ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS

Sekhar Jyoti Baishya
Received: 27 April 2012; Revised: 14 December 2012

Communicated by Abdullah Harmancı

Abstract

For a group $G,|\operatorname{Cent}(G)|$ denotes the number of distinct centralizers of its elements. A group G is called n-centralizer if $|\operatorname{Cent}(G)|=n$, and primitive n-centralizer if $|\operatorname{Cent}(G)|=\left|\operatorname{Cent}\left(\frac{G}{Z(G)}\right)\right|=n$. In this paper, among other things, we investigate the structure of finite groups of odd order with $|\operatorname{Cent}(G)|=9$ and prove that if $|G|$ is odd, then $|\operatorname{Cent}(G)|=9$ if and only if $\frac{G}{Z(G)} \cong C_{7} \rtimes C_{3}$ or $C_{7} \times C_{7}$.

Mathematics Subject Classification (2010): 20D60
Keywords: finite group, n-centralizer group, primitive n-centralizer group

1. Introduction

Throughout this paper all groups mentioned are assumed to be finite and we will use usual notation, for example C_{n} denotes the cyclic group of order n, G^{\prime} denotes the commutator subgroup of $G, D_{2 n}$ denotes the dihedral group of order $2 n, C_{n} \rtimes C_{p}$ denotes the semidirect product of C_{n} and C_{p}, where n is a positive integer and p is a prime.

For a group $G, Z(G)$ denotes the center and $\operatorname{Cent}(G)=\left\{C_{G}(x) \mid x \in G\right\}$, where $C_{G}(x)$ is the centralizer of the element x in G i.e., $C_{G}(x)=\{y \in G \mid x y=y x\}$. A group G is a CA-group if $C_{G}(x)$ is abelian for every $x \in G \backslash Z(G)$ (see [11]).

Starting with Belcastro and Sherman [6], many authors have studied the influence of $|\operatorname{Cent}(G)|$ on finite group G (see [1-6] and [15-17]). It is clear that a group is 1-centralizer if and only if it is abelian. In [6] Belcastro and Sherman proved that there is no n-centralizer group for $n=2,3$. They also proved that G is 4-centralizer if and only if $\frac{G}{Z(G)} \cong C_{2} \times C_{2}$ and G is 5 -centralizer if and only if $\frac{G}{Z(G)} \cong C_{3} \times C_{3}$ or S_{3}. In [3] Ashrafi proved that if G is 6 -centralizer, then $\frac{G}{Z(G)} \cong D_{8}, A_{4}, C_{2} \times C_{2} \times C_{2}$ or $C_{2} \times C_{2} \times C_{2} \times C_{2}$. In [1] Abdollahi, Amiri and Hassanabadi proved that G is 7 -centralizer if and only if $\frac{G}{Z(G)} \cong C_{5} \times C_{5}, D_{10}$ or $<x, y \mid x^{5}=y^{4}=1, y^{-1} x y=x^{3}>$. They also proved that if G is 8 -centralizer, then $\frac{G}{Z(G)} \cong C_{2} \times C_{2} \times C_{2}, A_{4}$ or D_{12}.

In this paper, we compute $|\operatorname{Cent}(G)|$ under certain conditions on G. We also investigate the structure of odd order 9-centralizer groups and prove that if $|G|$ is odd, then G is 9-centralizer if and only if $\frac{G}{Z(G)} \cong C_{7} \rtimes C_{3}$ or $C_{7} \times C_{7}$.

2. Generalizations of Some Known Results

In this section, we calculate $|\operatorname{Cent}(G)|$ under certain conditions on G. We generalize some of the results obtained in [1], [2], [3], [4], [6] and [8], and obtain some new characterizations of G.

Lemma 2.1. Let $|G: Z(G)|=p q r$, where p, q, r are primes not necessarily distinct. Then G is a $C A$-group.

Proof. Let $x \in G \backslash Z(G)$. Suppose $C_{G}(x)$ is not abelian. Then $Z(G) \subsetneq Z\left(C_{G}(x)\right) \subsetneq$ $C_{G}(x) \subsetneq G$. Since $|G: Z(G)|=p q r$, where p, q, r are primes, it follows that $\left|C_{G}(x): Z\left(C_{G}(x)\right)\right|$ is a prime, which is a contradiction, since $C_{G}(x)$ is nonabelian. Therefore, G is a CA-group.

Let p be a prime. In [6, Theorem 5], Belcastro and Sherman proved that if $|G: Z(G)|=p^{2}$, then $|\operatorname{Cent}(G)|=p+2$. Now it is natural to ask about $|\operatorname{Cent}(G)|$ when $|G: Z(G)|=p^{3}$. A partial answer is provided by the following proposition. This also generalizes Proposition 3.4 of Abdollahi, Amiri and Hassanabadi in [1], namely, if $\frac{G}{Z(G)} \cong C_{2} \times C_{2} \times C_{2}$, then $|\operatorname{Cent}(G)|=6$ or 8 .

Proposition 2.2. Let p be the smallest prime dividing $|G|$. If $|G: Z(G)|=p^{3}$, then $|\operatorname{Cent}(G)|=p^{2}+p+2$ or $p^{2}+2$.

