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1. Introduction

L∞ algebras (or sh Lie algebras) are topics of current research. Concrete ex-
amples of these structures facilitate deeper insight into their properties. However
these examples still remain elusive. In [1], Daily and Lada constructed an example
of a finite dimensional L∞ algebra that consists of a Lie algebra in conjunction with
with a non-Lie action on a different vector space. Furthermore, this small struc-
ture was proved by Kadeishvili and Lada in [3] to be an example of an open-closed
homotopy algebra (OCHA), as defined by Kajiura and Stasheff in [4].
L∞ modules provide an alternative but equivalent convention to representations

of L∞ algebras in a manner that generalizes the relationship between classical Lie
algebra representations and Lie modules. Concrete examples of L∞ modules are
highly nontrivial. Such examples will prove essential for expanding the representa-
tion theory of L∞ algebras, as evident by the robust nature of the example in [1].
In this article we construct one such example and subsequently explore a new L∞

algebra structure that it induces.

2. L∞ Algebras and Modules

We will utilize the Koszul sign convention that is common in graded settings.
That is, whenever two symbols (objects or maps) of degree p and q are transposed,
a factor of (−1)pq is introduced. In general, we denote the total Koszul sign of a
permutation σ by ε(σ). For brevity, we will also use commas in lieu of tensor or
direct sum symbols when convenient.

We first recall the definition of an L∞ algebra (see [2], [6], [7]).
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Definition 2.1. Let V be a graded vector space. An L∞ algebra structure on V is
a collection of linear maps {lk : V ⊗k → V } of degree k−2 which are skew-symmetric
in the sense that

lk(xσ(1), xσ(2), . . . , xσ(k)) = χ(σ)lk(x1, x2, . . . , xk)

for all σ ∈ Sk, xi ∈ V , with χ(σ) = (−1)σε(σ), and are also required to satisfy the
generalized form of the Jacobi identity:∑

i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0

where the inner summation is taken over all (i, n− i)-unshuffles, i ≥ 1, n ≥ 1.

This utilizes the chain complex convention. One may alternatively use the
cochain complex convention by requiring each map lk to have degree 2− k.

It is worth noting that L∞ algebras are generalizations of Lie algebras from a
homotopy theoretic point of view with l2 acting as a (graded) Lie bracket. Remark-
ably, many classical relationships involving Lie algebras generalize to this context.
In [6], Lada and Markl defined L∞ algebra representations and, equivalently, L∞
modules. We now recall the definition of an L∞ module.

Definition 2.2. Let (L, lk) be an L∞ algebra and M a differential graded vector
space with graded differential k1. A (left) L-module on M is a collection of skew-
symmetric linear maps {kn : L⊗n−1 ⊗M → M |1 ≤ n < ∞} of degree n − 2 such
that the following identity holds:∑

i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)kj(ki(ξσ(1), . . . , ξσ(i)), ξσ(i+1), . . . , ξσ(n)) = 0

where σ ranges over all (i, n − i)-unshuffles, i ≥ 1, with n ≥ 1, ξ1, · · · , ξn−1 ∈ L,
and ξn ∈M .

A few remarks are in order:

• If ξ1, · · · , ξn ∈ L, then we define kn(ξ1, · · · , ξn) = ln(ξ1, · · · , ξn).
• By definition of an unshuffle, either ξσ(i) = ξn or ξσ(n) = ξn.
• Since we have kn : L⊗n−1 ⊗M → M , we must utilize the skew-symmetry

of kn in the case where ξσ(i) = ξn as follows:

kj(ki(ξσ(1), . . . , ξσ(i))︸ ︷︷ ︸
∈M

, ξσ(i+1) . . . , ξσ(n)) = αkj(ξσ(i+1) . . . ξσ(n), ki(ξσ(1), . . . , ξσ(i))︸ ︷︷ ︸
∈M

)

With α = (−1)j−1(−1)(i+
∑i
k=1 |ξσ(k)|)(

∑n
k=i+1 |ξσ(k)|).

