets A1, . . . , An or that the equation
G = A1 · · ·An is a factorization of G. A subset A of G is called normalized if e ∈ A.
The factorization G = A1 · · ·An is called normalized if the subset Ai is normalized
for each i, 1 ≤ i ≤ n.

A subset C of G is called a cyclic subset if it is in the form

C = {e, a, a2, . . . , am−1}, (1)

where a ∈ G and m is a positive integer that divides |G|. We assume that |a| ≥ m.
Let α(1), . . . , α(k) be integers such that

1 ≤ α(1) < · · · < α(k) ≤ m− 1

and let d1, . . . , dk be elements of G \ {e}. A subset A of G in the form

A = (C \ {aα(1), . . . , aα(k)}) ∪ {aα(1)d1, . . . , a
α(k)dk} (2)
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is called a distorted cyclic subset of degree k. Here we assume that the sets

C \ {aα(1), . . . , aα(k)}, {aα(1)d1, . . . , a
α(k)dk}

are disjoint. This is equivalent to that |A| = |C|.
We introduce the bracket notation for cyclic subsets. The cyclic subset (1) will

be denoted shortly by [a,m]. Let g1, . . . , gk ∈ G such that g1 = e. The subset A in
the form

A = g1[a,m1] ∪ · · · ∪ gt[a,mk] (3)

is called a lacunary cyclic subset of degree t. Here we assume that mi ≥ 1 for each
i, 1 ≤ i ≤ k and the sets gi[a,mi], gj [a,mj ] are disjoint for each i, j, 1 ≤ i < j ≤ k.
This is equivalent to that |A| = m1 + · · ·+mk.

Let H be a subgroup of G. A subset A of G is called a simulated subset of degree
k if |A| = |H| and |A \H| ≤ k.

2. Roots of unity

In this section we present three results on linear combinations of complex roots of
unity with integer coefficients. These extend earlier results that are proved in order
to analyze factorizations. The results we prove here have the same motivation. The
next lemma generalizes a theorem of [4] on page 361.

Lemma 2.1. Let a1, . . . , au be positive integers and let α(1), . . . , α(u) be nonneg-
ative integers. Let ρ be a primitive n-th root of unity, where n ≥ 2. If

0 =
u∑
i=1

aiρ
α(i), (4)

then u ≥ p, where p is the least prime divisor of n.

Proof. Clearly, we may assume that α(i) ≤ n − 1 for each i, 1 ≤ i ≤ u. Since
n ≥ 2, it can be written as a product of prime powers. We will proceed by induction
on the number of the distinct prime divisors of n.

We settle first the special case n = pe. With the sum on the right hand side on
(4) we associate the

P (x) =
u∑
i=1

aix
α(i)

polynomial. As P (1) = a1 +· · ·+au, it follows that P (x) is not the zero polynomial.
Further the coefficients of P (x) are integers and deg[P (x)] ≤ pe − 1. We need the
(pe)-th cyclotomic polynomial

F (x) = 1 + xp
e−1

+ x2pe−1
+ · · ·+ x(p−1)pe−1

. (5)

It is known that F (x) is irreducible in the ring of polynomial with rational coeffi-
cients. Note that ρ is a common root of P (x) and F (x). From this it follows that
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there is a polynomial Q(x) with rational coefficients such that P (x) = F (x)Q(x).
This gives the following upper estimate for the degree of Q(x).

deg[Q(x)] = deg[P (x)]− deg[F (x)]
≤ (pe − 1)− (p− 1)pe−1

= pe−1 − 1.