Proof. By Lemma 2.1, G is a CA-group, and so by Proposition 3.2 of [11], $C_{G}(a)=$ $C_{G}(b)$ for all $a, b \in G \backslash Z(G)$ with $a b=b a$. Therefore, for any $x \in G \backslash Z(G)$, we have $C_{G}(t)=C_{G}(x)$ for all $t \in C_{G}(x) \backslash Z(G)$. Suppose $\left|G: C_{G}(x)\right|=p^{2}$ for all $x \in G \backslash Z(G)$. Fix $y \in G \backslash Z(G)$.

We have $G=\left(G \backslash C_{G}(y)\right) \sqcup C_{G}(y)$. Let k be the number of distinct centralizers produced by the elements of $G \backslash C_{G}(y)$. Let $C_{G}\left(x_{1}\right), C_{G}\left(x_{2}\right), \cdots, C_{G}\left(x_{k}\right)$ be all of them where $x_{i} \in G \backslash C_{G}(y), i \in\{1,2, \ldots, k\}$. Let $A_{i}=C_{G}\left(x_{i}\right) \backslash Z(G), i \in$ $\{1,2, \ldots, k\}$.

Clearly, $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=\left|A_{k}\right|$. Again, since $C_{G}\left(x_{i}\right), i \in\{1,2, \ldots, k\}$ are distinct centralizers, so $A_{i}, i \in\{1,2, \ldots, k\}$ are disjoint. For if $y^{\prime} \in A_{i} \cap A_{j}$ for some $i \neq j ; i, j \in\{1,2, \ldots, k\}$, then $y^{\prime} \in C_{G}\left(x_{i}\right) \cap C_{G}\left(x_{j}\right) \backslash Z(G)$. Therefore, by Proposition 3.2 of [11], $C_{G}\left(y^{\prime}\right)=C_{G}\left(x_{i}\right)=C_{G}\left(x_{j}\right)$, which is a contradiction. Again $A_{i} \subset G \backslash C_{G}(y)$ for all $i \in\{1,2, \ldots, k\}$. For if there exists $y_{1} \in A_{i}$ for
some $i \in\{1,2, \ldots, k\}$ such that $y_{1} \in C_{G}(y)$, then $C_{G}\left(x_{i}\right)=C_{G}\left(y_{1}\right)=C_{G}(y)$ and so $x_{i} \in C_{G}(y)$, which is a contradiction. Hence, $G \backslash C_{G}(y)={ }_{i=1}^{k} A_{i}$. Which implies $\left|G \backslash C_{G}(y)\right|=\sum_{i=1}^{k}\left|A_{i}\right|=k\left|A_{i}\right|=k\left|C_{G}\left(x_{i}\right) \backslash Z(G)\right|$. Moreover we have $\left|C_{G}(x): Z(G)\right|=p$ for all $x \in G \backslash Z(G)$. Now,

$$
k=\frac{\left|G \backslash C_{G}(y)\right|}{\left|C_{G}\left(x_{i}\right) \backslash Z(G)\right|}=\frac{\left|C_{G}(y)\right|\left(p^{2}-1\right)}{|Z(G)|(p-1)}=\frac{p(p-1)(p+1)}{(p-1)}=p^{2}+p
$$

Therefore, $|\operatorname{Cent}(G)|=p^{2}+p+2$.
Next suppose $\left|G: C_{G}(x)\right|=p$ for some $x \in G \backslash Z(G)$. If there exists $y \in G, y \neq$ x such that $\left|G: C_{G}(y)\right|=p$, then $C_{G}(x)=C_{G}(y)$. Because, if $C_{G}(x) \neq C_{G}(y)$, then $C_{G}(x) \subsetneq C_{G}(x) C_{G}(y) \subseteq G$ and so $G=C_{G}(x) C_{G}(y)$. Again by Remark 2.1 of $[1], C_{G}(x) \cap C_{G}(y)=Z(G)$. Now, $|G|=\frac{\left|C_{G}(x)\right|\left|C_{G}(y)\right|}{\left|C_{G}(x) \cap C_{G}(y)\right|}=\frac{|G||G|}{p^{2}|Z(G)|}$. Therefore $|G: Z(G)|=p^{2}$, which is a contradiction. Hence, G has exactly one centralizer of index p, namely $C_{G}(x)$, and remaining centralizers are of index p^{2}. We have $G=\left(G \backslash C_{G}(x)\right) \sqcup C_{G}(x)$. Let $z \in G \backslash C_{G}(x)$. Then $\left|G: C_{G}(z)\right|=p^{2}$.
Now, applying the same arguments as above, we get

$$
|\operatorname{Cent}(G)|=\frac{\left|G \backslash C_{G}(x)\right|}{\left|C_{G}(z) \backslash Z(G)\right|}+2=\frac{\left|C_{G}(x)\right|(p-1)}{|Z(G)|(p-1)}+2=p^{2}+2 .
$$

In [3, Lemma 2.4], Ashrafi proved that $\left|\operatorname{Cent}\left(D_{2 n}\right)\right|=n+2$ or $\frac{n}{2}+2$ according to whether n is odd or even. Moreover, in [6, Theorem 5], Belcastro and Sherman proved that if p is a prime and $\frac{G}{Z(G)} \cong C_{p} \times C_{p}$, then $|\operatorname{Cent}(G)|=p+2$. The following theorem generalizes these results.

