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Abstract. Let M be a right R-module with S = End(MR). Then MR is

called pseudo QP -injective (or PQP -injective for short) if every monomor-

phism from an M -cyclic submodule of M to M extends to an endomorphism

of M . MR is called generalized pseudo QP -injective (or GPQP -injective for

short) if, for any 0 6= s ∈ S, there exists a positive integer n such that sn 6= 0

and every monomorphism from snM to M extends to an endomorphism of

M . Characterizations and properties of the two classes of modules are stud-

ied. The two classes of modules with some additional conditions are studied,

semisimple artinian rings are characterized by PQP -injective modules.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity and all mod-
ules considered are unitary. Let M be a right R-module. Then we denote the
injective hull of a module M by E(M), the endomorphism ring of M by S, and the
the Jacobson radical of S by J(S) respectively. Let X ⊆ M and Y ⊆ S, then we
write lS(X) = {s ∈ S | sx = 0, for all x ∈ X} and rM (Y ) = {m ∈M | ym = 0, for
all y ∈ Y }.

Recall that a right R-moduleN is calledM -cyclic [10, p41] ifN is a homomorphic
image of M , and M is called QP -injective [8] or semi-injective [10, p261] if for every
M -cyclic submodule K of M , any R-homomorphism from K to M extends to an
endomorphism of M , or equivalently, lS(Ker(s)) = Ss. We also recall that a ring
R is right MP -injective [12] if, for any a ∈ R, every monomorphism from aR to
R extends to R; a ring R is right MGP -injective [12] if, for any 0 6= a ∈ R, there
exists a positive integer n such that an 6= 0 and every monomorphism from anR to R
extends to R. In this paper, we generalize the concepts of QP -injective modules and
MP -injective rings to pseudo QP -injective modules, and generalize the concepts of
pseudo QP -injective modules and MGP -injective rings to generalized pseudo QP -
injective modules, respectively, and give some interesting results on these modules.
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2. PQP -injective Modules

We start with the following definition.

Definition 2.1. Let R be a ring and M , N be two right R-modules. Then N

is called M -cyclic injective if every monomorphism from an M -cyclic submodule
of M to M extends to a homomorphism of M to N , N is called pseudo M -cyclic
injective if every monomorphism from an M -cyclic submodule of M to M extends
to a homomorphism of M to N . A right R-module M is called pseudo QP -injective
(or PQP -injective for short) if M is pseudo M -cyclic injective .

Clearly, a ring R is right MP -injective if and only if RR is PQP -injective. We
note thatM -cyclic injective modules are calledM -p-injective in [8], pseudoM -cyclic
injective modules are called pseudo M -p-injective in [3], and pseudo QP -injective
modules are called quasi-pseudo principally injective in [3].

Our following result extend the result of [12, Theorem 2.2]

Theorem 2.2. The following conditions are equivalent for a module MR with S =
End(MR):

(1) M is PQP -injective.
(2) Ker(s) = Ker(t), s, t, in S, implies that Ss = St.

Proof. (1)⇒ (2) If Ker(s) = Ker(t), then the mapping f : sM → tM ; sm 7→ tm

is a monomorphism. Since M is PQP -injective, f = s′· for some s′ ∈ S, and so
t = s′s. This implies that St ⊆ Ss. Similarly, Ss ⊆ St.

(2) ⇒ (1) Let f : sM → M be monic. Then Ker(s) = Ker(fs). By (2),
Ss = S(fs), thus fs = s′s for some s′ ∈ S. Hence f = s′·, as required. �

Recall that a module M is called C2 if every submodule of M that is isomorphic
to a direct summand of M is itself a direct summand of M .

Corollary 2.3. [3, Proposition 2.8] Every PQP -injective module is C2.

Proof. Let MR be PQP -injective with S = End(MR). If Ker(s) = Ker(e), where
s ∈ S, e2 = e ∈ S, then by Theorem 2.2, we have Ss = Se. Hence MR is C2 by [15,
Theorem 3]. �

Theorem 2.4. Let M be a right R- module with S = End(MR).

(1) If S is right MP -injective, then M is PQP -injective.
(2) If M is PQP -injective and M generates Ker(s) for each s ∈ S, then S is

right MP -injective.