One may easily verify that L∞ modules can be viewed as generalizations of Lie
modules from a homotopy theoretic point of view by interpreting k2 as a module
action.
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3. A Finite Dimensional Example

Let L denote the graded vector space given by L =
⊕
i∈Z
Li where L0 has basis

< v1, v2 >, L−1 has basis < w >, and Li = 0 for i 6= 0,−1 with skew-symmetric
linear maps ln : L⊗n → L defined by the following:

l1(v1) = l1(v2) = w

l2(v1 ⊗ v2) = v1

l2(v1 ⊗ w) = w

For n ≥ 3 : ln(v2 ⊗ w⊗n−1) = Cnw

where C3 = 1 and Cn = (−1)n−1(n − 3)Cn−1 and ln = 0 when evaluated on any
element of L⊗n that is not listed above. In [1], Daily and Lada proved that this
structure forms an L∞ algebra.

Remark 3.1. When convenient, the recursive definition of Cn may be recognized
more explicitly as

Cn = (−1)
(n−2)(n−3)

2 (n− 3)!.

Now let M denote the graded vector space given by M =
⊕
i∈Z
Mi where M0 is a

one dimensional vector space with basis < m >, M−1 is a one dimensional vector
space with basis < u > and Mi = 0 for i 6= 0,−1. Define a structure on M by the
following linear maps kn : L⊗n−1 ⊗M →M :

k1(m) = u

k2(v1 ⊗m) = m

k2(v1 ⊗ u) = u

For n ≥ 3 : kn(v2 ⊗ w⊗n−2 ⊗m) = Cnm

kn(v2 ⊗ w⊗n−2 ⊗ u) = Cnu

Extend these maps to be skew-symmetric and define kn = 0 when evaluated on
any element of L⊗n−1 ⊗M that is not listed above.

Theorem 3.2. The maps kn on M , in conjunction with the L∞ algebra structure
on L defined above, define an L∞ module.

Proof. We aim to prove the following:∑
i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)kj(ki(ξσ(1), . . . , ξσ(i)), ξσ(i+1), . . . , ξσ(n)) = 0

where σ ranges over all (i, n − i)-unshuffles, i ≥ 1, with n ≥ 1, ξ1, · · · , ξn−1 ∈ L,
and ξn ∈M .
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In shorthand notation, this is equivalent to showing that

n∑
s=1

(−1)s(n−s)kn−s+1ks(ξ1, ξ2, · · · , ξn) = 0 (1)

where it is understood that ks will be extended on n > s elements over (s, n− s)-
unshuffles.

Since kn is linear and skew-symmetric, it suffices to show this equation holds
when evaluated only on basis elements and in any string order. Each element of
the left hand side of Equation 1 also has degree (n − s − 1 − 2) + (s − 2) + |ξ1| +
|ξ2|+ · · ·+ |ξn| = n− 3 + |ξ1|+ |ξ2|+ · · ·+ |ξn|, which must equal 0 or −1 in order
for the elements to be nonzero. So (ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) ∈ L⊗n−1 ⊗M must contain
either 2 or 3 elements in degree 0. If this tensor product contains v1 or v2 twice,
then Equation 1 holds trivially since |v1| = |v2| = 0 and kn is skew-symmetric. For
example,

kn−s+1ks(v1 ⊗ v1 ⊗ w⊗n−3 ⊗ u) =− (−1)|v1||v1|kn−s+1ks(v1 ⊗ v1 ⊗ w⊗n−3 ⊗ u)

=− kn−s+1ks(v1 ⊗ v1 ⊗ w⊗n−3 ⊗ u)

by permuting the first two elements. So kn−s+1ks(v1 ⊗ v1 ⊗ w ⊗n−3 ⊗u) = 0.
Hence it suffices to prove that Equation 1 holds on the following string choices for
(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn):

(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) (2)