Theorem 2.3. Let G be non-abelian and has an abelian normal subgroup of prime index. Then $|\operatorname{Cent}(G)|=\left|G^{\prime}\right|+2$.

Proof. Let H be an abelian normal subgroup of G of prime index p. Then $H=$ $C_{G}(x)$ for some $x \in G \backslash Z(G)$. By Lemma 4 (page 303) of $[7],|G|=p\left|G^{\prime}\right||Z(G)|$, and $\left|G: C_{G}(y)\right|=\left|G^{\prime}\right|$ for $y \in G \backslash C_{G}(x)$. By Theorem A of [11], G is a CAgroup and by Proposition 3.2 of [11], $C_{G}(a)=C_{G}(b)$ for all $a, b \in G \backslash Z(G)$ with $a b=b a$. Therefore, $C_{G}(t)=C_{G}(y)$ for all $t \in C_{G}(y) \backslash Z(G)$. We have $G=\left(G \backslash C_{G}(x)\right) \sqcup C_{G}(x)$. Let k be the number of distinct centralizers produced by the elements of $G \backslash C_{G}(x)$. Let $C_{G}\left(x_{1}\right), C_{G}\left(x_{2}\right), \cdots, C_{G}\left(x_{k}\right)$ be all of them where $x_{i} \in G \backslash C_{G}(x), i \in\{1,2, \ldots, k\}$. Let $A_{i}=C_{G}\left(x_{i}\right) \backslash Z(G), i \in\{1,2, \ldots, k\}$.

Since $\left|G: C_{G}(y)\right|=\left|G^{\prime}\right|$ for $y \in G \backslash C_{G}(x),\left|A_{1}\right|=\left|A_{2}\right|=\cdots=\left|A_{k}\right|$. Again, since $C_{G}\left(x_{i}\right), i \in\{1,2, \ldots, k\}$ are distinct centralizers, therefore $A_{i}, i \in\{1,2, \ldots, k\}$ are
disjoint. For if $y^{\prime} \in A_{i} \cap A_{j}$ for some $i \neq j ; i, j \in\{1,2, \ldots, k\}$, then $y^{\prime} \in C_{G}\left(x_{i}\right) \cap$ $C_{G}\left(x_{j}\right) \backslash Z(G)$. Therefore, by Proposition 3.2 of [11], $C_{G}\left(y^{\prime}\right)=C_{G}\left(x_{i}\right)=C_{G}\left(x_{j}\right)$, which is a contradiction. Again $A_{i} \subset G \backslash C_{G}(x)$ for all $i \in\{1,2, \ldots, k\}$. For if there exists $y_{1} \in A_{i}$ for some $i \in\{1,2, \ldots, k\}$ such that $y_{1} \in C_{G}(x)$, then $C_{G}\left(x_{i}\right)=C_{G}\left(y_{1}\right)=C_{G}(x)$ and so $x_{i} \in C_{G}(x)$, which is a contradiction. Hence, $G \backslash C_{G}(x)={ }_{i=1}^{k} A_{i}$. This implies $\left|G \backslash C_{G}(x)\right|=\sum_{i=1}^{k}\left|A_{i}\right|=k\left|A_{i}\right|=k\left|C_{G}\left(x_{i}\right) \backslash Z(G)\right|$. Moreover we have $|G: Z(G)|=p\left|G^{\prime}\right|$ and $\left|G: C_{G}\left(x_{i}\right)\right|=\left|G^{\prime}\right|$ for $i \in\{1,2, \ldots, k\}$. Therefore, $\left|C_{G}\left(x_{i}\right): Z(G)\right|=p$ for $i \in\{1,2, \ldots, k\}$. Now,

$$
k=\frac{\left|G \backslash C_{G}(x)\right|}{\left|C_{G}\left(x_{i}\right) \backslash Z(G)\right|}=\frac{\left|C_{G}(x)\right|(p-1)}{|Z(G)|(p-1)}=\left|G^{\prime}\right| .
$$

Hence $|\operatorname{Cent}(G)|=\left|G^{\prime}\right|+2$.
Corollary 2.4. $\left|\operatorname{Cent}\left(D_{2 n}\right)\right|=n+2$ or $\frac{n}{2}+2$ according to whether n is odd or even.

Proof. It is easy to see that (see [12, Exercise 9(c), pp 36]), if $G=D_{2 n}$, then $\left|G: G^{\prime}\right|=2|Z(G)|$. Moreover, $|Z(G)|=1$ or 2 according to whether n is odd or even. Therefore, $\left|G^{\prime}\right|=n$ or $\frac{n}{2}$, according to whether n is odd or even. Hence, the result follows by Theorem 2.3.

Corollary 2.5. Let $p \geq q$ be primes. If $|G: Z(G)|=p q$, then $|\operatorname{Cent}(G)|=p+2$.
Proof. Suppose $p=q$. Let $x \in G \backslash Z(G)$. Then $C_{G}(x)$ is an abelian normal subgroup of G of index p. Therefore, by [7, Lemma 4, pp 303], $|G|=p\left|G^{\prime}\right||Z(G)|$ and so $\left|G^{\prime}\right|=p$.