Proof. (1) Let Ker(s) = Ker(t). Then rS(s) = rS(t). Since S is right MP -
injective, Ss = St. Hence M is PQP -injective.
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(2) Assume that rS(s) = rS(t). SinceM generatesKer(s), Ker(s) =
∑

a∈A a(M)
for some subset A of S, and so sa = 0 for each a ∈ A. Hence ta = 0 for each
a ∈ A and then tKer(s) = 0. This shows that Ker(s) ⊆ Ker(t). Similarly,
Ker(t) ⊆ Ker(s). Thus, Ker(s) = Ker(t). Since M is PQP -injective, Ss = St.
Therefore, S is right MP -injective. �

Our following results extend the results of [8, Theorem 2.8(1)-(3)].

Theorem 2.5. Let MR be PQP -injective with S = End(MR) and let s, t ∈ S.

(1) If tM embeds in sM , then St is an image of Ss.
(2) If tM ∼= sM , then St ∼= Ss.

Proof. (1) If σ : tM → sM is a monomorphism, then σ = u· for some u ∈ S

by the PQP -injectivity of M . Let as = 0. Then sM ⊆ Ker(a), and so autM =
aσ(tM) ⊆ a(sM) = 0. Now we define ϕ : Ss → St by as 7→ aut. Then ϕ is
a left S-homomorphism. Since σ is monic, Ker(ut) = Ker(t). This follows that
S(ut) = St as M is PQP -injective. Thus ϕ is epic.

(2) If σ : tM → sM is an isomorphism, then by (1), ϕ is epic. If aut = 0, a ∈ S,
then aσ(tM) = 0, and hence asM = 0, i.e., as = 0. This shows that ϕ is an
isomorphism. �

For a module MR, a submodule X of M is called a kernel submodule if X =
ker(f) for some f ∈ End(MR).

Theorem 2.6. Let MR be PQP -injective with S = End(MR). If MR satisfies
ACC on kernel submodules, then S is right perfect.

Proof. If si ∈ S, i = 1, 2, · · · and Ss1 ⊇ Ss2 ⊇ · · · , then Ker(s1) ⊆ Ker(s2) ⊆ · · · .
By hypothesis, there exists a natural number n such that Ker(sn) = Ker(sn+1) =
· · · . By Theorem 2.2, Ssn = Ssn+1 = · · · , and hence S is right perfect. �

Corollary 2.7. If MR is QP -injective with S = End(MR), then S is right perfect
if and only if MR satisfies ACC on kernel submodules.

Proof. Since QP -injective module is PQP -injective, by Theorem 2.6, we need
only to prove the necessity. Suppose that si ∈ S, i = 1, 2, · · · such that Ker(s1) ⊆
Ker(s2) ⊆ · · · , then lS(Ker(s1)) ⊇ lS(Ker(s2)) ⊇ · · · . Then since MR is QP -
injective, by [8, Theorem 2.10], we have Ss1 ⊇ Ss2 ⊇ · · · . Since S is right perfect,
there exists a natural number n such that Ssn = Ssn+1 = · · · , so Ker(sn) =
Ker(sn+1) = · · · . This shows that MR satisfies ACC on kernel submodules. �

Theorem 2.8. Let M1 ⊕M2 be a PQP -injective module and σ : M1 → M2 be a
monomorphism. Then σ splits and M1 is QP -injective.
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Proof. Clearly, the submodule 0⊕ σ(M1) of M1 ⊕M2 is a homomorphism image
of M1 ⊕M2, and α : 0 ⊕ σ(M1) → M1 ⊕M2 given by α(0, σ(x)) = (x, 0), x ∈ M1,
is a monomorphism. Since M1 ⊕M2 is PQP -injective, α can be extended to an
endomorphism α∗ of M1 ⊕M2. Let ι : M2 →M1 ⊕M2 and π : M1 ⊕M2 →M1 be
the natural injection and projection, respectively. Then τ = πα∗ι is such that τσ =
1M1 . Hence σ splits. Let M2 = σ(M1)⊕N1. Then M1 ⊕M2 = M1 ⊕ σ(M1)⊕N1,
and so N = M1⊕ σ(M1) is PQP -injective by [3, Corollary 2.7]. Let K be any M1-
cyclic submodule of M1 and f : K →M1 be an R-homomorphism. Then K⊕0 is an
M1⊕M2-cyclic submodule of M1⊕M2 , and the mapping β : K⊕0→M1⊕σ(M1)
given by β(x, 0) = (x, σf(x)), x ∈ K, is a monomorphism. Hence it can be extended
to an endomorphism γ of N . Let q : M1 → N and p : N → σ(M1) be natural
injective and projection respectively. Then τpγq is an endomorphism of M1 which
extends f . Hence M1 is QP -injective. �

Corollary 2.9. If M is a right R-module such that M ⊕M is PQP -injective, then
M is QP -injective.

Theorem 2.10. The following statements are equivalent for a ring R:

(1) R is semisimple artinian.
(2) Every right R-module is QP -injective.
(3) Every right R-module is PQP -injective.
(4) For every right R-module M , End(MR) is a regular ring.

Proof. (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4) are trivial.
(4) ⇒ (3) Let M be any right R-module with S = End(MR). Then for any

s ∈ S, by (3), there exists t ∈ S such that s = sts. Write e = st. Then e2 = e and
sM = eM , so sM is a direct summand of M . Thus M is PQP -injective.

(3) ⇒ (1) Let M be any right R-module. Since M ⊕ E(M) is PQP -injective,
by Theorem 2.8, the inclusion map M → E(M) is split, and thus M = E(M) is
injective. Therefore R is semisimple artinian. �

Recall that a module M is called pseudo-injective [5] if every monomorphism
from a submodule of M to M extends to an endomorphism of M . Clearly, pseudo-
injective modules are PQP -injective. At the end of this section, we give an example
of a module which is pseudo-injective (and hence PQP -injective) but not QP -
injective.

Example 2.11. Let Φ be an algebraically closed field and x, y be indeterminates.
Let B = Φ(y)[x] be the hereditary simple principle ideal domain over the field of
rational function Φ(y) where xf − fx = df/dy, f ∈ Φ(y). Let M = B/x(x +
y)(x + y − (1/y))B. Then by [5, Example], M is pseudo-injective. Let M1 =
xB/x(x + y)(x + y − (1/y))B and M2 = x(x + y)B/x(x + y)(x + y − (1/y))B,
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it is easy to see that M1 is an M -cyclic submodule of M , and by [5, Example],
the natural homomorphism π : M1 → (M1/M2) ∼= M2 can not be extended to an
endomorphism of M , so M is not QP -injective.

3. GPQP -injective Modules

At first, we extend the concepts of PQP -injective modules and MGP -injective
rings as following.

Definition 3.1. Let R be a ring. A right R-module M is called generalized pseudo
QP -injective (or GPQP -injective for short) if for any 0 6= s ∈ S, there exists a
positive integer n such that sn 6= 0 and any right R-monomorphism from snM to
M extends to an endomorphism of M .

It is obvious that PQP -injective modules are GPQP -injective, and that a ring
R is right MGP -injective if and only if RR is GPQP -injective.

Theorem 3.2. The following conditions are equivalent for a module MR with S =
End(MR):

(1) M is GPQP -injective.
(2) For any 0 6= s ∈ S, there exists n > 0 such that sn 6= 0 and t ∈ Ssn in case

Ker(sn) = Ker(t).

Proof. (1) ⇒ (2). Let 0 6= s ∈ S. Since M is GPQP -injective, there exists a
positive integer n, such that sn 6= 0 and every monomorphism from snM to M

extends to M . Suppose that Ker(sn) = Ker(t). Then f : snM → M ; snm 7→ tm

is a monomorphism, which extends to an endomorphism g of M , so tm = f(snm) =
g(snm) = (gsn)m for every m ∈M . Therefore, t = gsn ∈ Ssn.

(2) ⇒ (1). For any 0 6= s ∈ S. By (2), there exists n > 0 such that sn 6= 0 and
t ∈ Ssn for any t ∈ S with Ker(sn) = Ker(t). Let f : snM →M be monic. Then
Ker(sn) = Ker(fsn), and so fsn = usn for some u ∈ S. This follows that f = u·,
as required. �

Proposition 3.3. Every direct summand of a GPQP -injective module is GPQP -
injective.