(v1 ⊗ w⊗n−2 ⊗m) (3)

(v2 ⊗ w⊗n−2 ⊗m) (4)

(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) (5)

For String 2, in regards to the summands of Equation 1 we observe the following:

k1kn(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u)) = k1(0) = 0

k2kn−1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = (−1)n−1k2

(
kn−1(v2 ⊗ w⊗n−2 ⊗ u)⊗ v1

)
= (−1)nCn−1k2(v1 ⊗ u)

= (−1)nCn−1u
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krkn−r+1(v1⊗ v2⊗w⊗n−3⊗ u) = 0 for 3 ≤ r ≤ n− 2 since kr and kn−r+1 are only
nonzero when they are evaluated on a tensor product containing v2.

kn−1k2(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = −(n− 3)kn−1

(
l2(v1 ⊗ w)⊗ v2 ⊗ w⊗n−4 ⊗ u

)
− kn−1

(
k2(v1 ⊗ u)⊗ v2 ⊗ w⊗n−3

)
= (n− 3)kn−1(v2 ⊗ w⊗n−3 ⊗ u)

+ kn−1(v2 ⊗ w⊗n−3 ⊗ u)

= (n− 2)kn−1(v2 ⊗ w⊗n−3 ⊗ u)

= (n− 2)Cn−1u

knk1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = kn
(
k1(v1)⊗ v2 ⊗ w⊗n−3 ⊗ u

)
= kn(w ⊗ v2 ⊗ w⊗n−3 ⊗ u)

= −kn(v2 ⊗ w⊗n−2 ⊗ u)

= −Cnu

= −(−1)n−1(n− 3)Cn−1u

= (−1)n(n− 3)Cn−1u

Hence,

n∑
s=1

(−1)s(n−s)kn−s+1ks(v1 ⊗ v2 ⊗ w⊗n−3 ⊗ u) = (−1)1(n−1)(−1)n(n− 3)Cn−1u

+ (−1)2(n−2)(n− 2)Cn−1u

+ (−1)(n−1)(n−(n−1))(−1)nCn−1u

= −(n− 3)Cn−1u

+ (n− 2)Cn−1u

− Cn−1u

= 0

The case where Equation 1 is evaluated on String 3 is trivial by definition of kn
and ln.

Regarding String 4, we observe the following:

k1kn(v2 ⊗ w⊗n−2 ⊗m) = k1(Cnm) = Cnu
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krkn−r+1(v2 ⊗ w⊗n−2 ⊗m) = 0 for 2 ≤ r ≤ n − 1 for similar reasons encountered
above.

knk1(v2 ⊗ w⊗n−2 ⊗m) = (−1)n−1kn
(
k1(m)⊗ v2 ⊗ w⊗n−2

)
= −(−1)n−1kn(v2 ⊗ w⊗n−2 ⊗ u)

= (−1)nCnu

Hence,
n∑
s=1

(−1)s(n−s)kn−s+1ks(v2 ⊗ w⊗n−2 ⊗m)=(−1)1(n−1)(−1)nCnu+ (−1)n(n−n)Cnu

(6)

= −Cnu+ Cnu (7)

= 0 (8)

For String 5, we observe the following:

k1kn(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = k1(0) = 0

k2kn−1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = (−1)n−1k2

(
kn−1(v2 ⊗ w⊗n−2 ⊗m)⊗ v1

)
= (−1)nCn−1k2(v1 ⊗m)

= (−1)nCn−1m

krkn−r+1(v1⊗v2⊗w⊗n−3⊗m) = 0 for 3 ≤ r ≤ n−2 for similar reasons encountered
above.

kn−1k2(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = −(n− 3)kn−1

(
l2(v1 ⊗ w)⊗ v2 ⊗ w⊗n−4 ⊗m

)
+ (−1)n−2kn−1

(
k2(v1 ⊗m)⊗ v2 ⊗ w⊗n−3

)
= −(n− 3)kn−1(w ⊗ v2 ⊗ w⊗n−4 ⊗m)

