
International Electronic Journal of Algebra

Volume 13 (2013) 1-14

COMPLETELY PRIME SUBMODULES

Nico J. Groenewald and David Ssevviiri
Received: 20 October 2011; Revised: 3 September 2012

Communicated by Pınar Aydoğdu

Abstract. We generalize completely prime ideals in rings to submodules in

modules. The notion of multiplicative systems of rings is generalized to mod-

ules. Let N be a submodule of a left R-module M . Define co.
√
N := {m ∈

M : every multiplicative system containing m meets N}. It is shown that

co.
√
N is equal to the intersection of all completely prime submodules of M

containing N , βco(N). We call βco(M) = co.
√

0 the completely prime radical

of M . If R is a commutative ring, βco(M) = β(M) where β(M) denotes the

prime radical of M . βco is a complete Hoehnke radical which is neither hered-

itary nor idempotent and hence not a Kurosh-Amistur radical. The torsion

theory induced by βco is discussed. The module radical βco(RR) and the ring

radical βco(R) are compared. We show that the class of all completely prime

modules, RM for which RM 6= 0 is special.
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1. Introduction

All rings in this paper are associative (not necessarily with identity) and all
modules are left R-modules. A proper submodule P of an R-module M is a prime
submodule of M [1], [8] if for all ideals A of R and submodules N of M such that
AN ⊆ P , we have N ⊆ P or AM ⊆ P . If R is a commutative ring, this defini-
tion is equivalent to: for all a ∈ R and every m ∈ M , if am ∈ P then m ∈ P

or aM ⊆ P . We call this the definition of a completely prime submodule P of a
module RM . Several authors have discussed prime submodules in modules over
commutative rings, e.g., [2], [15] among others. In general (for example when R

is not commutative), the two definitions above need not be equivalent - the later
implies the former but not conversely. Simple modules (and maximal submodules)
are always prime but need not be completely prime. This justifies our study of com-
pletely prime submodules in this paper, drawing motivation from how completely
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prime ideals in rings are defined. Although some authors, e.g., [1], [9], [18, p.1840]
mentioned about completely prime modules, to the best of our knowledge none has
ever studied them in detail.

An ideal I of a ring R is a prime ideal if for any ideals A,B of R such that
AB ⊆ I, we have A ⊆ I or B ⊆ I. If R is commutative, this definition is equivalent
to: for any elements a, b ∈ R such that ab ∈ I, we have a ∈ I or b ∈ I. If R is not
a commutative ring, the latter implies the former but not conversely and we call
the later the definition of a completely prime ideal of a ring R. If I is a completely
prime ideal of a ring R, the complement R\ I is a multiplicative system, i.e., closed
under multiplication. We generalize this notion to modules and show that if P is a
completely prime submodule of M , the complement M \P of M is a multiplicative
system of M .

If N is a submodule of M and I is an ideal of R we respectively write N ≤ M

and I / R. If I is an essential ideal of R, we write I / ·R. If N,P ≤ M such that
N 6⊆ P , we write (P : N) to mean the ideal {r ∈ R : rN ⊆ P}, (P : m) = {r ∈
R : rm ∈ P,m ∈ M \ P}. <m> is the submodule of RM generated by m ∈ M ,
i.e., <m>= Zm + Rm. R-mod is used to mean the category of R-modules, where
R is a ring.

In section 2, we define and give examples of completely prime submodules. A
comparison of completely prime and other primes in literature is done. We give
their definitions. A proper submodule P of an R-module M is 1) s-prime [12] if
for every A / R and for every N ≤ M if x ∈ A and xnN ⊆ P for some n ∈ N,
then N ⊆ P or AM ⊆ P ; 2) classical completely prime [11] if for all a, b ∈ R and
every m ∈ M , such that abm ∈ P , then a <m>⊆ P or b <m>⊆ P ; 3) classical
prime [4], [3] if for any N ≤ M and A,B / R such that ABN ⊆ P , then AN ⊆ P

or BN ⊆ P . In section 3, it is shown that the preradical βco is a complete Hoehnke
radical which is neither hereditary nor idempotent (hence not Kurosh-Amistur).
In the same section, properties of the torsion class induced by the radical βco are
given. In section 4, a comparison of the completely prime radical of the module

RR and that of the ring R is done. Lastly, in section 5 we show that the class of
all completely prime modules RM for which RM 6= 0 is special.