Again, suppose $p>q$. Let $x Z(G)$ be an element of order p in $\frac{G}{Z(G)}$. Since $\frac{C_{G}(x)}{Z(G)} \leq C_{\frac{G}{Z(G)}}(x Z(G)),\left|\frac{C_{G}(x)}{Z(G)}\right|=p$ and by Correspondence Theorem, $C_{G}(x)$ is an abelian normal subgroup of G of index q. Therefore, by [7, Lemma 4, pp 303], $|G|=q\left|G^{\prime}\right||Z(G)|$ and so $\left|G^{\prime}\right|=p$. Hence, the result follows by Theorem 2.3.

Let $I(G)$ be the set of all solutions of the equation $x^{2}=1$ in G. Define $\alpha(G)=$ $\frac{|I(G)|}{|G|}$. Then we have the following immediate corollary.

Corollary 2.6. Let $|G|=2^{n} m$, where n is any integer and $m>1$ is an odd integer. If $\alpha(G)>\frac{1}{2}$, then $|\operatorname{Cent}(G)|=\left|G^{\prime}\right|+2$.

Proof. By [7, Exercise 2, pp 315], G contains an abelian subgroup of index 2. Therefore, by Theorem 2.3, $|\operatorname{Cent}(G)|=\left|G^{\prime}\right|+2$.

In the following simple proposition, we obtain a characterization of primitive n-centralizer groups.

Proposition 2.7. Let G be non-abelian and both G and $\frac{G}{Z(G)}$ have an abelian normal subgroup of prime index. Then G is primitive n-centralizer if and only if $G^{\prime} \cap Z(G)=\{1\}$.

Proof. Suppose G is primitive n-centralizer. Then $|\operatorname{Cent}(G)|=\left|\operatorname{Cent}\left(\frac{G}{Z(G)}\right)\right|$. Therefore, by Theorem 2.3, $\left|G^{\prime}\right|+2=\left|\left(\frac{G}{Z(G)}\right)^{\prime}\right|+2=\left|\frac{G^{\prime} Z(G)}{Z(G)}\right|+2=\left|\frac{G^{\prime}}{G^{\prime} \cap Z(G)}\right|+2$. Hence, $G^{\prime} \cap Z(G)=\{1\}$.

Conversely, if $G^{\prime} \cap Z(G)=\{1\}$, then G is primitive n-centralizer by [2, Lemma 3.1].

Proposition 2.8. Let $\frac{G}{Z(G)}$ be non-abelian, n be an integer and p be a prime. If $\frac{G}{Z(G)} \cong C_{n} \rtimes C_{p}$, then G has an abelian normal subgroup of index p and $\left|G^{\prime}\right|=n$.

Proof. $\frac{G}{Z(G)}$ has a cyclic normal subgroup of order n, say H. Then $H=<$ $x Z(G)>$, for some $x Z(G) \in \frac{G}{Z(G)}$. Clearly, $x Z(G) \notin Z\left(\frac{G}{Z(G)}\right)$. For if $x Z(G) \in$ $Z\left(\frac{G}{Z(G)}\right)$, then $H=<x Z(G)>\subseteq Z\left(\frac{G}{Z(G)}\right) \subsetneq \frac{G}{Z(G)}$, and so $H=Z\left(\frac{G}{Z(G)}\right)$. Therefore, $\left|\frac{G}{Z(G)}: Z\left(\frac{G}{Z(G)}\right)\right|=p$, which is a contradiction since $\frac{G}{Z(G)}$ is non-abelian. Now, consider $C_{\frac{G}{Z(G)}}(x Z(G))$. Then $<x Z(G)>\subseteq C_{\frac{G}{Z(G)}}(x Z(G)) \subsetneq \frac{G}{Z(G)}$. Since $<x Z(G)>$ is of prime index, $\left\langle x Z(G)>=C_{\frac{G}{Z(G)}}(x Z(G))\right.$. Again it is easy to see that

$$
\frac{C_{G}(x)}{Z(G)} \leq C_{\frac{G}{Z(G)}}(x Z(G))=<x Z(G)>\unlhd \frac{G}{Z(G)}
$$

Since $x Z(G) \in \frac{C_{G}(x)}{Z(G)},<x Z(G)>\subseteq \frac{C_{G}(x)}{Z(G)}$. That is $C_{\frac{G}{Z(G)}}(x Z(G)) \subseteq \frac{C_{G}(x)}{Z(G)}$ and hence $\frac{C_{G}(x)}{Z(G)}=C_{\frac{G}{Z(G)}}(x Z(G))$. Therefore, $\frac{C_{G}(x)}{Z(G)}$ is a cyclic normal subgroup of $\frac{G}{Z(G)}$ and hence $C_{G}(x)$ is abelian. Moreover, by Correspondence Theorem, $C_{G}(x) \unlhd G$. Since $\left|\frac{C_{G}(x)}{Z(G)}\right|=n,\left|\frac{G}{C_{G}(x)}\right|=p$. Thus, we have $C_{G}(x)$ is an abelian normal subgroup of G of prime index p.