It follows that the nonzero terms of Q(x) appear among the terms of P (x). Let the
coefficient of xλ be c in Q(x) such that c 6= 0. Then the coefficients of

xλ, xλ+pe−1
, xλ+2pe−1

, . . . , xλ+(p−1)pe−1
(6)

are all equal to c. Therefore u is a multiple of p and so u ≥ p, as required.
The number n can be represented in the form n = per, where r is relatively

prime to p. Since the case r = 1 is settled for the remaining part of the proof we
may assume that r ≥ 2. We write ρ in the form ρ = στ , where σ is a primitive
(pe)-th root of unity and τ is a primitive r-th root of unity. Let us define β(i) and
γ(i) by

α(i) ≡ β(i) (mod pe), α(i) ≡ γ(i) (mod r)

such that 0 ≤ β(i) ≤ pe − 1, 0 ≤ γ(i) ≤ r − 1 for each i, 1 ≤ i ≤ u. Note that

ρα(i) = (στ)α(i) = σα(i)τα(i) = σβ(i)τγ(i). (7)

Let δ(1), . . . , δ(s) be all the distinct elements among β(1), . . . , β(u). Let Ai be the
set of all j for which β(j) = δ(i). The sets A1, . . . , As form a partition of {1, . . . , u}.
Using (7) from (4) we get that

0 =
s∑
i=1

biσ
δ(i), (8)

where
bi =

∑
j∈Ai

ajτ
γ(j).

Let q be the least prime divisor of r. Since n = per, it follows that q > p.
Suppose that bi = 0 for some i, 1 ≤ i ≤ s. By the induction assumption, it follows
that |Ai| ≥ q. Combining u ≥ |Ai| and |Ai| ≥ q we get u ≥ |Ai| ≥ q > p, as
required.

For the rest of the proof we may assume that bi 6= 0 for each i, 1 ≤ i ≤ s.
With the linear combination of the roots of unity on the right hand side of (8) we
associate the polynomial

P (x) =
s∑
i=1

bix
δ(i).

The coefficients of P (x) are from the r-th cyclotomic field and P (x) is not the zero
polynomial. It is known that the (pe)-th cyclotomic polynomial (5) is irreducible
over the r-th cyclotomic field. Suppose that the coefficient of xλ is c in P (x) and
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c 6= 0. An argument, similar to what we used in the first part of the proof, provides
that the coefficients of (6) are all equal to c. In particular it follows that |Ai| ≥ 1
holds for at least p values of i. This shows that u = |A1| + · · · + |As| ≥ p, as
required. �

The following lemma is an extension of Theorem 4 of [1].

Lemma 2.2. Let n ≥ 2 be an integer and let p be the least prime divisor of n.
Let a1, . . . , au, b1, . . . , bv be positive integers and let α(1), . . . , α(u), β(1), . . . , β(v)
be distinct nonnegative integers. Let ρ be a primitive n-th root of unity. If

u∑
i=1

aiρ
α(i) =

v∑
j=1

bjρ
β(j), (9)

then u ≥ p or v ≥ p.

Proof. Let us deal with the case n = pe first. Consider the polynomial

P (x) =
u∑
i=1

aix
α(i) −

v∑
j=1

bjx
β(j). (10)

We collected the terms of on the left hand side of the equation (9) and then replaced
ρ by x. The coefficients of P (x) are integers and deg[P (x)] ≤ pe − 1. Since no α(i)
is equal to β(j), there are no like terms in the right hand side of the equation (10).

Let c be the coefficient of xλ in P (x) such that c 6= 0. The argument using
the pe-th cyclotomic polynomial gives that the coefficients of (6) are all equal to c.
Note that

p−1∑
i=0

cρλ+ipe−1
= cρλ

p−1∑
i=0

ρip
e−1

= 0.

If c > 0, then λ ∈ {α(1), . . . , α(u)}. In this case we subtract the sum
p−1∑
i=0

ρip
e−1

(11)

from the left hand side of (9). We still will have equal linear combinations of roots
of unity. But the quantity a1 + · · · + au + b1 + · · · + bv decreases. If c < 0, then
λ ∈ {β(1), . . . , β(v)}. In this case we subtract (11) from the right hand side of
(9). We get new equal linear combinations of roots of unity with a smaller value of
a1 + · · ·+ au + b1 + · · ·+ bv. Continuing in this way finally we get that

u∑
i=1

aiρ
α(i) = 0 and

v∑
j=1

bjρ
β(j) = 0.

