International Electronic Journal of Algebra Volume 13 (2013) 43-52

A FINITE DIMENSIONAL L_{∞} MODULE

Michael P. Allocca

Received: 13 April 2012; Revised: 15 September 2012 Communicated by Abdullah Harmancı

ABSTRACT. We construct a concrete example of an L_{∞} module defined over a finite dimensional L_{∞} algebra. We then explore a canonical L_{∞} algebra defined over the direct sum of these structures.

Mathematics Subject Classification (2010): 18G55, 55P43, 17B10 Keywords: L-infinity algebra, L-infinity representation, L-infinity module

1. Introduction

 L_{∞} algebras (or sh Lie algebras) are topics of current research. Concrete examples of these structures facilitate deeper insight into their properties. However these examples still remain elusive. In [1], Daily and Lada constructed an example of a finite dimensional L_{∞} algebra that consists of a Lie algebra in conjunction with with a non-Lie action on a different vector space. Furthermore, this small structure was proved by Kadeishvili and Lada in [3] to be an example of an open-closed homotopy algebra (OCHA), as defined by Kajiura and Stasheff in [4].

 L_{∞} modules provide an alternative but equivalent convention to representations of L_{∞} algebras in a manner that generalizes the relationship between classical Lie algebra representations and Lie modules. Concrete examples of L_{∞} modules are highly nontrivial. Such examples will prove essential for expanding the representation theory of L_{∞} algebras, as evident by the robust nature of the example in [1]. In this article we construct one such example and subsequently explore a new L_{∞} algebra structure that it induces.

2. L_{∞} Algebras and Modules

We will utilize the Koszul sign convention that is common in graded settings. That is, whenever two symbols (objects or maps) of degree p and q are transposed, a factor of $(-1)^{pq}$ is introduced. In general, we denote the total Koszul sign of a permutation σ by $\epsilon(\sigma)$. For brevity, we will also use commas in lieu of tensor or direct sum symbols when convenient.

We first recall the definition of an L_{∞} algebra (see [2], [6], [7]).

Definition 2.1. Let V be a graded vector space. An L_{∞} algebra structure on V is a collection of linear maps $\{l_k : V^{\otimes k} \to V\}$ of degree $k-2$ which are skew-symmetric in the sense that

$$
l_k(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(k)}) = \chi(\sigma)l_k(x_1, x_2, \dots, x_k)
$$

for all $\sigma \in S_k$, $x_i \in V$, with $\chi(\sigma) = (-1)^{\sigma} \epsilon(\sigma)$, and are also required to satisfy the generalized form of the Jacobi identity:

$$
\sum_{i+j=n+1} \sum_{\sigma} \chi(\sigma) (-1)^{i(j-1)} l_j(l_i(v_{\sigma(1)}, \ldots, v_{\sigma(i)}), v_{\sigma(i+1)}, \ldots, v_{\sigma(n)}) = 0
$$

where the inner summation is taken over all $(i, n - i)$ -unshuffles, $i \geq 1$, $n \geq 1$.

This utilizes the chain complex convention. One may alternatively use the cochain complex convention by requiring each map l_k to have degree $2 - k$.

It is worth noting that L_{∞} algebras are generalizations of Lie algebras from a homotopy theoretic point of view with l_2 acting as a (graded) Lie bracket. Remarkably, many classical relationships involving Lie algebras generalize to this context. In [6], Lada and Markl defined L_{∞} algebra representations and, equivalently, L_{∞} modules. We now recall the definition of an L_{∞} module.

Definition 2.2. Let (L, l_k) be an L_{∞} algebra and M a differential graded vector space with graded differential k_1 . A *(left)* L-module on M is a collection of skewsymmetric linear maps $\{k_n : L^{\otimes n-1} \otimes M \to M | 1 \leq n < \infty\}$ of degree $n-2$ such that the following identity holds:

$$
\sum_{i+j=n+1} \sum_{\sigma} \chi(\sigma) (-1)^{i(j-1)} k_j(k_i(\xi_{\sigma(1)},\ldots,\xi_{\sigma(i)}),\xi_{\sigma(i+1)},\ldots,\xi_{\sigma(n)}) = 0
$$

where σ ranges over all $(i, n - i)$ -unshuffles, $i \geq 1$, with $n \geq 1$, $\xi_1, \dots, \xi_{n-1} \in L$, and $\xi_n \in M$.