+ (−1)n−2kn−1(m⊗ v2 ⊗ w⊗n−3)

= (n− 3)kn−1(v2 ⊗ w⊗n−3 ⊗m)

+ (−1)(n−2)+(n−2)kn−1(v2 ⊗ w⊗n−3 ⊗m)

= (n− 3)Cn−1m

+ Cn−1m

= (n− 2)Cn−1m

knk1(v1 ⊗ v2 ⊗ w⊗n−3 ⊗m) = kn
(
k1(v1)⊗ v2 ⊗ w⊗n−3 ⊗m

)
= −kn(v2 ⊗ w⊗n−2 ⊗m)

= −Cnm

= −(−1)n−1(n− 3)Cn−1m

= (−1)n(n− 3)Cn−1m
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Hence,

n∑
s=1

(−1)s(n−s)kn−s+1ks(v1 ⊗ v2 ⊗ w⊗n−3⊗m)=(−1)1(n−1)(−1)n(n− 3)Cn−1m

+ (−1)2(n−2)(n− 2)Cn−1m

+ (−1)(n−1)(n−(n−1))(−1)nCn−1m

= −(n− 3)Cn−1m

+ (n− 2)Cn−1m

− Cn−1m

= 0

In all 4 cases, Equation 1 holds. Hence, M is an L-module. �

A concrete L∞ module will induce another interesting L∞ algebra structure in
a manner that generalizes the relationship between a classical Lie module and a
canonical Lie algebra. This will be addressed in the next section.

4. A Canonical L∞ Structure

One of the most fundamental results in the study of classical Lie algebras is that
given a Lie algebra L and an L−module M , the vector space L ⊕M forms a Lie
algebra via the bracket[

(x1,m1), (x2,m2)
]

=
(

[x1, x2], x1 ·m2 − x2 ·m1

)
where ‘·’ denotes the module action in M . It is not surprising that a homotopy
theoretic version of the classical Lie algebra L⊕M exists. Given an L∞ structure,
L, and an L-module, M , we may construct a new graded vector space L⊕M that
can be endowed with its own L∞ structure as follows.

Theorem 4.1. ([5]) Let (L, lk) be an L∞ algebra and (M,kn) be an L-module.
Then the graded vector space L ⊕M inherits a canonical L∞ structure under the
collection of maps {jn : (L⊕M)⊗n → L⊕M} defined by

jn
(
(x1,m1)⊗ · · · ⊗ (xn,mn)

)
=
(
ln(x1 ⊗ · · · ⊗ xn),

n∑
i=1

(−1)n−i(−1)mi
∑n
k=i+1 xkkn(x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ xn ⊗mi)

)
where x̂i means omit xi.

Given the newly constructed concrete example of an L∞ module in Theorem
3.2, it is natural to investigate the type of L∞ algebra structure it induces. Let L
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and M denote the L∞ algebra and L-module in Theorem 3.2. That is, L =
⊕
i∈Z
Li,

where Li = 0 if i 6= 0,−1 and

L0 =< v1, v2 >,L−1 =< w >

and M =
⊕
i∈Z
Mi, where Mi = 0 if i 6= 0,−1 and

M0 =< m >,M−1 =< u > .

As a graded vector space, elements (x,m) ∈ L⊕M must satisfy |x| = |m|. Hence
L⊕M =

⊕
i∈Z

(L⊕M)i, where (L⊕M)i = 0 if i 6= 0,−1 and

(L⊕M)0 =< (v1,m), (v2,m) >, (L⊕M)−1 =< (w, u) > .

Using the definition given in Theorem 4.1, we may explicitly define the structure
maps {jn} on L ⊕M . As a result of linearity and skew-symmetry, it suffices to
define these maps by how they act on any number of basis elements.