Lemma 2.1 is applicable and gives that u ≥ p and v ≥ p.
Next we assume that n has at least two distinct prime divisors and proceed by

induction on the number of the distinct prime divisors of n. We write n in the form
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n = qfr, where q is the largest prime divisor of n and r is not a multiple of q. We
write ρ in the form ρ = στ , where σ is a primitive q-th root of unity and τ is a
primitive r-th root of unity. We simply set σ = ρr, τ = ρq

f

. We define the numbers
γ(i), δ(i), ε(j), µ(j) by

α(i) ≡ γ(i) (mod qf ), α(i) ≡ δ(i) (mod r),

β(j) ≡ ε(j) (mod qf ), β(j) ≡ µ(j) (mod r),

where
0 ≤ γ(i), ε(j) ≤ qf − 1, 0 ≤ δ(i), µ(j) ≤ r − 1.

Clearly,
ρα(i) = (στ)α(i) = σα(i)τα(i) = σγ(i)τ δ(i),

ρβ(j) = (στ)β(j) = σβ(j)τβ(j) = σε(j)τµ(j),

and so

0 =
u∑
i=1

aiρ
α(i) −

v∑
j=1

bjρ
β(j)

=
u∑
i=1

aiσ
γ(i)τ δ(i) −

v∑
j=1

bjσ
ε(j)τµ(j).

Let ν(1), . . . , ν(w) be all the distinct numbers among γ(1), . . . , γ(u), ε(1), . . . , ε(v).
Let Ai be the set of all j for which ν(i) = γ(j). Obviously, the sets A1, . . . , Aw

form a partition of {1, . . . , u}. Let Bi be the set of all j for which ν(i) = ε(j). The
sets B1, . . . , Bw form a partition of {1, . . . , v}. Using these notations from (9) we
have

0 =
w∑
i=1

ciσ
ν(i), (12)

where
ci =

∑
j∈Ai

ajτ
δ(j) −

∑
j∈Bi

bjτ
µ(j).

Consider the polynomial

P (x) =
w∑
i=1

cix
ν(i).

We constructed P (x) from the right hand side of the equation (12). Namely, on
the right hand side of (12) we replaced σ by x. The coefficients of P (x) are from
the r-th cyclotomic field and deg[P (x)] ≤ qf − 1.

We assume that ci = 0 and in connection with ci we distinguish the following
three cases.

(i) Ai = ∅,
(ii) Bi = ∅,

(iii) Ai 6= ∅ and Bi 6= ∅.
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If (i) holds, then from

0 =
∑
j∈Bi

bjτ
µ(j),

by Lemma 2.1, it follows that |Bi| ≥ p. Combining v ≥ |Bi| and |Bi| ≥ p we get
v ≥ p, as required. If (ii) holds, then a similar argument gives that u ≥ |Ai| ≥ p,
as required.

If (iii) holds, then ∑
j∈Ai

ajτ
δ(j) =

∑
j∈Bi

bjτ
µ(j). (13)

We claim that no δ(k) is equal to µ(l) in this equation. In order to verify the
claim assume on the contrary that δ(k) = µ(l). Now σν(i)τ δ(k) = σν(i)τµ(l). From
k ∈ Ai, it follows that ν(i) = γ(k). From l ∈ Bi, it follows that ν(i) = ε(l). The
computation

ρα(k) = (στ)α(k) = σα(k)τα(k)

= σγ(k)τ δ(k) = σν(i)τ δ(k)

= σν(i)τµ(l) = σε(l)τµ(l)

= σβ(l)τβ(l) = (στ)β(l) = ρβ(l)

leads to the ρα(k) = ρβ(l) contradiction. Thus no δ(k) is equal to µ(l) in (13).
From (13), by the inductive assumption, it follows that |Ai| ≥ p or |Bi| ≥ p.