A few remarks are in order:

- If $\xi_1, \dots, \xi_n \in L$, then we define $k_n(\xi_1, \dots, \xi_n) = l_n(\xi_1, \dots, \xi_n)$.
- By definition of an unshuffle, either $\xi_{\sigma(i)} = \xi_n$ or $\xi_{\sigma(n)} = \xi_n$.
- Since we have $k_n: L^{\otimes n-1} \otimes M \to M$, we must utilize the skew-symmetry of k_n in the case where $\xi_{\sigma(i)} = \xi_n$ as follows:

$$
k_j(\underbrace{k_i(\xi_{\sigma(1)},\ldots,\xi_{\sigma(i)})}_{\in M},\xi_{\sigma(i+1)},\ldots,\xi_{\sigma(n)}) = \alpha k_j(\xi_{\sigma(i+1)},\ldots,\xi_{\sigma(n)},\underbrace{k_i(\xi_{\sigma(1)},\ldots,\xi_{\sigma(i)})}_{\in M})
$$

With
$$
\alpha = (-1)^{j-1}(-1)^{(i+\sum_{k=1}^i|\xi_{\sigma(k)}|)(\sum_{k=i+1}^n|\xi_{\sigma(k)}|)}.
$$

One may easily verify that L_{∞} modules can be viewed as generalizations of Lie modules from a homotopy theoretic point of view by interpreting k_2 as a module action.

3. A Finite Dimensional Example

Let L denote the graded vector space given by $L = \bigoplus L_i$ where L_0 has basis i∈Z $\langle v_1, v_2 \rangle$, L_{-1} has basis $\langle w \rangle$, and $L_i = 0$ for $i \neq 0, -1$ with skew-symmetric linear maps $l_n: L^{\otimes n} \to L$ defined by the following:

$$
l_1(v_1) = l_1(v_2) = w
$$

$$
l_2(v_1 \otimes v_2) = v_1
$$

$$
l_2(v_1 \otimes w) = w
$$

$$
For \ n \ge 3: \ l_n(v_2 \otimes w^{\otimes n-1}) = C_n w
$$

where $C_3 = 1$ and $C_n = (-1)^{n-1}(n-3)C_{n-1}$ and $l_n = 0$ when evaluated on any element of $L^{\otimes n}$ that is not listed above. In [1], Daily and Lada proved that this structure forms an L_∞ algebra.

Remark 3.1. When convenient, the recursive definition of C_n may be recognized more explicitly as

$$
C_n = (-1)^{\frac{(n-2)(n-3)}{2}} (n-3)!
$$

Now let M denote the graded vector space given by $M = \bigoplus$ $\bigoplus_{i\in\mathbb{Z}}M_i$ where M_0 is a one dimensional vector space with basis $\langle m \rangle$, M_{-1} is a one dimensional vector space with basis $\langle u \rangle$ and $M_i = 0$ for $i \neq 0, -1$. Define a structure on M by the following linear maps $k_n: L^{\otimes n-1} \otimes M \to M$:

$$
k_1(m) = u
$$

$$
k_2(v_1 \otimes m) = m
$$

$$
k_2(v_1 \otimes u) = u
$$

For $n \ge 3$: $k_n(v_2 \otimes w^{\otimes n-2} \otimes m) = C_n m$
$$
k_n(v_2 \otimes w^{\otimes n-2} \otimes u) = C_n u
$$

Extend these maps to be skew-symmetric and define $k_n = 0$ when evaluated on any element of $L^{\otimes n-1} \otimes M$ that is not listed above.

Theorem 3.2. The maps k_n on M, in conjunction with the L_{∞} algebra structure on L defined above, define an L_{∞} module.

Proof. We aim to prove the following:

$$
\sum_{i+j=n+1} \sum_{\sigma} \chi(\sigma) (-1)^{i(j-1)} k_j(k_i(\xi_{\sigma(1)},\ldots,\xi_{\sigma(i)}),\xi_{\sigma(i+1)},\ldots,\xi_{\sigma(n)}) = 0
$$

where σ ranges over all $(i, n - i)$ -unshuffles, $i \geq 1$, with $n \geq 1$, $\xi_1, \dots, \xi_{n-1} \in L$, and $\xi_n \in M$.

