INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX

M. Afkhami and F. Khosh-Ahang

Received: 30 June 2012; Revised: 3 December 2012 Communicated by Abdullah Harmancı

ABSTRACT. In this note, firstly we introduce the intersection graph $G(\Delta)$ of a simplicial complex Δ , as a graph whose vertices are all facets of Δ and two distinct vertices are adjacent if they have non-empty intersection. We investigate some properties of this graph and simplicial complexes. Moreover, we apply this graph for finding a couple of upper and lower bounds for the vertex covering number of ∆. Also, we introduce and study the intersection ideal of a simplicial complex.

Mathematics Subject Classification (2010):05C12, 05C62, 05C75, 13C05, 16D25

Keywords: diameter, girth, intersection graph, intersection ideal, covering number, minimal generating set, simplicial complex

1. Introduction

In the past ten or so years, there has been considerable researches done on associating graphs with mathematical structures (e.g. [1], [2], [3], [5], [8] and [9]).

On the other hand, an intersection graph is an undirected graph formed from a family of sets, by creating one vertex for each set and connecting two vertices by an edge whenever the corresponding two sets have a non-empty intersection. Any undirected graph G may be represented as an intersection graph: for each vertex v_i of G, form a set S_i consisting of the edges which pass from v_i ; then two such sets have a non-empty intersection if and only if the corresponding vertices share an edge. For an overview of the theory of intersection graphs, and of important special classes of intersection graphs, see [17]. There has been a couple of papers devoted to study of the intersection graph of algebraic structures (see [8], [10], [15], [16] and [19]).

Simplicial complexes are some algebraic and topological tools which are useful in algebraic topology, commutative algebra and combinatorics. They can be considered as some generalizations of graphs. There has been a couple of graphs associated to these objects. For instance (r, s) -adjacency graph is defined and studied in [15], which is a special kind of intersection graph. In this paper, we are also going to study the intersection graph of a simplicial complex, in some sense.

The main purpose of this paper is studying the intersection of facets in a simplicial complex using graph theoretic concepts. In fact, firstly, we introduce the total graph of a simplicial complex, $T(\Delta)$, as the (undirected) graph whose vertices are all non-empty faces of Δ and two distinct vertices are adjacent if they are contained in the same facet or they have a non-empty intersection. Recall that when G is a graph, the total graph $T(G)$ of G is a graph whose vertices are all the vertices and edges of G and two vertices are adjacent if they are adjacent in G , two edges are adjacent if they are passes from the same vertex and a vertex and an edge are adjacent if the edge passes through the vertex (see [7]). Also, the simplicial complex $\Delta(G)$ is a simplicial complex associated to G, with the edges of G as its facets.

Assume that Δ is a simplicial complex with facets F_1, \ldots, F_m . Then it is easy to see that $T(\Delta)$ is a natural generalization of the known total graph of a graph. In fact, if G is a graph, then $T(\Delta(G))$ is the total graph of G. Also, if we concentrate on the induced subgraph of $T(\Delta)$ whose vertices are all faces of Δ contained in F_i , then this subgraph is a complete graph of order $2^{|F_i|} - 1$. Moreover, if we concentrate on the induced subgraph $G(\Delta)$ of $T(\Delta)$ whose vertices are all facets of Δ , then $G(\Delta)$ is the intersection graph with vertices F_1, \ldots, F_m . Furthermore, if G is a graph, then $G(\Delta(G))$ is the line graph of G. So, studying $G(\Delta)$, which is a kind of intersection graph, can help us for obtaining characterizations of total graphs and line graphs. In this regard, we limit our scope on $G(\Delta)$.

In section two, among the other things, we study the diameter and radius of the graph $G(\Delta)$. Also, we find some lower and upper bounds for vertex covering number $\alpha(\Delta)$ of Δ by applying the intersection graph $G(\Delta)$. In the third section, we introduce and study the intersection ideal J_{Δ} of a simplicial complex. We investigate the interplay between the algebraic properties of the intersection ideal and graph-theoretic properties of $G(\Delta)$. Finally, in Theorem 3.12, we study the graph $G(\Delta)$ when Δ is an order complex.

Now, we start to remind a brief necessary background of graph theory from [4]. In a graph $G, V(G)$ and $E(G)$ are the sets of vertices and edges of G , respectively and for two distinct vertices a and b in G, the notation $a - b$ means that a and b are adjacent. A graph G is said to be *connected* if there exists a path between any two distinct vertices, and it is complete if each pair of distinct vertices is joined by an edge. For a positive integer n, we use K_n to denote the complete graph with n vertices, which is a graph that any two distinct vertices are adjacent. We also use C_n for a cycle graph with n vertices. In a graph G any edge in a cycle of G is called a chord of G . Any complete subgraph of G is called a *clique* in G and the size of the largest clique in G is called the *clique number* of G and denoted by $w(G)$. Also, we say that G is *totally disconnected* if no two vertices of G are adjacent. The size of the largest subgraph of G , which is totally disconnected is denoted by $\text{Coclique}(G)$. The *distance* between two distinct vertices a and b in G, denoted by $d_G(a, b)$, is the length of a shortest path connecting a and b , if such a path exists; otherwise, we set $d_G(a, b) := \infty$. The *diameter* of a connected graph G is