For the second part, by [7, Lemma 4, pp 303], we have $|G|=p\left|G^{\prime}\right||Z(G)|$ and hence $\left|G^{\prime}\right|=n$.

In $\left[6\right.$, Theorem 5], Belcastro and Sherman proved that if $\frac{G}{Z(G)} \cong D_{2 p}, p$ is an odd prime, then $|\operatorname{Cent}(G)|=p+2$. In [1, Proposition 2.2], Abdollahi, Amiri and Hassanabadi and in [4, Lemma 2], Ashrafi and Taeri generalized this result to the case where p is an arbitrary positive integer and proved that if $\frac{G}{Z(G)} \cong D_{2 n}, n \geq 2$ is any integer, then $|\operatorname{Cent}(G)|=n+2$. In the following proposition, we generalize this result which will be used in characterising odd order 9-centralizer groups.

Proposition 2.9. Let $\frac{G}{Z(G)}$ be non-abelian, n be an integer and p be a prime. If $\frac{G}{Z(G)} \cong C_{n} \rtimes C_{p}$, then $|\operatorname{Cent}(G)|=n+2$.

Proof. By Proposition 2.8, G has an abelian normal subgroup of prime index and $\left|G^{\prime}\right|=n$. Now using Proposition 2.3, we get $|\operatorname{Cent}(G)|=n+2$.

Lemma 2.10. Let $\frac{G}{Z(G)}$ be non-abelian, n be an integer and p be a prime. If $\frac{G}{Z(G)} \cong C_{n} \rtimes C_{p}$, then G is a CA-group.

Proof. Using Proposition 2.8 and Theorem A of [11], we get the result.
Proposition 2.11. If $\frac{G}{Z(G)} \cong D_{2 n}$, where n is an odd integer, then $G^{\prime} \cap Z(G)=$ $\{1\}$.

Proof. By Proposition 2.8, both G and $\frac{G}{Z(G)}$ have an abelian normal subgroup of prime index. Again, by [1, Corollary 2.3], $|\operatorname{Cent}(G)|=\left|\operatorname{Cent}\left(\frac{G}{Z(G)}\right)\right|$. Therefore, by Proposition 2.7, $G^{\prime} \cap Z(G)=\{1\}$.

Proposition 2.12. If $\frac{G}{Z(G)} \cong C_{p} \rtimes C_{q}$, where p and q are primes, $q \mid p-1$, then $G^{\prime} \cap Z(G)=\{1\}$.

Proof. By Corollary 2.5, it follows that both G and $\frac{G}{Z(G)}$ have an abelian normal subgroup of prime index and $|\operatorname{Cent}(G)|=\left|\operatorname{Cent}\left(\frac{G}{Z(G)}\right)\right|$. Therefore, by Proposition 2.7, $G^{\prime} \cap Z(G)=\{1\}$.

For a finite group $G, \operatorname{Pr}(G)$ denotes the probability that any two group elements commute. In [8, Proposition 5.2.16], it is proved that if $\frac{G}{Z(G)} \cong D_{2 n}$, then $\operatorname{Pr}(G)=$ $\frac{n+3}{4 n}$. In the following proposition we generalize this result.

Proposition 2.13. Let $\frac{G}{Z(G)}$ be non-abelian, n be an integer and p be a prime. If $\frac{G}{Z(G)} \cong C_{n} \rtimes C_{p}$, then $\operatorname{Pr}(G)=\frac{1}{p^{2}}+\frac{p^{2}-1}{p^{2} n}$.

Proof. By Proposition 2.8, G has an abelian normal subgroup of prime index p and $\left|G^{\prime}\right|=n$. Therefore, by [7, Lemma 5, pp 303], $\operatorname{Pr}(G)=\frac{1}{p^{2}}+\frac{p^{2}-1}{p^{2} n}$.

Proposition 2.14. If $\frac{G}{Z(G)} \cong D_{2 n}$, where n is an odd integer, then $\operatorname{Pr}(G)=$ $\operatorname{Pr}\left(\frac{G}{Z(G)}\right)$.

Proof. By Proposition 2.11, we have $G^{\prime} \cap Z(G)=\{1\}$. Therefore, $\operatorname{Pr}(G)=$ $\operatorname{Pr}\left(\frac{G}{Z(G)}\right)$ by [13, Proposition 3].

Proposition 2.15. If $\frac{G}{Z(G)} \cong C_{p} \rtimes C_{q}$, where p and q are primes satisfying $q \mid p-1$, then $\operatorname{Pr}(G)=\operatorname{Pr}\left(\frac{G}{Z(G)}\right)$.

Proof. By Proposition 2.12, we have $G^{\prime} \cap Z(G)=\{1\}$. Therefore, $\operatorname{Pr}(G)=$ $\operatorname{Pr}\left(\frac{G}{Z(G)}\right)$ by [13, Proposition 3].

3. Odd Order Groups with Nine Centralizers

In this section, we study the structure of odd order groups having nine centralizers. The following lemma and proposition will be used in proving the main result of this section.

Lemma 3.1. Let G be a $C A$-group. Then $\frac{C_{G}(x)}{Z(G)}=\frac{C_{G}(y)}{Z(G)}$ if and only if $C_{G}(x)=$ $C_{G}(y)$ for any $x, y \in G \backslash Z(G)$.