Therefore u ≥ |Ai| ≥ p or v ≥ |Bi| ≥ p, as required.
For the rest of the proof we may assume that ci 6= 0 for each i, 1 ≤ i ≤ w. In

particular, the polynomial P (x) is not the zero polynomial. Let c be the coefficient
of xλ in P (x) such that c 6= 0. The argument using the qf -th cyclotomic polynomial
gives that the coefficients of

xλ, xλ+qf−1
, xλ+2qf−1

, . . . , xλ+(q−1)qf−1

are all equal to c. Let dj ∈ {c1, . . . , cw} be these coefficients, where 0 ≤ j ≤ q − 1.
For the sake of definiteness for a moment suppose dj = c1. Note that since c 6= 0,
it follows that A1 ∪ B1 6= ∅ and consequently exactly one of (i), (ii), (iii) holds in
connection with dj .

Suppose that (i) holds for d0 and d1. Further suppose that d0 = ck and d1 = cl.
The equation d0 = d1 gives that ck = cl, that is,∑

j∈Bk

bjτ
µ(j) =

∑
j∈Bl

bjτ
µ(j).

As before we can verify that no equal roots of unity appear on both sides of the
equation. The inductive assumption gives that |Bk| ≥ p or |Bl| ≥ p. Therefore
v ≥ |Bk| ≥ p or u ≥ |Bl| ≥ p, as required. We may assume that (i) hold in
connection with at most one dj . An analogous argument shows that we may assume
that (ii) holds in connection with at most one dj .
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Suppose that (iii) holds for dj for each j, 0 ≤ j ≤ q − 1. This guarantees that
|Ai| ≥ 1 for at least q values of i. Using this we get u = |A1|+ · · ·+ |Aw| ≥ q > p,
as required. (As a matter of fact |Bi| ≥ 1 also holds for at least q values of i.
Consequently v = |B1|+ · · ·+ |Bw| ≥ q > p, as required.)

If (i) or (iii) holds for dj for each j, 0 ≤ j ≤ q − 1, then v = |B1|+ · · ·+ |Bw| ≥
q > p, as required. Similarly, if (ii) or (iii) holds for dj for each j, 0 ≤ j ≤ q − 1,
then u = |A1| + · · · + |Aw| ≥ q > p, as required. We are left with the following
situation. Case (i) holds for exactly once for dj . Case (ii) holds for exactly once for
dj . Further case (iii) holds for exactly q − 2 times for dj .

Since n has at least two distinct prime divisors, it follows that q ≥ 3 and q−1 ≥ p.
Now |Bi| ≥ 1 holds for exactly q − 1 values of i. From this we get v = |B1|+ · · ·+
|Bw| ≥ q − 1 ≥ p, as required. Of course because of symmetry we could draw the
v ≥ p conclusion too. �

The next result is a generalization of Theorem 4 of [6].

Lemma 2.3. Let n ≥ 2 be an integer and let ρ be a primitive n-th root of unity.
Suppose that a1, . . . , au are positive integers and α(1), . . . , α(u) are distinct non-
negative integers less than n. If 1 ≤ u ≤ 2p− 1, where p is the least prime divisor
of n, then

0 =
u∑
i=1

aiρ
α(i) (14)

implies that u divides n.

Proof. In the n = pe case the argument we have seen in the proof of Lemma 2.1
gives that u is a multiple of p. Then from 1 ≤ u ≤ 2p − 1 we get u = p and so u
divides n, as required.

For the remaining part of the proof we assume that n = per, where p does not
divide r. Let q be the least prime divisor of r. Clearly q > p. We write ρ in the
form ρ = στ , where σ is a primitive pe-th root of unity and τ is a primitive r-th
root of unity. Let us define the numbers β(i), γ(i) by

α(i) ≡ β(i) (mod pe), α(i) ≡ γ(i) (mod r)

such that
0 ≤ β(i) ≤ pe − 1, 0 ≤ γ(i) ≤ r − 1

for each i, 1 ≤ i ≤ u. Clearly

ρα(i) = (στ)α(i) = σα(i)τα(i) = σβ(i)τγ(i).