Proof. Let M = M1 ⊕M2 be GPQP -injective. Write S = End(M) and S1 =
End(M1). Let ei be the projection from M to Mi, ιi be the inclusion from Mi

to M , i = 1, 2. Then M1 = e1M . For any 0 6= s1 ∈ S1, let s = s1e1. Then
s 6= 0. By the GPQP -injectivity of M , there exists a positive integer n such
that sn 6= 0 and every monomorphism from snM to M extends to M . Note that
sn = ι1s

n
1 e1 , we have sn

1 6= 0. Now let f : sn
1M1 → M1 be any monomorphism.

Then g : snM → M defined by g(ι1sn
1 e1x) = ι1fs

n
1 e1x is a monomorphism, so f
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extends to an endomorphism h of M . Write ϕ = e1hι1. Then ϕ ∈ S1 and ϕ extends
f . Hence, M1 is GPQP -injective. �

Theorem 3.4. Let M be a right R-module with S = End(MR).

(1) If S is right MGP -injective, then M is GPQP -injective.
(2) If M is GPQP -injective and M generates Ker(s) for each s ∈ S, then S

is right MGP -injective.

Proof. (1) Let 0 6= s ∈ S. Since S is right MGP -injective, there exists a positive
integer n such that sn 6= 0 and t ∈ Ssn whenever r(sn) = r(t). Suppose Ker(sn) =
Ker(t). Then r(sn) = r(t), so t ∈ Ssn . Hence M is GPQP -injective by Theorem
3.2.

(2) Let 0 6= s ∈ S. Since MR is GPQP -injective, there exists a positive integer
n such that sn 6= 0 and t ∈ Ssn whenever Ker(sn) = Ker(t). Assume that
r(sn) = r(t). Since M generates Ker(sn), Ker(sn) =

∑
a∈A a(M) for some subset

A of S, and so sna = 0 for each a ∈ A. Hence ta = 0 for each a ∈ A and hence
tKer(sn) = 0. It follows that Ker(sn) ⊆ Ker(t). Similarly, Ker(t) ⊆ Ker(sn).
Thus, Ker(sn) = Ker(t), and so t ∈ Ssn. Therefore, S is right MGP -injective. �

Recall that a module M is said to be co-Hopfian (resp., Hopfian ) if every monic
(resp., surjective) endomorphism of M is an automorphism. A module M is said
to be directly finite if M is not isomorphic to a proper summand of itself. A ring
R is said to be directly finite (or Dedekind finite) if ab = 1 implies ba = 1. It is
known that a module M is directly finite if and only if its endomorphism ring is
directly finite [6, Proposition 1.25].

Theorem 3.5. Let MR be a GPQP -injective module. Then the following state-
ments are equivalent:

(1) S/J(S) is directly finite.
(2) M is co-Hopfian.
(3) S is directly finite.
(4) M is directly finite.

Proof. (1)⇒ (2) Let s : MR →MR be monic. Then s 6= 0 and Ker(s) = 0. Since
M isGPQP -injective, there exists n > 0 such that sn 6= 0 and every monomorphism
snM →M extends to M . In particular, the monomorphism g : snM →M, snx 7→
x extends to M . So, 1 = tsn for some t ∈ S, and hence 1 = tsn in S := S/J(S).
By (1), we have snt=1. Write 1 = snt+ j, where j ∈ J(S). Then snt(1− j)−1 = 1
and so s is surjective, showing that s is an isomorphism.

(2) ⇒ (3) Let st = 1, where s, t ∈ S. Then t is a monic endomorphism of M
and, by (2), t is an isomorphism. So ts = 1.
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(3) ⇒ (1) Let st=1 in S/J(S). Then st = 1 + j for some j ∈ J(S), and hence
1 = (1 + j)−1st. By (3), 1 = t(1 + j)−1s. It follows that 1=ts.

(3)⇔ (4) By [6, Proposition 1.25]. �

Our following result extend the result of [3, Proposition 2.24.]

Corollary 3.6. Let M be a GPQP -injective Hopfian module. Then it is co-
Hopfian.