2. Completely Prime Submodules and Multiplicative Systems of
Modules

Definition 2.1. A proper submodule P of a left R-module M is a completely prime
submodule if for each a ∈ R and every m ∈ M such that am ∈ P , we have m ∈ P
or aM ⊆ P .
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An R-module M is completely prime if the zero submodule of M is a completely
prime submodule of M . In general, an R-module M/P is a completely prime
module if and only if P is a completely prime submodule of M .

Example 2.2. Every torsion free module is a completely prime module. To prove
this, let M be a torsion free module and suppose that am = 0 for a ∈ R and
m ∈ M . If m = 0, then we are through. Suppose m 6= 0, by definition of torsion
free modules, a = 0 and aM = 0.

An R-module M is reduced if for all a ∈ R and m ∈ M , am = 0 implies
<m> ∩ aM = 0 (see [11], [14]).

Example 2.3. A simple module which is reduced is completely prime. To prove
this, let M be a simple module which is reduced and suppose that am = 0, where
a ∈ R and m ∈ M . If m = 0, then we are through. Suppose that m 6= 0. Then
0 = aM∩ <m>= aM ∩M = aM .

Proposition 2.4. If 1 ∈ R and P / R, then P is a completely prime ideal of R if
and only if P is a completely prime submodule of RR.

Proof. Suppose am ∈ P for a ∈ R and m ∈ M = R. By the definition of a
completely prime ideal, a ∈ P or m ∈ P such that aM ⊆ P or m ∈ P . Conversely, if
for a, b ∈ R, ab ∈ P , by the definition of a completely prime submodule, a ∈ aR ⊆ P
or b ∈ P . �

The following proposition offers several other characterizations of completely
prime modules.

Proposition 2.5. Let M be an R-module. For a proper submodule P of M , the
following statements are equivalent.

(1) P is a completely prime submodule of M ;
(2) for all a ∈ R and every m ∈ M , if <am>⊆ P , then either <m>⊆ P or

<aM>⊆ P ;
(3) (P : M) = (P : m) for all m ∈M \ P ;
(4) P = (P : M) is a completely prime ideal of R, and (P : m) = (0̄ : m̄) = P

for each m ∈M \ P ;
(5) the set {(P : m) : m ∈M \ P} is a singleton.

Corollary 2.6. If P is a completely prime submodule of RM , then (P : m) is a
two sided ideal of R for all m ∈M \ P .

Theorem 2.7. For any module RM , we have the following implications.
completely prime ⇒ classical completely prime ⇒ classical prime

⇓ ⇑
s-prime ⇒ prime
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Proof. completely prime ⇒ classical completely prime: Suppose abm ∈ P . If
m ∈ P , then a<m>⊆ P and b<m>⊆ P . Suppose m 6∈ P . By the definition of a
completely prime submodule, bm ∈ P or aM ⊆ P . If aM ⊆ P , then a<m>⊆ P .
Now let bm ∈ P . By the definition of a completely prime submodule, b <m>⊆
bM ⊆ P .

completely prime ⇒ s-prime: Suppose an <m>⊆ P for some n ∈ N. Then
anm ∈ P . Because P is completely prime, it is classical completely prime such
that am ∈ a <m>⊆ P . By the definition of a completely prime submodule,
we have aM ⊆ P or m ∈ P . For the implications classical completely prime ⇒
classical prime, s-prime ⇒ prime and prime ⇒ classical prime, see [11], [12] and
[4], respectively. �

Examples 2.8 and 2.9 below illustrate that in general classical completely prime
6⇒ completely prime and s-prime 6⇒ completely prime, respectively.