In shorthand notation, this is equivalent to showing that

$$
\sum_{s=1}^{n} (-1)^{s(n-s)} k_{n-s+1} k_s(\xi_1, \xi_2, \cdots, \xi_n) = 0
$$
 (1)

where it is understood that k_s will be extended on $n > s$ elements over $(s, n - s)$ unshuffles.

Since k_n is linear and skew-symmetric, it suffices to show this equation holds when evaluated only on basis elements and in any string order. Each element of the left hand side of Equation 1 also has degree $(n - s - 1 - 2) + (s - 2) + |\xi_1|$ $|\xi_2| + \cdots + |\xi_n| = n - 3 + |\xi_1| + |\xi_2| + \cdots + |\xi_n|$, which must equal 0 or -1 in order for the elements to be nonzero. So $(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) \in L^{\otimes n-1} \otimes M$ must contain either 2 or 3 elements in degree 0. If this tensor product contains v_1 or v_2 twice, then Equation 1 holds trivially since $|v_1| = |v_2| = 0$ and k_n is skew-symmetric. For example,

$$
k_{n-s+1}k_s(v_1\otimes v_1\otimes w^{\otimes n-3}\otimes u) = -(-1)^{|v_1||v_1|}k_{n-s+1}k_s(v_1\otimes v_1\otimes w^{\otimes n-3}\otimes u)
$$

= $-k_{n-s+1}k_s(v_1\otimes v_1\otimes w^{\otimes n-3}\otimes u)$

by permuting the first two elements. So $k_{n-s+1}k_s(v_1 \otimes v_1 \otimes w \otimes^{n-3} \otimes u) = 0$. Hence it suffices to prove that Equation 1 holds on the following string choices for $(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n)$:

$$
(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes u) \tag{2}
$$

$$
(v_1 \otimes w^{\otimes n-2} \otimes m) \tag{3}
$$

$$
(v_2 \otimes w^{\otimes n-2} \otimes m) \tag{4}
$$

$$
(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes m) \tag{5}
$$

For String 2, in regards to the summands of Equation 1 we observe the following:

$$
k_1k_n(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes u)) = k_1(0) = 0
$$

\n
$$
k_2k_{n-1}(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes u) = (-1)^{n-1}k_2(k_{n-1}(v_2 \otimes w^{\otimes n-2} \otimes u) \otimes v_1)
$$

\n
$$
= (-1)^n C_{n-1}k_2(v_1 \otimes u)
$$

\n
$$
= (-1)^n C_{n-1}u
$$

 $k_r k_{n-r+1}(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes u) = 0$ for $3 \le r \le n-2$ since k_r and k_{n-r+1} are only nonzero when they are evaluated on a tensor product containing v_2 .

$$
k_{n-1}k_2(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes u) = -(n-3)k_{n-1}(l_2(v_1 \otimes w) \otimes v_2 \otimes w^{\otimes n-4} \otimes u)
$$

\n
$$
-k_{n-1}(k_2(v_1 \otimes u) \otimes v_2 \otimes w^{\otimes n-3})
$$

\n
$$
= (n-3)k_{n-1}(v_2 \otimes w^{\otimes n-3} \otimes u)
$$

\n
$$
+ k_{n-1}(v_2 \otimes w^{\otimes n-3} \otimes u)
$$

\n
$$
= (n-2)k_{n-1}(v_2 \otimes w^{\otimes n-3} \otimes u)
$$

\n
$$
= (n-2)C_{n-1}u
$$

\n
$$
k_nk_1(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes u) = k_n(k_1(v_1) \otimes v_2 \otimes w^{\otimes n-3} \otimes u)
$$

\n
$$
= k_n(w \otimes v_2 \otimes w^{\otimes n-3} \otimes u)
$$

\n
$$
= -k_n(v_2 \otimes w^{\otimes n-2} \otimes u)
$$

\n
$$
= -(-1)^{n-1}(n-3)C_{n-1}u
$$

\n
$$
= (-1)^n(n-3)C_{n-1}u
$$

Hence,

$$
\sum_{s=1}^{n} (-1)^{s(n-s)} k_{n-s+1} k_s (v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes u) = (-1)^{1(n-1)} (-1)^n (n-3) C_{n-1} u
$$

+ $(-1)^{2(n-2)} (n-2) C_{n-1} u$
+ $(-1)^{(n-1)(n-(n-1))} (-1)^n C_{n-1} u$
= $-(n-3) C_{n-1} u$
+ $(n-2) C_{n-1} u$
- $C_{n-1} u$
= 0

The case where Equation 1 is evaluated on String 3 is trivial by definition of k_n and l_n .