Proof. SinceM is Hopfian, S is directly finite. And soM is co-Hopfian by Theorem
3.5 . �

Recall that a module MR is called GC2 [11] if every submodule of M that is
isomorphic to M is itself a direct summand of M . A ring R is called right Min-C2

[7] if every simple right ideal of R that is isomorphic to a direct summand of R
is itself a direct summand of R. We call a module MR Min-C2 if every simple
submodule of M that is isomorphic to a direct summand of M is itself a direct
summand of M . According to Wisbauer [10], a module M is called a self-generator
if it generates all its submodules.

Theorem 3.7. Let MR be GPQP -injective with S = End(MR). Then

(1) MR is GC2.
(2) MR is Min-C2 .
(3) for any s ∈ S, if s(M) is a simple submodule of M , then Ss is a minimal

left ideal of S.
Furthermore, if MR is a self-generator, then

(4) J(S) = W (S), where W (S) = {s ∈ S | Ker(s) ⊆ess M}.

Proof. (1) Let s ∈ S with Ker(s) = 0. Then Ker(sk) = 0 for each positive integer
k. SinceM isGPQP -injective, there exists a positive integer n such that sn 6= 0 and
every monomorphism from snM to M extents to M . Define f : snM →M ; snx 7→
x. Then f is a monomorphism, and hence it extends to an endomorphism g of M .
Thus x = f(snx) = g(snx) for each x ∈M , and so 1 = gsn. It follows that S = Ss.
Therefore, M is GC2 by [15, Theorem 4].

(2) Let K be a simple submodule of M and K ∼= eM for some e2 = e ∈ S. Then
K = seM for some s ∈ S with Ker(se) = Ker(e). Since M is GPQP -injective,
there exists a positive integer n such that (se)n 6= 0 and every monomorphism from
(se)nM to M extends to an endomorphism of M . But K is simple, K = (se)nM .
Now let f : K → M ; sem 7→ em. Then f is a monomorphism, hence it extends to
an endomorphism t of M . Thus, em = f(sem) = tsem for all m ∈ M and then
e = tse, which shows that (set)2 = set. Note that se = setse, so K = seM = setM

is a direct summand.
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(3) Suppose that s(M) is simple. For any 0 6= ts ∈ Ss, since MR is GPQP -
injective, there exists a positive integer n such that (ts)n 6= 0 and any R-monomor-
phism from (ts)nM to M extends to an endomorphism of M . Now we define
ϕ : s(M) → (ts)nM such that ϕ(sm) = (ts)nm for all m ∈ M . Then ϕ is an
isomorphism. Let i : s(M) → M be the inclusion map and let ψ = iϕ−1. Then
ψ is a monomorphism from (ts)nM to M with ψ((ts)nm) = sm for all m ∈ M ,
and so there exists u ∈ S such that u(ts)nm = sm for all m ∈ M . It means that
u(ts)n = s and then Ss = S(ts). Therefore, Ss is minimal.

(4) Since M is GC2, W (S) ⊆ J(S) by [15, Corollary 6]. Conversely, let s ∈ J(S),
then we will show that s ∈ W (S). If not, then there exists a nonzero submodule
K of M such that Ker(s) ∩K = 0. Since M is a self-generator, K =

∑
a∈A a(M)

for some subset A of S. Take a 0 6= t ∈ A. Then st 6= 0. But since M is GPQP -
injective, there exists a positive integer n such that (st)n 6= 0 and u ∈ S(st)n for any
u ∈ S with Ker(st)n = Ker(u). Now let u = t(st)n−1. Then Ker(st)n = Ker(u),
and so u = v(st)n for some v ∈ S. Thus (1 − vs)u = 0, which implies that u = 0
because 1− vs is invertible. Hence (st)n = su = 0, a contradiction. �

Corollary 3.8. Let R be a right MGP -injective ring. Then

(1) R is right GC2.
(2) R is right Min-C2 .
(3) for any a ∈ R, if aR is a minimal right ideal of R, then Ra is a minimal

left ideal of R.
(4) J(R) = Zr.
(5) Soc(RR) ⊆ Soc(RR).