Example 2.8. Let R be a commutative domain, P a prime ideal of R, if M = R⊕R
is an R-module, the submodules 0 ⊕ P and P ⊕ 0 are classical completely prime
submodules of M which are not completely prime.

Example 2.9. A simple module is s-prime but it need not be completely prime.

Lambek in [13, p.364] called a module symmetric if abm = 0 implies bam = 0
for a, b ∈ R and m ∈ M . We call a submodule P of an R-module M symmetric if
abm ∈ P implies bam ∈ P for a, b ∈ R and m ∈M . So, a module M is symmetric
if its zero submodule is symmetric. From [6], a right (or left) ideal I of a ring R is
said to have the insertion-of-factor-property (IFP) if whenever ab ∈ I for a, b ∈ R,
we have aRb ⊆ I. A submodule N of an R-module M is said to have an IFP if
whenever am ∈ N for a ∈ R and m ∈ M , we have aRm ⊆ N . A module M

has IFP if the zero submodule has IFP. A submodule P of an R-module M is
completely semiprime if for every a ∈ R and each m ∈ M such that a2m ∈ P ,
we have a <m>⊆ P (see [11]). It is easy to show that completely semiprime ⇒
symmetric ⇒ IFP.

Theorem 2.10. Let M be an R-module. A submodule P of M is a completely
prime submodule if and only if it is a prime submodule and has IFP.

Proof. If P ≤M is completely prime it is easy to see that it is prime and has IFP.
Suppose P ≤ M is prime and has IFP. Let a ∈ R and m ∈ M such that am ∈ P .
Since P has IFP, a <m>⊆ P . Furthermore, since P is prime we get m ∈ P or
aM ⊆ P . �

Remark 2.11. In the place of “has IFP” in Theorem 2.10, one can have “com-
pletely semiprime” or “symmetric”. This leads us to the following example.
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Example 2.12. Every maximal submodule which is completely semiprime (or sym-
metric) is completely prime.

Corollary 2.13. Since M reduced implies M is symmetric which implies M has
IFP, we have the following.

(1) M is completely prime if and only if M is prime and reduced,
(2) M is completely prime if and only if M is prime and symmetric,
(3) M is completely prime if and only if M is prime and has IFP.

Theorem 2.14. For any module M over a commutative ring R, we have

s-prime⇔ prime⇔ completely prime⇒ classical prime

⇔ classical completely prime.

Remark 2.15. In a multiplicative module over a commutative ring completely
prime submodules coincide with classical completely prime submodules (see [4, Sec-
tion 2]).

Definition 2.16. Let RM be a module. A nonempty set S ⊆ M \ {0} is called a
multiplicative system of RM if for each a ∈ R, m ∈M and for all K ≤M such that
(K+ <m>) ∩ S 6= ∅ and (K+ <aM>) ∩ S 6= ∅, then (K+ <am>) ∩ S 6= ∅.

Corollary 2.17. Let M be an R-module. A submodule P of M is completely prime
if and only if M \ P is a multiplicative system of M .

Proof. (⇒). Suppose S = M \ P . For a ∈ R, K ≤ M and m ∈ M suppose
(K+ <m>) ∩ S 6= ∅ and (K+ <aM >) ∩ S 6= ∅. If (K+ <am>) ∩ S = ∅,
then <am>⊆ P and since P is completely prime <m>⊆ P or <aM>⊆ P . Thus,
(K+ <m>)∩ S = ∅ and (K+ <aM>)∩S = ∅, a contradiction. (⇐). Let a ∈ R and
m ∈ M such that <am>⊆ P but <m> 6⊆ P and <aM> 6⊆ P . Then, <m>∩S 6= ∅
and <aM> ∩S 6= ∅. By definition of a multiplicative system, <am> ∩S 6= ∅ such
that <am>6⊆ P , a contradiction. �

Proposition 2.18. For any proper submodule P of RM , and S := M \ P , the
following statements are equivalent.