Proof. Suppose $\frac{C_{G}(x)}{Z(G)}=\frac{C_{G}(y)}{Z(G)}$. Then $x Z(G) \in \frac{C_{G}(x)}{Z(G)}=\frac{C_{G}(y)}{Z(G)}$. Therefore, $x \in$ $C_{G}(x) \cap C_{G}(y) \backslash Z(G)$ and by Remark 2.1 of [1], $C_{G}(x)=C_{G}(y)$. The reverse implication is trivial.

Proposition 3.2. Let $|G|$ be odd. If $|\operatorname{Cent}(G)|=9$, then G cannot have a centralizer of index 5 .

Proof. Suppose that G has a centralizer of index 5. Let $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ be a set of pairwise non-commuting elements of G having maximal size. Suppose $X_{i}=C_{G}\left(x_{i}\right)$, $1 \leq i \leq r$ and $\left|G: X_{1}\right| \leq\left|G: X_{2}\right| \leq \cdots \leq\left|G: X_{r}\right|$. By Lemma 2.4 of $[1], 5 \leq r \leq 8$. Suppose that $r=5$. Then by Remark 2.1 of $[1],\left|\frac{G}{Z(G)}\right| \leq 16$. Clearly $\left|\frac{G}{Z(G)}\right| \neq$ $16,15,14,13,12,11,10,9,8,7,6,5,4$. Hence $r \neq 5$ and so $|\operatorname{Cent}(G)|<r+4$.

Suppose $r=6$. By Remark 2.1 of [1], $G=X_{1} \cup X_{2} \cup \cdots \cup X_{6}$ and by Lemma 3.3 of $[14],\left|G: X_{2}\right| \leq 5$. If $\left|G: X_{2}\right|=5$, then by Lemma 3.3 of $[14],\left|G: X_{2}\right|=$ $\left|G: X_{3}\right|=\cdots=\left|G: X_{6}\right|=5$. Therefore, $|G|=\sum_{i=2}^{6}\left|X_{i}\right|$ and by [9, Theorem 1], $G=X_{1} X_{2}$. Again by Proposition 2.5 of [1], $X_{1} \cap{ }^{i=2} X_{2}=Z(G)$. Since $|G|$ is odd, $\left|G: X_{1}\right|=5$ or 3 . If $\left|G: X_{1}\right|=5$, then $\left|\frac{G}{Z(G)}\right|=25$ and by Theorem 5 of [6], $|\operatorname{Cent}(G)|=7$. Again if $\left|G: X_{1}\right|=3$, then $\left|\frac{G}{Z(G)}\right|=15$, which is not possible since G is non-abelian. Hence, $r \neq 6$.

Lastly, suppose that $r=7$. By Remark 2.1 of [1], $G=X_{1} \cup X_{2} \cup \cdots \cup X_{7}$ and by Lemma 3.3 of $[14],\left|G: X_{2}\right| \leq 6$. Since $|\operatorname{Cent}(G)|=r+2$, it follows from [1, Proposition 2.5] that there exists a proper non-abelian centralizer $C_{G}(x)$ which contains $C_{G}\left(x_{i_{1}}\right), C_{G}\left(x_{i_{2}}\right)$ and $C_{G}\left(x_{i_{3}}\right)$ for three distinct $i_{1}, i_{2}, i_{3} \in\{1,2, \ldots, r\}$. Therefore, $G=C_{G}(x) \cup X_{j_{1}} \cup X_{j_{2}} \cup X_{j_{3}} \cup X_{j_{4}}$ with $\left|G: X_{j_{1}}\right| \leq\left|G: X_{j_{2}}\right| \leq$ $\left|G: X_{j_{3}}\right| \leq\left|G: X_{j_{4}}\right|$, where $j_{1}, j_{2}, j_{3}, j_{4} \in\{1,2, \ldots, r\} \backslash\left\{i_{1}, i_{2}, i_{3}\right\}$. By Lemma 3.3 of [14], $\left|G: X_{j_{1}}\right| \leq 4$. Therefore, we have seen that $\left|G: X_{i}\right|=3$ for some $i \in\{1,2, \ldots, r\}$. Now if $\left|G: X_{2}\right|=5$, then $\left|G: X_{1}\right|=3$ and so $G=X_{1} X_{2}$. Again by Proposition 2.5 of [1], $X_{1} \cap X_{2}=Z(G)$. Hence, $\left|\frac{G}{Z(G)}\right|=15$, which is not possible since G is non-abelian. If $\left|G: X_{2}\right|=3$, then by Proposition 2.5 of [1], $|\operatorname{Cent}(G)|=5$, which is again a contradiction.