Regarding String 4, we observe the following:

$$
k_1k_n(v_2\otimes w^{\otimes n-2}\otimes m)=k_1(C_nm)=C_nu
$$

 $k_r k_{n-r+1}(v_2 \otimes w^{\otimes n-2} \otimes m) = 0$ for $2 \le r \le n-1$ for similar reasons encountered above.

$$
k_n k_1(v_2 \otimes w^{\otimes n-2} \otimes m) = (-1)^{n-1} k_n(k_1(m) \otimes v_2 \otimes w^{\otimes n-2})
$$

= -(-1)ⁿ⁻¹k_n(v₂ \otimes w^{\otimes n-2} \otimes u)
= (-1)ⁿC_nu

Hence,

$$
\sum_{s=1}^{n} (-1)^{s(n-s)} k_{n-s+1} k_s (v_2 \otimes w^{\otimes n-2} \otimes m) = (-1)^{1(n-1)} (-1)^n C_n u + (-1)^{n(n-n)} C_n u
$$
\n(6)

$$
= -C_n u + C_n u \tag{7}
$$

 $= 0$ (8)

For String 5, we observe the following:

$$
k_1k_n(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes m) = k_1(0) = 0
$$

\n
$$
k_2k_{n-1}(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes m) = (-1)^{n-1}k_2(k_{n-1}(v_2 \otimes w^{\otimes n-2} \otimes m) \otimes v_1)
$$

\n
$$
= (-1)^n C_{n-1}k_2(v_1 \otimes m)
$$

\n
$$
= (-1)^n C_{n-1}m
$$

 $k_r k_{n-r+1}(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes m) = 0$ for $3 \le r \le n-2$ for similar reasons encountered above.

$$
k_{n-1}k_2(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes m) = -(n-3)k_{n-1}(l_2(v_1 \otimes w) \otimes v_2 \otimes w^{\otimes n-4} \otimes m)
$$

$$
+ (-1)^{n-2}k_{n-1}(k_2(v_1 \otimes m) \otimes v_2 \otimes w^{\otimes n-3})
$$

$$
= -(n-3)k_{n-1}(w \otimes v_2 \otimes w^{\otimes n-4} \otimes m)
$$

$$
+ (-1)^{n-2}k_{n-1}(m \otimes v_2 \otimes w^{\otimes n-3})
$$

$$
= (n-3)k_{n-1}(v_2 \otimes w^{\otimes n-3} \otimes m)
$$

$$
+ (-1)^{(n-2)+(n-2)}k_{n-1}(v_2 \otimes w^{\otimes n-3} \otimes m)
$$

$$
= (n-3)C_{n-1}m
$$

$$
+ C_{n-1}m
$$

$$
= (n-2)C_{n-1}m
$$

$$
k_nk_1(v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes m) = k_n(k_1(v_1) \otimes v_2 \otimes w^{\otimes n-3} \otimes m)
$$

$$
= -k_n(v_2 \otimes w^{\otimes n-2} \otimes m)
$$

$$
= -C_n m
$$

$$
= -(-1)^{n-1}(n-3)C_{n-1}m
$$

$$
= (-1)^n (n-3)C_{n-1}m
$$

Hence,

$$
\sum_{s=1}^{n} (-1)^{s(n-s)} k_{n-s+1} k_s (v_1 \otimes v_2 \otimes w^{\otimes n-3} \otimes m) = (-1)^{1(n-1)} (-1)^n (n-3) C_{n-1} m
$$

+ $(-1)^{2(n-2)} (n-2) C_{n-1} m$
+ $(-1)^{(n-1)(n-(n-1))} (-1)^n C_{n-1} m$
= $-(n-3) C_{n-1} m$
+ $(n-2) C_{n-1} m$
- $C_{n-1} m$
= 0

In all 4 cases, Equation 1 holds. Hence, M is an L -module.

A concrete L_{∞} module will induce another interesting L_{∞} algebra structure in a manner that generalizes the relationship between a classical Lie module and a canonical Lie algebra. This will be addressed in the next section.