(1) P is a completely prime submodule of M ;
(2) S is a multiplicative system of M ;
(3) for all a ∈ R and every m ∈M , if <m> ∩S 6= ∅ and <aM> ∩S 6= ∅ then

<am> ∩S 6= ∅;
(4) for all a ∈ R and every m ∈M , such that m ∈ S and <aM> ∩S 6= ∅ then

am ∈ S.
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Lemma 2.19. Let M be an R-module, S ⊆ M a multiplicative system of M and
P a submodule of M maximal with respect to the property that P ∩ S = ∅. Then,
P is a completely prime submodule of M .

Proof. Suppose a ∈ R and m ∈ M such that <am>⊆ P . If <m> 6⊆ P and
<aM> 6⊆ P then (<m> +P ) ∩ S 6= ∅ and (<aM> +P ) ∩ S 6= ∅. Since S is a
multiplicative system of M , (<am> +P ) ∩ S 6= ∅. Since <am>⊆ P , we have
P ∩ S 6= ∅, a contradiction. Hence, P must be a completely prime submodule. �

Definition 2.20. Let R be a ring and M an R-module. For N ≤M , if there is a
completely prime submodule containing N , we define

co.
√
N := {m ∈M : every multiplicative system containing m meets N}.

We write co.
√
N = M when there are no completely prime submodules of M

containing N .

Theorem 2.21. Let M be an R-module and N ≤M . Then, either co.
√
N = M or

co.
√
N equals the intersection of all completely prime submodules of M containing

N , which is denoted by βco(N).

Proof. Suppose co.
√
N 6= M . Then, βco(N) 6= ∅. Both co.

√
N andN are contained

in the same completely prime submodules. By definition of co.
√
N it is clear that

N ⊆ co.
√
N . Hence, any completely prime submodule of M which contains co.

√
N

must necessarily contain N . Suppose P is a completely prime submodule of M such
that N ⊆ P , and let t ∈ co.

√
N . If t 6∈ P , then the complement of P , C(P ) in M

is a multiplicative system containing t and therefore we would have C(P )∩N 6= ∅.
However, since N ⊆ P , C(P ) ∩ P = ∅ and this contradiction shows that t ∈ P .
Hence co.

√
N ⊆ P as we wished to show. Thus, co.

√
N ⊆ βco(N). Conversely,

assume s 6∈ co.
√
N , then there exists a multiplicative system S such that s ∈ S

and S ∩ N = ∅. From Zorn’s Lemma, there exists a submodule P ⊇ N which is
maximal with respect to P ∩ S = ∅. From Lemma 2.19, P is a completely prime
submodule of M and s 6∈ P . �

Proposition 2.22. Let R be a ring and P / R, P 6= R. The following statements
are equivalent.

(1) P is a completely prime ideal of R
(2) there exists a completely prime R-module M such that P = (0 : M)R.

Proof. (1)⇒ (2). Let P be a completely prime ideal and M = R/P. M is an R-
module with the usual operation. If p ∈ P and x ∈ R then, p(x+P) = px+P = P.
Hence, P ⊆ (0 : M)R. If a ∈ (0 : M)R, a(r + P) = P for all r ∈ R, hence aR ⊆ P
and since P is a completely prime ideal we get a ∈ P, hence (0 : M)R = P. M

is completely prime, for if a ∈ R and m ∈ M = R/P such that am = 0̄ then
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m = m1 +P and am1 ∈ P . Since P is completely prime, we have a ∈ P or m1 ∈ P
and it follows that aM = 0̄ or m = 0̄.

(2)⇒ (1). Follows from Proposition 2.5. �

Corollary 2.23. A ring R is a completely prime ring if and only if there exists a
faithful completely prime R-module.

Example 2.24. If R is a domain, RR is a faithful completely prime module.

Example 2.25. If I is a completely prime ideal of R, R/I is a completely prime
R-module.