Using this equation (14) can be written in the form

0 =
u∑
i=1

aiσ
β(i)τγ(i). (15)
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Let δ(1), . . . , δ(v) be all the distinct numbers among β(1), . . . , β(u). Let Ai be the
set of all j for which δ(i) = β(j). Obviously, the sets A1, . . . , Av form a partition
of {1, . . . , u}. Set ti = |Ai|. Now the equation (15) can be represented in the form

0 =
v∑
i=1

biσ
δ(i), (16)

where
bi =

∑
j∈Ai

ajτ
γ(j).

If bi = 0 for each i, 1 ≤ i ≤ v, then by Lemma 2.1, ti ≥ q for each i, 1 ≤ i ≤ v.
From vq ≤ t1 + · · · + tv = u ≤ 2p − 1 < 2q − 1, it follows that v = 1. Then
u = t1 < 2q − 1 and so the inductive assumption is applicable to b1 = 0 implying
that t1|r. This means that u|r. Then we get u|per, as required. For the rest of
the proof we may assume that bi 6= 0 for some i, 1 ≤ i ≤ v. Let us construct the
polynomial

P (x) =
v∑
i=1

bix
δ(i).

In the way we have seen in the proof of Lemma 2.1 we get that the pe-th cyclotomic
polynomial divides P (x) over the r-th cyclotomic field. Let c be the coefficient of
xλ in P (x) such that c 6= 0. It follows that the coefficients of (6) are all equal to c.
Let us consider the polynomial

Q(x) = P (x)− cxλF (x),

where F (x) is the pe-th cyclotomic polynomial. Note that F (x) divides Q(x) over
the r-th cyclotomic field. The number of the nonzero monomials in Q(x) decreased
by p. If Q(x) is not the zero polynomial, then we can repeat this step. Continuing
in this way finally we can conclude that the number of the nonzero monomials in
P (x) is a multiple of p, that is p|v. In particular p ≤ v.

From p ≤ v ≤ u ≤ 2p− 1, it follows that v = p and therefore

P (x) =
p∑
i=1

bix
δ(i).

This implies b1 = · · · = bp. The inequality t1 + · · ·+ tp = u ≤ 2p− 1 together with
t1 ≥ 1, . . . , tp ≥ 1 gives that 1 ≤ ti ≤ p for each i, 1 ≤ i ≤ p.

Suppose that in the equation bi = bj not all the roots of unity cancel out for
some i, j, 1 ≤ i < j ≤ p. Now Lemma 2.2, leads to the contradiction that
ti ≥ q > p or tj ≥ q > p. Thus in the equation bi = bj exactly the same roots
of unity appear on the left hand side and on the right hand side for each i, j,
1 ≤ i < j ≤ p. Consequently t1 = · · · = tp. Let t be this common value. This
means that pt = u ≤ 2p− 1. From this it follows that t = 1 and then u = p. Now
plainly u divides n = per, as required. �
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3. Replacement

Let G = AB be a factorization of the finite abelian group G. We say that the
factor A can be replaced by the factor A′ if G = A′B is also a factorization of G.
In [4] L. Rédei developed a test for replacement using characters of G. Let χ be a
character of G. The sum of complex numbers∑

a∈A
χ(a)

is denoted by χ(A). The set of characters χ of G for which χ(A) = 0 is called the
annihilator set of A and is denoted by Ann(A). Rédei’s test now reads as follows.
If |A| = |A′| and Ann(A) ⊆ Ann(A′), then A can be replaced by A′.

The next lemma essentially means that the distorted cyclic subset (2) can be
replaced by the cyclic subset [a,m].

Lemma 3.1. Let G be a finite abelian group and let A be a distorted cyclic subset
of G of degree k. Let χ be a character of G such that χ(A) = 0. If 2k+1 is smaller
than the least prime divisor of |G|, then χ(a) 6= 1 and χ(am) = 1.

Proof. First we show that χ(A) = 0 implies χ(a) 6= 1. In order to prove the claim
assume on the contrary that χ(a) = 1. Let us compute χ(A).

χ(A) =
m−1∑
i=0

χ(ai)−
k∑
i=1

χ(aα(i)) +
k∑
i=1

χ(aα(i)di)

= m− k +
k∑
i=1

χ(di).