Thus, $r=8$. By Lemma 2.6 of [1], G is a CA-group and by Remark 2.1 of [1], $X_{i} \cap X_{j}=Z(G)$ for all distinct $i, j \in\{1,2, \ldots, r\}$. Now $G=X_{1} \cup X_{2} \cup \cdots \cup X_{8}$ and by Lemma 3.3 of $[14],\left|G: X_{2}\right| \leq 7$. If $\left|G: X_{2}\right|=7$, then $\left|G: X_{1}\right|=5$ and by Exercise 1.8 of [10], $G=X_{1} X_{2}$. Since $X_{1} \cap X_{2}=Z(G)$, therefore $\left|\frac{G}{Z(G)}\right|=35$, which is not possible since G is non-abelian. If $\left|G: X_{2}\right|=5$, then $\left|G: X_{1}\right|=3$ or 5 . If $\left|G: X_{1}\right|=3$, then $\left|\frac{G}{Z(G)}\right|=15$, which is also not possible since G is non-abelian. Hence, $\left|G: X_{1}\right|=5$.

We have $G=<X_{1}, X_{2}>$. Therefore, by Theorem 4.2 of [14], $\left|\frac{G}{Z(G)}\right| \leq 49$. Since $|G|$ is odd and G is non-abelian, $\left|\frac{G}{Z(G)}\right|=45$ or 25 . If $\left|\frac{G}{Z(G)}\right|=25$, then by Theorem 5 of $[6],|\operatorname{Cent}(G)|=7$. Therefore, $\left|\frac{G}{Z(G)}\right|=45$. If X_{1} or X_{2} is normal in G, then $G=X_{1} X_{2}$ and since $X_{1} \cap X_{2}=Z(G),\left|\frac{G}{Z(G)}\right|=25$, and by Theorem 5 of $[6],|\operatorname{Cent}(G)|=7$. Hence $\frac{G}{Z(G)}$ is non-abelian. Again it is easy to see that $\frac{C_{G}(g)}{Z(G)} \leq C_{\frac{G}{Z(G)}}(g Z(G))$ for any $g \in G \backslash Z(G)$. Therefore, $\left|G: X_{i}\right|=5,9$ or 15 for $i \in\{1,2, \ldots 8\}$. Let $x Z(G)$ be an element of order 5 in $\frac{G}{Z(G)}$. Then $C_{\frac{G}{Z(G)}}(x Z(G))$ is the normal sylow 5 -subgroup of $\frac{G}{Z(G)}$. Since $\frac{C_{G}(x)}{Z(G)} \leq C_{\frac{G}{Z(G)}}(x Z(G)), \frac{C_{G}(x)}{Z(G)}=$ $C_{\frac{G}{(G)}}(x Z(G))$. Hence, by Lemma 3.1, G has exactly one centralizer of index 9 . Suppose $\left|G: X_{3}\right|=9$. Then $\left|G: X_{4}\right|=\left|G: X_{5}\right|=\left|G: X_{6}\right|=\left|G: X_{7}\right|=\mid G:$ $X_{8} \mid=15$ and $|G|>\sum_{i=2}^{8}\left|X_{i}\right|$, which is a contradiction by [9, Theorem 1]. Therefore, $\left|G: X_{3}\right|=5$. Similarly, we can show that $\left|G: X_{4}\right|=\left|G: X_{5}\right|=5$. Thus, we have seen that $\left|G: X_{1}\right|=\left|G: X_{2}\right|=\left|G: X_{3}\right|=\left|G: X_{4}\right|=\left|G: X_{5}\right|=5$.

Again we have $G=Z(G) \sqcup g_{1} Z(G) \sqcup g_{2} Z(G) \sqcup \cdots \sqcup g_{44} Z(G)$. Since $X_{i} \cap X_{j}=Z(G)$ for all distinct $i, j \in\{1,2, \ldots, 8\}, X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \cup X_{5}$ will contain 41 distinct cosets of $Z(G)$ in G, say $Z(G), g_{1} Z(G), \ldots, g_{40} Z(G)$. Therefore $X_{6} \cup X_{7} \cup X_{8}$ will contain $Z(G), g_{41} Z(G), \ldots, g_{44} Z(G)$. Hence, $\left|X_{i}: Z(G)\right|=2$ for some $i \in\{6,7,8\}$, which is a contradiction since $\left|\frac{G}{Z(G)}\right|=45$. Hence, $\left|G: X_{2}\right| \neq 5$. Therefore, $\left|G: X_{2}\right|=3$ and by Proposition 2.5 of $[1],|\operatorname{Cent}(G)|=5$, which is again a contradiction. Therefore, G cannot have a centralizer of index 5 .

Now we are ready to state the main result of this section.

Theorem 3.3. Let $|G|$ be odd. Then $|\operatorname{Cent}(G)|=9$ if and only if $\frac{G}{Z(G)} \cong C_{7} \rtimes C_{3}$ or $C_{7} \times C_{7}$.

Proof. Let $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ be a set of pairwise non-commuting elements of G having maximal size. Suppose $X_{i}=C_{G}\left(x_{i}\right), 1 \leq i \leq r$ and $\left|G: X_{1}\right| \leq\left|G: X_{2}\right| \leq$ $\cdots \leq\left|G: X_{r}\right|$. By [1, Lemma 2.4], we have $5 \leq r \leq 8$.

Suppose $r=5$. By [1, Remark 2.1], $\left|\frac{G}{Z(G)}\right| \leq 16$. If $\left|\frac{G}{Z(G)}\right|=9$, then $|\operatorname{Cent}(G)|=$ 5 by [6, Theorem 5]. Therefore, $\left|\frac{G}{Z(G)}\right| \neq 16,15,14,13,12,11,10,9,8,7,6,5,4$. Hence, $r \neq 5$ and so $|\operatorname{Cent}(G)|<r+4$.