3. Preradicals and Radicals

The terminology of radicals is that of [17]. Throughout this section rings have
unity and all modules are unital left modules. A functor γ: R-mod → R-mod is
called a preradical if γ(M) is a submodule of M and f(γ(M)) ⊆ γ(N) for each
homomorphism f : M → N in R-mod. A radical γ is a preradical for which
γ(M/γ(M)) = 0 for all M ∈ R-mod. A preradical is hereditary or left exact
if γ(N) = N ∩ γ(M) whenever N ≤ M ∈ R-mod (equivalently, if γ is a left
exact functor). N is a characteristic submodule of M if f(N) ⊆ N for every
f ∈ HomR(M,M). We have the following proposition.

Proposition 3.1. [16, Proposition 1] Let M be any nonempty class of modules
closed under isomorphisms, i.e., if A ∈ M and A ∼= B, then B ∈ M. For any
M ∈M define

γ(M) = ∩{K : K ≤M,M/K ∈M}.

It is assumed that γ(M) = M if M/K 6∈ M for all K ≤M . Then

(1) γ(M/γ(M)) = 0 for all modules M ,
(2) if M is closed under taking nonzero submodules, γ is a radical,
(3) if M is closed under taking essential extensions, then γ(M) ∩ N ⊆ γ(N)

for all N ≤M .

In particular, γ is a left exact radical if M is closed under nonzero submodules and
essential extensions.

For any module M , we define the completely prime radical βco(M) as co.
√

0.
From Theorem 2.21, we have

βco(M) = ∩{K : K ≤M,M/K is completely prime}

which is a radical by Proposition 3.1 since completely prime modules are closed
under taking nonzero submodules.
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Let β(M) be the prime radical of M (the intersection of all prime submodules
of M).

Theorem 3.2. If R is a commutative ring, then βco(M) = β(M).

Proof. If R is a commutative ring prime and completely prime submodules are
indistinguishable. �

Proposition 3.3. For any R-module M ,

(1) βco(M) is a characteristic submodule of M ,
(2) If M is projective then βco(R)M = βco(M).

Proof. Follows from [7, Proposition 1.1.3]. �

Proposition 3.4. For any M ∈ R-mod,

(1) if M =
⊕
Λ

Mλ is a direct sum of submodules Mλ (λ ∈ Λ), then βco(M) =⊕
Λ

βco(Mλ),

(2) if M =
∏
Λ

Mλ is a direct product of submodules Mλ (λ ∈ Λ), then βco(M) ⊆∏
Λ

βco(Mλ).

Proof. Follows from [7, Proposition 1.1.2]. �

The following examples show that the preradical βco is not hereditary.

Example 3.5. Consider the Z-module Z4, βco(Z4) = 2Z4 and βco(2Z4) = (0),
hence βco(Z4) ∩ 2Z4 = 2Z4 6⊆ βco(2Z4) = (0).

Example 3.6. Take a Z-module M = Zp∞ where p is a prime number. By [5,
Remark 4.6], βco(M) = Zp∞ and if N is a proper submodule of M , N has a
(maximal) completely prime submodule, say P . Thus, βco(N) ⊂ P ⊂ N = βco(M)∩
N and βco(M) ∩N 6⊆ βco(N).

However, for direct summands, we have the following proposition.

Proposition 3.7. Let M = X ⊕ Y . Then the following statements hold.

(1) If P is a completely prime submodule of X, then P ⊕ Y is a completely
prime submodule of M ,

(2) βco(M) ∩X ⊆ βco(X).

Proof. (1) Let a ∈ R and m = (m1,m2) ∈ M = X ⊕ Y . Suppose am ∈ P ⊕ Y .
Then am1 ∈ P and am2 ∈ Y . Since P is a completely prime submodule of X, we
have aX ⊆ P or m1 ∈ P . aX ⊆ P implies aM = aX ⊕ aY ⊆ P ⊕ Y . If m1 ∈ P ,
then m = (m1,m2) ∈ P ⊕ Y .

(2) If Q is any completely prime submodule of X, then βco(M)∩X ⊆ Q. Hence,
βco(M) ∩X ⊆ βco(X). �
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Corollary 3.8. For any direct summand N of M , βco(M) ∩N = βco(N).