Using χ(A) = 0, we get that

m− k = −
k∑
i=1

χ(di).

Taking absolute values on both sides it follows that

m− k =
∣∣∣∣ k∑
i=1

χ(di)
∣∣∣∣ ≤ k∑

i=1

|χ(di)| = k,

that is, m ≤ 2k.
Let p be the least prime divisor of |G|. From m||G| it follows that p|m and

so p ≤ m. Combining p ≤ m and m ≤ 2k we get p ≤ 2k. This contradicts the
p > 2k + 1 assumption. Thus χ(a) 6= 1, as we claimed.

Let us consider χ(A) again and introduce the χ(ai) = ρi, χ(di) = σi notations.

χ(A) =
m−1∑
i=0

ρi −
k∑
i=1

ρα(i) +
k∑
i=1

ρα(i)σi
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=
1− ρm

1− ρ
−

k∑
i=1

ρα(i) +
k∑
i=1

ρα(i)σi.

Using χ(A) = 0 and multiplying by 1− ρ we get

0 = 1− ρm −
k∑
i=1

ρα(i) +
k∑
i=1

ρα(i)σi

+
k∑
i=1

ρα(i)+1 −
k∑
i=1

ρα(i)+1σi.

Then

1 +
k∑
i=1

ρα(i)σi +
k∑
i=1

ρα(i)+1 = ρm +
k∑
i=1

ρα(i) +
k∑
i=1

ρα(i)+1σi.

The left hand side is a sum of 2k+ 1 |G|-th roots of unity and so is the right hand
side. By the assumption of the lemma, the least prime divisor of |G| is greater than
2k + 1. By Sands’ result, the sets

{1, ρα(i)σi, ρ
α(i)+1 : 1 ≤ i ≤ k}, {ρm, ρα(i), ρα(i)+1σi : 1 ≤ i ≤ k}

must be equal. The product of the elements in the first set is equal to the product
of the elements in the second set. After cancelling we get ρm = 1, as required. �

Let A be a lacunary cyclic subset in the form (3). Set m = m1 + · · · + mk and
C = [a,m]. By the next lemma, A can be replaced by C. This lemma is a variant
of an earlier results of [7] and [3].

Lemma 3.2. Let G be a finite abelian group and let A be a lacunary cyclic subset
of G in the form (3). Let χ be a character of G such that χ(A) = 0. If t is less
than the least prime divisor of |G|, then χ(a) 6= 1 and χ(am) = 1.

Proof. First we verify that χ(A) = 0 implies χ(a) 6= 1. In order to do so we assume
on the contrary that χ(A) = 0 and χ(a) = 1. Now

0 = χ(A) =
k∑
i=1

miχ(gi). (17)

If χ(g1) = · · · = χ(gk) = 1, then we get the 0 = m1 + · · ·+mk = m contradiction.
Thus there is an integer n ≥ 2 and a primitive n-th root of unity ρ such that
χ(gi) = ρα(i) for each i, 1 ≤ i ≤ k. Clearly, n divides |G| and so the least
prime divisor of n cannot be smaller than the least prime divisor of |G|. Now (17)
contradicts the statement of Lemma 2.1.

In order to prove χ(am) = 1 let us consider χ(A) again.

χ(A) =
k∑
i=1

χ(gi)
[mi−1∑
j=0

χ(aj)
]
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=
k∑
i=1

χ(gi)
[

1− χ(ami)
1− χ(a)

]
.

Using χ(A) = 0 and multiplying by 1− χ(a) we get

0 =
k∑
i=1

χ(gi)[1− χ(ami)],

that is,
k∑
i=1

χ(gi) =
k∑
i=1

χ(gi)χ(ami).