Suppose $r=6$. Then by Remark 2.1 of [1], $G=X_{1} \cup X_{2} \cup \cdots \cup X_{6}$ and by Lemma 3.3 of $[14],\left|G: X_{2}\right| \leq 5$. By Proposition 3.2, we have $\left|G: X_{2}\right| \neq 5$. Therefore, $\left|G: X_{1}\right| \leq\left|G: X_{2}\right|=3$ and by Proposition 2.5 of $[1],|\operatorname{Cent}(G)|=5$. Hence, $r \neq 6$.

Lastly suppose $r=7$. Then by [1, Remark 2.1], $G=X_{1} \cup X_{2} \cup \cdots \cup X_{7}$, and by [14, Lemma 3.3], $\left|G: X_{2}\right| \leq 6$. By Proposition 3.2, we have $\left|G: X_{2}\right| \neq 5$. Therefore, $\left|G: X_{2}\right|=3$ and by Proposition 2.5 of $[1],|\operatorname{Cent}(G)|=5$. Hence, $r \neq 7$.

Therefore, $r=8$. By Lemma 2.6 of [1], G is a CA-group and by Remark 2.1 of [1], $X_{i} \cap X_{j}=Z(G)$ for all distinct $i, j \in\{1,2, \ldots, r\}$.

Now, $G=X_{1} \cup X_{2} \cup \cdots \cup X_{8}$ and by Lemma 3.3 of [14], $\left|G: X_{2}\right| \leq 7$. If $\mid G$: $X_{2} \mid<7$, then $\left|G: X_{2}\right|=3$ and by Proposition 2.5 of $[1],|\operatorname{Cent}(G)|=5$. Hence, $\left|G: X_{2}\right|=7$ and so by Lemma 3.3 of $[14],\left|G: X_{2}\right|=\left|G: X_{3}\right|=\cdots=\left|G: X_{8}\right|=7$ and by Theorem 1 of [9], $G=X_{1} X_{2}$.

Since $\left|G: X_{2}\right|=7$, we get $\left|G: X_{1}\right|=3$ or 7 . If $\left|G: X_{1}\right|=3$, then $\left|\frac{G}{Z(G)}\right|=21$ since $G=X_{1} X_{2}$ and $X_{1} \cap X_{2}=Z(G)$, and so $\frac{G}{Z(G)} \cong C_{7} \rtimes C_{3}$. If $\left|G: X_{1}\right|=7$, then since $G=X_{1} X_{2}$ and $X_{1} \cap X_{2}=Z(G)$, we obtain $\left|\frac{G}{Z(G)}\right|=49$ and so $\frac{G}{Z(G)} \cong$ $C_{7} \times C_{7}$.

Conversely, if $\frac{G}{Z(G)} \cong C_{7} \rtimes C_{3}$, then by Proposition 2.9 and if $\frac{G}{Z(G)} \cong C_{7} \times C_{7}$, then by $[6$, Theorem 5], $|\operatorname{Cent}(G)|=9$.

Acknowledgment. I would like to express my gratitude to my supervisor Prof. A. K. Das for many helpful ideas and suggestions. I would also like to thank the referee for the valuable suggestions and comments.

References

[1] A. Abdollahi, S. M. J. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math., 33(1) (2007), 43-57.
[2] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7(2) (2000), 139-146.
[3] A. R. Ashrafi, Counting the centralizers of some finite groups, Korean J. Comput. Appl. Math., 7(1) (2000), 115-124.
[4] A. R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, J. Appl. Math. Comput., 22(1-2) (2006), 403-410.
[5] A. R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput., 17(1-2) (2005), 217-227.
[6] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Magazine, 67(5) (1994), 366-374.
[7] Y. G. Berkovich and E. M. Zhmud, Characters of Finite Groups, Part 1, Transl. Math. Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
[8] A. Castelaz, Commutativity degree of finite groups, MSc. Thesis, Wake Forest University, North Carolina, May, 2010.
[9] J. H. E. Cohn, On n-sum groups, Math. Scand., 75 (1994), 44-58.
[10] J. D. Dixon, Problems in Group Theory, Dover Publications, Inc., Mineola, New York, 2007.
[11] S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math Soc., 82 (2010), 293304.
[12] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, An Introduction, Springer-Verlag, New York, Inc. 2004.
[13] D. J. Rusin, What is the probability that two elements of a finite group commute?, Pacific J. Math., 82(1) (1979), 237-247.
[14] M. J. Tomkinson, Groups covered by finitely many cosets or subgroups, Comm. Algebra, 15(4) (1987), 845-859.
[15] M. Zarrin, On element centralizers in finite groups, Arch. Math., 93 (2009), 497-503.
[16] M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math., 96 (2011), 225-226.
[17] M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iranian Math. Soc., to appear.

Sekhar Jyoti Baishya

Department of Mathematics
North-Eastern Hill University
Permanent Campus, Shillong-793022
Meghalaya, India
e-mail: sekharnehu@yahoo.com