Remark 3.9. It follows from Proposition 3.1 that completely prime modules are
not closed under taking essential extensions.

Definition 3.10. A functor γ: R-mod → R-mod is called a Hoehnke radical if
f(γ(M)) ⊆ γ(f(M)) for every homomorphism f : M → f(M) (see [9, p. 454]) and
moreover, γ(M/γ(M)) = 0 for all M ∈ R-mod. γ is complete if γ(K) = K ≤M ∈
R-mod implies K ⊆ γ(M). γ is idempotent if γ(γ(M)) = γ(M) for all M ∈ R-mod.
A Kurosh-Amitsur radical is a complete idempotent Hoehnke radical.

Theorem 3.11. The completely prime radical βco is a complete Hoehnke radical
which is not Kurosh Amistur.

Proof. βco is a Hoehnke radical by the nature of its definition, cf., [9, (4), p. 455].
All preradicals are complete, cf., [9, (3) p.455]. The radical βco is not idempotent
since 2Z4 = βco(Z4) 6= βco(βco(Z4)) = (0), and hence not Kurosh-Amitsur. �

4. Torsion Theory Induced by the Radical βco

Definition 4.1. ([17, p.139]) A torsion theory in the category of modules R-mod
is a pair (T ,F) of classes of modules in R-mod such that

(1) Hom(T, F ) = 0 for all T ∈ T , F ∈ F .
(2) If Hom(C,F ) = 0 for all F ∈ F , then C ∈ T .
(3) If Hom(T,C) = 0 for all T ∈ T , then C ∈ F .

Define Tβco
= {M : βco(M) = M} and Fβco

= {M : βco(M) = 0}. Tβco
is a

torsion class, Fβco
is a torsionfree class and the pair (Tβco

, Fβco
) is a torsion theory

(see [17, p.140]). Tβco
coincides with the class of modules with no completely prime

submodules.

Proposition 4.2. [17, Proposition 2.1] T is a torsion class for some torsion theory
if and only if it is closed under quotient objects, direct products and extensions.

Corollary 4.3. For any M ∈ R-mod and N ≤M , Tβco
is closed under quotients,

direct products and extensions.

By Example 3.6, Tβco
is not closed under taking submodules.

Corollary 4.4. The following statements hold.

(1) β̄co(M) =
∑
{N : N ≤M and βco(N) = N} is an idempotent preradical,

β̄co ⊆ βco, Tβco
= T ¯βco

and β̄co is the largest idempotent preradical contained
in βco.

(2) β̂co(M) = ∩{N : N ≤ M,M/N ∈ Fβco} is a radical. βco ⊆ β̂co, Fβco =
F ˆβco

and β̂co is the least radical containing βco.
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Proof. Follows from [7, Proposition 1.1.5]. �

Proposition 4.5. If M ∈ Tβco
, then for each nonzero homomorphic image N of

M there exists K ≤ N such that 0 6= K ∈ Tβco . This is the module analogue of
(R1) in [10, Theorem 2.1.5].

Proof. Since Tβco
is closed under quotients, the result follows from [17, Proposition

2.5]. �

Example 4.6. Any completely prime module M is βco-torsionfree.

Remark 4.7. All said about completely prime (sub)modules in section 3 also holds
for prime (sub)modules. Thus, the prime radical β(M) is a complete Hoenhke rad-
ical which is neither hereditary nor idempotent (hence not Kurosh-Amistur). Fur-
thermore, prime modules are not closed under taking essential extensions. However,
if we define a faithful prime radical, β0(M) as,

β0(M) = {P : P ≤M,M/P is faithful and prime}
β0 is a Kurosh-Amitsur radical (see [16, Section 3]). Furthermore, the class of all
faithful prime modules is closed under essential extensions. This leads us to the
following.

Question 4.1. Is the class of all faithful completely prime modules closed under
essential extensions?