Since deg(j1) = −1, j1(w, u) = 0. Furthermore,

j1(v1,m) = (l1(v1), k1(m)) = (w, u)

j1(v2,m) = (l1(v2), k1(m)) = (w, u).

Hence, j1 is very simply defined by

j1(v1,m) = j1(v2,m) = (w, u).

Examining all combinations of basis elements, we find j2 to be defined as follows:

j2
(
(v1,m), (v1,m)

)
=
(
l2(v1, v1), k2(v1,m)− (−1)v1mk2(v1,m)

)
= (0, 0)

j2
(
(v2,m), (v2,m)

)
=
(
l2(v2, v2), k2(v2,m)− (−1)v2mk2(v2,m)

)
= (0, 0)

j2
(
(v1,m), (v2,m)

)
=
(
l2(v1, v2), k2(v1,m)− (−1)v2mk2(v2,m)

)
= (v1,m)

j2
(
(v1,m), (w, u)

)
=
(
l2(v1, w), k2(v1, u)− (−1)wmk2(w,m)

)
= (w, u)

j2
(
(v2,m), (w, u)

)
=
(
l2(v2, w), k2(v2, u)− (−1)wmk2(w,m)

)
= (0, 0)

j2
(
(w, u), (w, u)

)
= (0, 0) since deg(j2) = 0.

Hence,

j2
(
(v1,m), (v2,m)

)
= (v1,m)

j2
(
(v1,m), (w, u)

)
= (w, u)

with j2 = 0 when evaluated on any other element.
It is apparent that the graded differential j1 and bracket j2 are acting in precisely

the same manner as their counterparts in L. The homotopies, however, do not. Let
n ≥ 3 and consider jn : (L⊕M)⊗n → L⊕M . By definition of jn in Theorem 4.1,
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the only nonzero action of jn on basis elements occurs on (v2,m)⊗(w, u)⊗n−1 since
both ln and kn are only nonzero when evaluated on a string containing v2 when
n ≥ 3. Hence, for n ≥ 3,

jn
(
(v2,m)⊗ (w, u)⊗n−1

)
=
(
ln(v2 ⊗ w⊗n−1),

0 + kn(v2 ⊗ w⊗n−2 ⊗ u) + kn(v2 ⊗ w⊗n−2 ⊗ u) + · · ·+ kn(v2 ⊗ w⊗n−2 ⊗ u)︸ ︷︷ ︸
(n−1)kn(v2⊗w⊗n−2⊗u)

)
= (Cnw, (n− 1)Cnu)

= Cn(w, (n− 1)u).

These structure maps form a new L∞ algebra as follows.

Theorem 4.2. Let L⊕M =
⊕
i∈Z

(L⊕M)i where (L⊕M)0 is two dimensional with

basis < (v1,m), (v2,m) > and (L⊕M)−1 is one dimensional with basis < (w, u) >
and (L ⊕M)i = 0 for i 6= 0,−1. Define a structure on (L ⊕M) by the following
linear maps {jn : (L⊕M)⊗n → L⊕M}:

j1(v1,m) = j1(v2,m) = (w, u)

j2
(
(v1,m)⊗ (v2,m)

)
= (v1,m)

j2
(
(v1,m)⊗ (w, u)

)
= (w, u)

jn
(
(v2,m)⊗ (w, u)⊗n−1

)
= Cn(w, (n− 1)u),

where C3 = 1, Cn = (−1)n−1(n − 3)Cn−1, and jn = 0 when evaluated on any
element of (L⊕M)⊗n that is not listed above. Then (L⊕M, jn) is an L∞ algebra.

The proof is an immediate consequence of the previous computations and The-
orem 4.1.

It is worth noting that this is not isomorphic to the L∞ structure given in [1]
due to the extra coefficient, n− 1, attached to the higher homotopies jn. It is also
worth noting that this is another example of an L∞ structure that is a strict Lie
algebra in degree 0. Finding an example that is not strictly Lie in degree 0 remains
an interesting question for further investigation.
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