Recall that a ring S is called left Kasch [9] if every simple left S-module embeds
in SS, equivalently, rS(T ) 6= 0 for every maximal left ideal T of S. The concept of
left Kasch rings was generalized to modules in [1]. Following [1], a module SM is
said to be Kasch provided that every simple module in σ[M ] embeds in M , where
σ[M ] is the category consisting of all M -subgenerated left S-modules. We call a
module SM strongly Kasch [13] if every simple left S-module embeds in M .

Theorem 3.9. For a nonzero left S-module SM , the following are equivalent:

(1) SM is strongly Kasch.
(2) Hom(N,M) 6= 0 for every finitely generated nonzero left S-module N .
(3) Hom(N,M) 6= 0 for every cyclic nonzero left S-module N .
(4) rM (I) 6= 0 for every left ideal I of S that not equals to S.
(5) rM (T ) 6= 0 for every maximal left ideal T of S.
(6) lSrM (T ) = T for every maximal left ideal T of S.
(7) For every maximal left ideal T of S, there exists a subset X of M such that

T = lS(X).
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(8) E(M) is a cogenerator.
(9) Hom(N,E(M)) 6= 0 for every nonzero left S-module N .

(10) E(M) is strongly Kasch.

Proof. (1) ⇒ (2) Let N be any finitely generated nonzero left S-module. Then
there exists a simple factor module N ′. Since M is strongly Kasch, Hom(N ′,M) 6=
0, and so Hom(N,M) 6= 0.

(3)⇒ (4) Let I be any left ideal of S that not equals to S. By (3), Hom(S/I,M) 6=
0. Take a nonzero homomorphism ϕ from S/I to M , and let m = ϕ(1 + I). Then
0 6= m ∈M and Im = 0. Hence, rM (I) 6= 0.

(5) ⇒ (6) Let T be any maximal left ideal of S. Then by (5), lSrM (T ) 6= S.
Note that we always have T ⊆ lSrM (T ), so lSrM (T ) = T by the maximality of T .

(7) ⇒ (1) Let T be a maximal left ideal of S. Then there exists 0 6= x ∈ rM (T )
by (7). Define ϕ : S/T →M by s+ T 7→ sx. Then ϕ is a left S-monomorphism.

(1)⇒ (8) Assume (1). Then every simple left S-module embeds in M and hence
embeds in E(M). By [2, Proposition 18.15], E(M) is a cogenerator.

(2) ⇒ (3), (4) ⇒ (5), (6) ⇒ (7), and (8) ⇒ (9) ⇒ (10) ⇒ (1) are clear. �

Lemma 3.10. Let S be a left Kasch ring, and SM be a faithful module. Then SM

is strongly Kasch.

Proof. Let K be any maximal left ideal of S. Since S is left Kasch, rS(K) 6= 0.
Choose 0 6= s ∈ rS(K). Then 0 6= sM ⊆ rM (K) for SM is faithful. So rM (K) 6= 0,
and then SM is strongly Kasch. �

Proposition 3.11. Let M be a right R-module with S = End(MR). If MR is a
self-generator, then S is left Kasch if and only if SM is strongly Kasch.

Proof. By Lemma 3.10, we need only to prove the sufficiency. Assume that SM is
strongly Kasch. Then for any maximal left ideal K of S, we have rM (K) 6= 0. Take
0 6= m ∈ rM (K). Then KmR = 0. Since MR is a self-generator, mR =

∑
t∈I t(M)

for some subset I of S. So Kt = 0 for some 0 6= t ∈ I which implies that rS(K) 6= 0,
and then S is left Kasch. �

Recall that a module M is called pseudo-injective [5] if every monomorphism
from a submodule of M to M extends to an endomorphism of M .

Lemma 3.12. Let MR be a finitely cogenerated module with Soc(MR) ⊆ Soc(SM),
where S = End(MR). Then the following statements are equivalent:

(1) SM is strongly Kasch.
(2) MR is C2.
(3) MR is GC2.
(4) W (S) ⊆ J(S).
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Proof. See the proof of [13, Theorem 6]. �

Following [14], we call a right R-module M minimal quasi-injective if every
homomorphism from a simple submodule of M to M can be extended to an endo-
morphism of M .