5. Comparison of the Radicals βco(RR) and βco(R)

Lemma 5.1. For any associative ring R, βco(RR) ⊆ βco(R).

Proof. Let x ∈ βco(RR) and I be a completely prime ideal of R. From Proposition
2.22, we have R/I is a completely prime R-module. Hence, x ∈ I and we have
x ∈ βco(R), i.e., βco(RR) ⊆ βco(R). �

Remark 5.2. In general the containment in Lemma 5.1 is strict.

Example 5.3. Let R = {

(
x y

0 0

)
: x, y ∈ Z2} and M = RR. (0) is a completely

prime submodule of RR. Hence, βco(RR) = 0. (0 : R)R is a completely prime

ideal of R but (0 : R)R 6= (0). For if b 6= 0, b ∈ Z2, then

(
0 b

0 0

)
R = 0. Hence,

βco(R) ⊆ (0 : R)R. But since (0 : R)R(0 : R)R = 0 we have (0 : R)R ⊆ βco(R).
Hence, βco(R) = (0 : R)R 6= 0.

Lemma 5.4. For any ring R and any R-module M we have

βco(R) ⊆ (βco(M) : M)R.
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Proof. (βco(M) : M)R = (
⋂

P≤M
P : M) =

⋂
P≤M

(P : M), where P is a completely

prime submodule of M . Since (P : M)R is a completely prime ideal of R for
each completely prime submodule P of M , we get βco(R) ⊆ (βco(M) : M)R, i.e.,
βco(R)M ⊆ βco(M). �

The containment in Lemma 5.4 is strict: Let R = Z and M = Zp∞ ⊕Z for some
prime number p. βco(M) = Zp∞ and βco(R) = (0), i.e., βco(R)M = (0).

Proposition 5.5. For any ring R, βco(R) = (βco(RR) : R)R.

Proof. From Lemma 5.4, βco(R) ⊆ (βco(RR) : R)R. Since βco(RR) ⊆ βco(R)
we have βco(R) ⊆ (βco(RR) : R) ⊆ (βco(R) : R). Let x ∈ (βco(R) : R). Hence
xR ⊆ βco(R) =

⋂
P completely prime in R

P ⊆ P for all completely prime ideals P of R.

Since xR ⊆ P for P completely prime, we have x ∈ P and x ∈ βco(R). Hence,
(βco(R) : R) ⊆ βco(R) and we are done. �

Lemma 5.6. For all R-modules M ,

(1) βco(M) = {x ∈M : Rx ⊆ βco(M)},
(2) If βco(R) = R then βco(M) = M .

Proof. (1) Since βco(M) ≤M , we have Rβco(M) ⊆ βco(M). Conversely, let x ∈M
with Rx ⊆ βco(M). Hence Rx ⊆ P for all completely prime submodules P of M .
Since P is also a prime submodule, we have x ∈ P and hence x ∈ βco(M).

(2) R = βco(R) gives R ⊆ (βco(M) : M) from Lemma 5.4. Hence, RM ⊆ βco(M)
and from (1), we have M ⊆ βco(M), i.e., M = βco(M). �

Proposition 5.7. Let R be any ring. Then, any of the following conditions implies
βco(R) = βco(RR).

(1) R is commutative;
(2) x ∈ xR for all x ∈ R, e.g., if R has an identity or R is Von Neumann

regular.

Proof. (1) Since R is commutative, it follows from Proposition 5.5 and Lemma 5.6
that βco(R) ⊆ βco(RR) ⊆ βco(R) and βco(R) = βco(RR).

(2) Let x ∈ βco(R), then from Proposition 5.5, xR ⊆ βco(RR) and since x ∈ xR,
we get x ∈ βco(RR) such that βco(RR) = βco(R). �

6. A Special Class of Completely Prime Modules

A class ρ of associative rings is called a special class if ρ is hereditary, consists of
prime rings and is closed under essential extensions (see [10, p.80]). Andrunakievich
and Rjabuhin in [1] extended this notion to modules and showed that prime mod-
ules, irreducible modules, simple modules, modules without zero divisors, etc form
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special classes of modules. de la Rosa and Veldsman in [9] defined a weakly special
class of modules. We follow the definition in [9] of a weakly special class of modules
to define a special class of modules.