4. A Canonical L_{∞} Structure

One of the most fundamental results in the study of classical Lie algebras is that given a Lie algebra L and an L-module M, the vector space $L \oplus M$ forms a Lie algebra via the bracket

$$
[(x_1, m_1), (x_2, m_2)] = ([x_1, x_2], x_1 \cdot m_2 - x_2 \cdot m_1)
$$

where \cdot denotes the module action in M. It is not surprising that a homotopy theoretic version of the classical Lie algebra $L \oplus M$ exists. Given an L_{∞} structure, L, and an L-module, M, we may construct a new graded vector space $L \oplus M$ that can be endowed with its own L_{∞} structure as follows.

Theorem 4.1. ([5]) Let (L, l_k) be an L_{∞} algebra and (M, k_n) be an L-module. Then the graded vector space $L \oplus M$ inherits a canonical L_{∞} structure under the collection of maps ${j_n : (L \oplus M)^{\otimes n} \to L \oplus M}$ defined by

$$
j_n((x_1, m_1) \otimes \cdots \otimes (x_n, m_n))
$$

= $(l_n(x_1 \otimes \cdots \otimes x_n), \sum_{i=1}^n (-1)^{n-i} (-1)^{m_i \sum_{k=i+1}^n x_k} k_n(x_1 \otimes \cdots \otimes \hat{x_i} \otimes \cdots \otimes x_n \otimes m_i))$

where $\hat{x_i}$ means omit x_i .

Given the newly constructed concrete example of an L_{∞} module in Theorem 3.2, it is natural to investigate the type of L_{∞} algebra structure it induces. Let L

and M denote the L_{∞} algebra and L-module in Theorem 3.2. That is, $L = \bigoplus$ $\bigoplus_{i\in\mathbb{Z}}L_i,$ where $L_i = 0$ if $i \neq 0, -1$ and

$$
L_0 = , L_{-1} =
$$

and $M = \bigoplus$ $\bigoplus_{i\in\mathbb{Z}}M_i$, where $M_i=0$ if $i\neq 0, -1$ and

$$
M_0 = , M_{-1} = .
$$

As a graded vector space, elements $(x, m) \in L \oplus M$ must satisfy $|x| = |m|$. Hence $L \oplus M = \bigoplus$ $\bigoplus_{i\in\mathbb{Z}} (L\oplus M)_i$, where $(L\oplus M)_i=0$ if $i\neq 0,-1$ and

$$
(L \oplus M)_0 = \langle (v_1, m), (v_2, m) \rangle, (L \oplus M)_{-1} = \langle (w, u) \rangle.
$$

Using the definition given in Theorem 4.1, we may explicitly define the structure maps ${j_n}$ on $L \oplus M$. As a result of linearity and skew-symmetry, it suffices to define these maps by how they act on any number of basis elements.

Since $deg(j_1) = -1$, $j_1(w, u) = 0$. Furthermore,

$$
j_1(v_1, m) = (l_1(v_1), k_1(m)) = (w, u)
$$

$$
j_1(v_2, m) = (l_1(v_2), k_1(m)) = (w, u).
$$

Hence, j_1 is very simply defined by

$$
j_1(v_1, m) = j_1(v_2, m) = (w, u).
$$

Examining all combinations of basis elements, we find j_2 to be defined as follows:

$$
j_2((v_1, m), (v_1, m)) = (l_2(v_1, v_1), k_2(v_1, m) - (-1)^{v_1 m} k_2(v_1, m)) = (0, 0)
$$

\n
$$
j_2((v_2, m), (v_2, m)) = (l_2(v_2, v_2), k_2(v_2, m) - (-1)^{v_2 m} k_2(v_2, m)) = (0, 0)
$$

\n
$$
j_2((v_1, m), (v_2, m)) = (l_2(v_1, v_2), k_2(v_1, m) - (-1)^{v_2 m} k_2(v_2, m)) = (v_1, m)
$$

\n
$$
j_2((v_1, m), (w, u)) = (l_2(v_1, w), k_2(v_1, u) - (-1)^{w m} k_2(w, m)) = (w, u)
$$

\n
$$
j_2((v_2, m), (w, u)) = (l_2(v_2, w), k_2(v_2, u) - (-1)^{w m} k_2(w, m)) = (0, 0)
$$

\n
$$
j_2((w, u), (w, u)) = (0, 0) \text{ since } deg(j_2) = 0.
$$

Hence,

$$
j_2((v_1, m), (v_2, m)) = (v_1, m)
$$

$$
j_2((v_1, m), (w, u)) = (w, u)
$$

with $j_2 = 0$ when evaluated on any other element.