Proposition 3.13. Let MR be a finitely cogenerated, minimal quasi-injective GC2

module with S = End(MR). Then the following statements hold:

(1) SM is strongly Kasch.
(2) MR is C2.

Proof. Since MR is minimal quasi-injective, by [14, Theorem 1.4], we have
Soc(MR) ⊆ Soc(SM). Since MR is GC2 , by [15, Corollary 6], we have W (S) ⊆
J(S). So the results follows immediately from Lemma 3.12. �

Corollary 3.14. Let MR be a finitely cogenerated pseudo-injective module. Then
MR is a C2 module and SM is strongly Kasch.

Proof. Since MR is a pseudo-injective module, it is minimal quasi-injective and
GPQP -injective, so MR is a C2 module and SM is strongly Kasch by Theorem
3.7(1) and Proposition 3.13. �

Corollary 3.15. Let R be a right finitely cogenerated right MGP -injective ring.
Then it is a left Kasch and right C2 ring.

Proof. Let R be a right MGP -injective ring. Then RR is a minimal quasi-injective
GC2 module, so the result follows from Proposition 3.13. �

Recall that M is called weakly injective [4] if for every finitely generated sub-
module NR ⊆ E(M), we have N ⊆ XR ⊆ E(M) for some XR

∼= M .

Proposition 3.16. Let MR be a finitely generated module. Then M is injective if
and only if it is a weakly injective GC2 module.

Proof. We need only to prove the sufficiency. Let x ∈ E(M). Then there exists
X ⊆ E(M) such that M + xR ⊆ X ∼= M , hence X is GC2, and then M is a direct
summand of X. But M ⊆ess E(M), so M ⊆ess X. Thus M = X, and then x ∈M .
Therefore, M = E(M) is injective. �

Corollary 3.17. If M is a finitely generated module, then M is injective if and
only if it is weakly injective and GPQP -injective.

Let M be a right R-module with S = End(MR). Recall that a submodule K of
M is called an annihilator submodule [13] if K = rM (A) for some subset A of S.

Theorem 3.18. Let M be a PGQP -injective module with S = End(MR).



42 ZHANMIN ZHU

(1) If MR is finite dimensional, then S is semilocal.
(2) If MR is a noetherian self-generator, then S is semiprimary.

Proof. (1) By Theorem 3.7 (1), MR satisfies GC2. Since MR has finite Goldie
dimension, S is semilocal by [15, Corollary 12].

(2) If MR is noetherian, then S is semilocal by (1). Since M has ACC on annihi-
lator submodules, W (S) is nilpotent by [13, Lemma 22]. ButMR isGPQP -injective
and self-generated, W (S) = J(S) by Theorem 3.7 (4). Hence S is semiprimary. �

Lemma 3.19. Let MR be a GPQP -injective module which is a self-generator with
S = End(MR). If s /∈ W (S), then the inclusion Ker(s) ⊂ Ker(s − sts) is strict
for some t ∈ S.

Proof. Since s /∈ W (S), Ker(s) is not essential in M , so there exists a nonzero
submodule K of M such that Ker(s) ∩ K = 0 . As M is a self-generator,
there exists 0 6= u ∈ S such that uM ⊆ K, then su 6= 0. By the MGQP -
injectivity of M , there exists a positive integer n such that (su)n 6= 0 and ev-
ery monomorphism from (su)nM to M can be extended to M . In particular,
the monomorphism f : (su)nM → M given by f((su)nm) = u(su)n−1m can
be extended to an endomorphism of M . Thus, u(su)n−1 = t(su)n for some
t ∈ S, so u(su)n−1M ⊆ Ker(1 − ts), and then u(su)n−1M ⊆ Ker(s − sts). But
u(su)n−1M * Ker(s), hence the inclusion Ker(s) ⊂ Ker(s− sts) is strict. �

Theorem 3.20. Let MR be a GPQP -injective module which is a self-generator
with S = End(MR). Then the following statements are equivalent:

(1) S is right perfect.
(2) For any sequence {s1, s2, · · · } ⊆ S, the chain Ker(s1) ⊆ Ker(s2s1) ⊆ · · ·

terminates.

Proof. By Theorem 3.7(4), Lemma 3.19 and [13, Proposition 19]. �
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