By Sands’ result, the sets

{χ(gi) : 1 ≤ i ≤ k}, {χ(gi)χ(ami) : 1 ≤ i ≤ k}

must be equal. Therefore, the product of the elements in the first set is equal
to the product of the elements in the second set. After cancellation we get 1 =
χ(am1) · · ·χ(amk) = χ(am), as required. �

4. A Hajós type result

In Theorem 5 of [5] A. D. Sands has proved the following result. Let G be a
finite abelian group such that p is the least prime divisor of |G|. If G = A1 · · ·An
is a factorization, where Ai is a simulated subset of degree k and k ≤ p − 2, then
at least one of the factors is a subgroup of G. In this section we extend this result.

Theorem 4.1. Let G be a finite abelian group such that p is the least prime divisor
of |G|. Let G = A1 · · ·An be a normalized factorization of G, where Ai is either a
distorted cyclic subset of degree k with 2k + 1 < p or a simulated subset of degree
k with k ≤ p − 2 for each i, 1 ≤ i ≤ n. Then Ai is a subgroup of G for some i,
1 ≤ i ≤ n.

Proof. Assume on the contrary that there is a counter-example, that is, there is a
normalized factorization G = A1 · · ·An in which none of the factors is a subgroup
of G.

Consider first the case when Ai is a simulated subset for each i, 1 ≤ i ≤ n.
By Theorem 2 of [2], from the factorization G = A1 · · ·An it follows that Ai is a
subgroup of G for some i, 1 ≤ i ≤ n. This is a contradiction. Thus in a counter-
example Ai is a distorted cyclic subset for some i, 1 ≤ i ≤ n. Let t be the number
of simulated subsets among the factors A1, . . . , An. We choose a counter-example
with a maximal t.
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A distorted cyclic subset can be a cyclic subset as an extreme case. Next we
consider the situation when each distorted cyclic subset is in fact a cyclic sub-
set. Suppose A1, . . . , As are cyclic subsets and As+1, . . . , An are simulated subsets.
(None of the factors is a subgroup of G.) Here s ≥ 1 and t = n− s.

Set A1 = [a,m]. If m is not a prime, say m = uv, with u ≥ 2, v ≥ 2, then
[a,m] = [a, u][au, v]. If the cyclic subset [a, u] is a subgroup of G, then au = e and
we get |a| ≤ u. This contradicts m ≤ |a|. Thus [a, u] cannot be a subgroup of
G. If the cyclic subset [au, v] is a subgroup of G, then the cyclic subset [a,m] is a
subgroup of G. This is not the case. So [au, v] is not a subgroup of G. Therefore
the cyclic subset A1 can be written as a product of non-subgroup cyclic subsets
each of which has a prime number of elements. Consequently in the factorization
G = A1 · · ·An we can replace Ai by a product of non-subgroup cyclic subsets of
prime cardinalities for each i, 1 ≤ i ≤ s. Let G = B1 · · ·Br be the resulting
factorization. By Theorem 2 of [2], Bi is a subgroup of G for some i, 1 ≤ i ≤ n.
This is an outright contradiction.

Summarizing our considerations we may say that in the counter-example G =
A1 · · ·An, the factor Ai is a non-cyclic distorted cyclic subset for some i, 1 ≤ i ≤ n.
For the sake of definiteness may assume that A1 is a non-cyclic distorted cyclic
subset. Let A1, . . . , As be non-cyclic distorted cyclic subsets and let As+1, . . . , An

be cyclic subsets or simulated subsets. Of course none of the factors is a subgroup
of G. It may happen that a non-cyclic distorted cyclic subset is a simulated subset
as well. In this case we treat the subset as a simulated subset. We consider the
counter-examples in which t is maximal and among these counter-examples we
choose one in which s is minimal.

Let C be the cyclic subset associated with A1. By Lemma 3.1, in the factorization
G = A1A2 · · ·An the factor A1 can be replaced by C to get the factorization
G = CA2 · · ·An. This factorization contains s−1 non-cyclic distorted cyclic subsets
and the minimality of s gives that at least one of the factors C,A2, . . . , An is a
subgroup of G. Only C can be a subgroup of G. This provides that A1 is a
simulated subset. The number of the simulated subsets increased in the counter-
example. The maximality of t gives that Ai is a subgroup of G for some i, 1 ≤ i ≤ n.
This contradiction completes the proof. �
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