It is apparent that the graded differential j_1 and bracket j_2 are acting in precisely the same manner as their counterparts in L. The homotopies, however, do not. Let $n \geq 3$ and consider $j_n : (L \oplus M)^{\otimes n} \to L \oplus M$. By definition of j_n in Theorem 4.1,

the only nonzero action of j_n on basis elements occurs on $(v_2, m) \otimes (w, u)^{\otimes n-1}$ since both l_n and k_n are only nonzero when evaluated on a string containing v_2 when $n \geq 3$. Hence, for $n \geq 3$,

$$
j_n((v_2, m) \otimes (w, u)^{\otimes n-1}) = (l_n(v_2 \otimes w^{\otimes n-1}),
$$

\n
$$
0 + k_n(v_2 \otimes w^{\otimes n-2} \otimes u) + k_n(v_2 \otimes w^{\otimes n-2} \otimes u) + \dots + k_n(v_2 \otimes w^{\otimes n-2} \otimes u)
$$

\n
$$
= (C_n w, (n-1)C_n u)
$$

\n
$$
= C_n(w, (n-1)u).
$$

These structure maps form a new L_{∞} algebra as follows.

Theorem 4.2. Let $L \oplus M = \bigoplus (L \oplus M)_i$ where $(L \oplus M)_0$ is two dimensional with i∈Z basis $\langle (v_1, m), (v_2, m) \rangle$ and $(L \oplus M)_{-1}$ is one dimensional with basis $\langle (w, u) \rangle$ and $(L \oplus M)_i = 0$ for $i \neq 0, -1$. Define a structure on $(L \oplus M)$ by the following linear maps $\{j_n : (L \oplus M)^{\otimes n} \to L \oplus M\}$:

$$
j_1(v_1, m) = j_1(v_2, m) = (w, u)
$$

$$
j_2((v_1, m) \otimes (v_2, m)) = (v_1, m)
$$

$$
j_2((v_1, m) \otimes (w, u)) = (w, u)
$$

$$
j_n((v_2, m) \otimes (w, u)^{\otimes n-1}) = C_n(w, (n - 1)u),
$$

where $C_3 = 1$, $C_n = (-1)^{n-1}(n-3)C_{n-1}$, and $j_n = 0$ when evaluated on any element of $(L \oplus M)^{\otimes n}$ that is not listed above. Then $(L \oplus M, j_n)$ is an L_{∞} algebra.

The proof is an immediate consequence of the previous computations and Theorem 4.1.

It is worth noting that this is not isomorphic to the L_{∞} structure given in [1] due to the extra coefficient, $n-1$, attached to the higher homotopies j_n . It is also worth noting that this is another example of an L_{∞} structure that is a strict Lie algebra in degree 0. Finding an example that is not strictly Lie in degree 0 remains an interesting question for further investigation.

References

- [1] M. Daily and T. Lada, A finite dimensional L-infinity algebra example in gauge theory, Homology Homotopy Appl., 7(2) (2005), 87–93.
- [2] V. Hinich and V. Schechtman, Homotopy Lie algebras, I. M. Gelfand Seminar, Adv. Soviet Math., 16(2) (1993), 1–28.
- [3] T. Kadeishvili and T. Lada, A small open-closed homotopy algebra (OCHA), Georgian Math. J., 16(2) (2009), 305–310.

52 MICHAEL P. ALLOCCA

- [4] H. Kajiura and J. Stasheff, Homotopy algebras inspired by classical open-closed string field theory, Comm. Math. Phys., 263(3) (2006), 553–581.
- [5] T. Lada, L-infinity algebra representations, Homotopy theory, Appl. Categ. Structures, 12(1) (2004), 29–34.
- [6] T. Lada and M. Markl, Strongly homotopy lie algebras, Comm. Algebra, 23(6) (1995), 2147–2161.
- [7] T. Lada and J. Stasheff, Introduction to sh lie algebras for physicists, Internat. J. Theoret. Phys., 32(7) (1993), 1087–1103.

Michael P. Allocca

Department of Mathematics and Computer Science Saint Mary's College of California Moraga, CA, 94575, USA e-mail: mpa2@stmarys-ca.edu