Definition 6.1. For a ring R, let KR be a (possibly empty) class of R-modules.
Let K = ∪{KR : R a ring}. K is a special class of modules if it satisfies:

S1 M ∈ KR and I / R with I ⊆ (0 : M)R implies M ∈ KR/I .
S2 If I / R and M ∈ KR/I then M ∈ KR.
S3 M ∈ KR and I / R with IM 6= 0 implies M ∈ KI .
S4 M ∈ KR implies RM 6= 0 and R/(0 : M)R is a prime ring.
S5 If I / R and M ∈ KI , then there exists N ∈ KR such that (0 : N)I ⊆ (0 :

M)I .

Following similar techniques of [19], we get the following theorem.

Theorem 6.2. Let M = ∪MR be a special class of modules. Then,

J = {R : there exists M ∈MR with (0 : M)R = 0} ∪ {0}

is a special class of rings. If R is the corresponding special radical then,

R(R) := ∩{(0 : M)R : M ∈M}.

Theorem 6.3. Let J be a special class of rings and for every ring R, let

MR = {M : M is an R-module, RM 6= 0 and R/(0 : M)R ∈ J }.

If M = ∪MR, then M is a special class of modules. If r is the corresponding
special radical and M is any R-module, then

r(M) := ∩{P ≤M : M/P ∈MR}.

For the completely prime modules, we have the following theorem.

Theorem 6.4. Let R be any ring and

MR := {M : M is a completely prime R-module with RM 6= 0}.

If M = ∪MR, then M is a special class of R-modules.

Proof. S1 Let M ∈ MR and I / R with IM = 0. M is an R/I-module via
(r + I)m = rm. We show M ∈ MR/I . Let a + I ∈ R/I and m ∈ M such that
(a + I)m = 0. Then am = 0 such that aM = 0 or m = 0 since M ∈ MR. Thus,
M ∈MR/I .

S2 Let I /R and M ∈MR/I . M is an R-module w.r.t. rm = (r+I)m for r ∈ R,
m ∈ M . Let a ∈ R, m ∈ M such that am = 0 ⇔ (a + I)m = 0. (a + I)M = 0 or
m = 0 since M ∈MR/I . Thus, aM = 0 or m = 0 and M ∈MR.
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S3 Suppose M ∈MR, I / R and IM 6= 0. Let a ∈ I, m ∈M such that am = 0.
Since M ∈MR, m = 0 or aM = 0. Therefore, M ∈MI .

S4 Let M ∈ MR. Hence RM 6= 0. Since (0 : M)R is a completely prime ideal
of R, it is a prime ideal and R/(0 : M)R is a prime ring.

S5 Let I / R and M ∈ MI . (0 : M)I is a completely prime ideal of I. We have
(0 : M)I /I /R and since I/(0 : M)I is a completely prime ring we have (0 : M)I /R.
Choose K/(0 : M)I / R/(0 : M)I maximal w.r.t I/(0 : M)I ∩ K/(0 : M)I = 0.
Then I/(0 : M)I ∼= (I + K)/K / ·R/I. Since the class of completely prime rings
is essentially closed, R/I is completely prime. Let N = R/K. N is an R-module
and RN 6= 0. From Proposition 2.22 we have (0 : N)R = K. (0 : N)I ⊆ (0 : M)I ,
for let x ∈ (0 : N)I , then xR ⊆ I ∩K ⊆ (0 : M)I and it follows that x ∈ (0 : M)I
thus, M is a special class. �

Corollary 6.5. If Mco is the special class of completely prime modules, then the
special radical induced by Mco on a ring R is given by

βco(R) = ∩{(0 : M)R : M is a completely prime R-module}

= ∩{I / R : I is a completely prime ideal}

= Ng(R) the generalized nil radical.
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