 $diam(G) = sup{d_G(a, b) | a and b are distinct vertices of G}.$

The girth of G, denoted by $girth(G)$, is the length of the shortest cycle in G, if G contains a cycle; otherwise, girth $(G) := \infty$. For any vertex x of a connected graph G, the eccentricity of x, denoted by $e(x)$, is the maximum of the distances from x to the other vertices of G , and the minimum value of the eccentricity of the vertices of G is called the *radius* of G, which is denoted by $r(G)$. We shall say that the diameter and radius of G are zero if G has no edges. Let $\chi(G)$ denote the *chromatic number* of the graph G , that is the minimum number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A bipartite graph is one whose vertex-set can be partitioned into two subsets so that no edge has both ends in any one subset. A complete bipartite graph is a bipartite graph in which, each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph with part sizes m and n is denoted by $K_{m,n}$. The complete bipartite graph $K_{1,n}$ is called a *star graph*.

2. Total Graph of A Simplicial Complex

Recall that a *simplicial complex* Δ over a finite set of vertices $V = \{x_1, \ldots, x_n\}$ is a collection of subsets of V containing all singletons $\{x_i\}$ for each $1 \leq i \leq n$, with the property that if $F \in \Delta$, then all subsets of F are also in Δ . An element of Δ is called a *face* of Δ and the maximal faces of Δ are called *facets* of Δ . Since every simplicial complex can be uniquely determined by its facets, if F_1, \ldots, F_k are all of the facets of Δ , Δ is denoted by $\langle F_1, \ldots, F_k \rangle$. Also, for each face F of Δ , dimension of F, which is denoted by $\dim(F)$ equals to $|F| - 1$ and the *dimension* and *codimension* of Δ is defined as follows:

> $dim(\Delta) = max{dim F | F$ is a facet in Δ ; codim(Δ) = min{dim F | F is a facet in Δ }.

Definition 2.1. Let $\Delta = \langle F_1, \ldots, F_m \rangle$ be a simplicial complex. We define the total *graph* of Δ , denoted by $T(\Delta)$, as a graph whose vertices are all non-empty faces of ∆ and two distinct vertices are adjacent if they are contained in the same facet or they have a non-empty intersection. We set

 $E_{\Delta} = \{F_i \cap F_j \mid 1 \leq i, j \leq m, i \neq j \text{ and } F_i \cap F_j \neq \emptyset\},\$

and for each $1 \leq i \leq m$, we set

$$
N_E(F_i) = \{ F_i \cap F_j \mid 1 \le j \le m, j \ne i \text{ and } F_i \cap F_j \ne \emptyset \},
$$

and

$$
N_V(F_i) = \{ F_j \mid 1 \le j \le m, j \ne i \text{ and } F_i \cap F_j \ne \emptyset \}.
$$

A facet F of Δ is called an *isolated facet* of Δ if $N_E(F) = \emptyset$ or equivalently $N_V(F) = \emptyset.$

In the reminder of our note, $\Delta = \langle F_1, \ldots, F_m \rangle$ is a simplicial complex over a finite set of vertices $V = \{x_1, \ldots, x_n\}$. Also, we use F_i for both of the facet F_i of Δ and the vertex of $G(\Delta)$ corresponding to F_i .

Recall that a facet F of Δ is called a *leaf* of Δ if either it is an isolated facet of Δ or there is a facet G of Δ distinct from F such that for each facet F' of Δ with $F' \neq F$, we have $F \cap F' \subseteq F \cap G$ (see [12]). Let Δ_1 and Δ_2 be two simplicial complexes. Then we say that Δ_1 is a subcollection of Δ_2 if every facet in Δ_1 is a facet in Δ_2 . For other concepts in the context of simplicial complexes we refer the reader to [12] and [14].

The following remarks can be immediately gained.

Remarks 2.2. (1) $G(\Delta)$ is connected if and only if Δ is connected.

- (2) $G(\Delta)$ is totally disconnected if and only if $\sum_{i=1}^{m} \dim F_i = n m$.
- (3) $\beta(\Delta) = \text{Coclique}(G(\Delta))$, where $\beta(\Delta)$ is the independence number of Δ .
- (4) The facet F of Δ is a leaf if and only if it is an isolated vertex in $G(\Delta)$ or $N_E(F)$ has a unique maximal element.
- (5) If Δ is a cycle, then $G(\Delta)$ is either C_m or K_m such that all chords are $\bigcap_{i=1}^{m} F_i$ (See [14].)
- (6) If Δ' is a subcollection of Δ , then $G(\Delta')$ is an induced subgraph of $G(\Delta)$.

In the following examples, we exhibit the intersection graph $G(\Delta)$ for special values of n, m or dim(Δ).

Examples 2.3. (i) If $m = 1$, then $G(\Delta) = K_1$.

- (ii) If $n = 2$, then $G(\Delta)$ is K_1 or the totally disconnected graph with two vertices.
- (iii) If $n = 3$, then $G(\Delta)$ is K_1 or K_2 or totally disconnected graph with two or three vertices.
- (iv) If $m = 2$, then $G(\Delta)$ is connected if and only if $\dim F_1 + \dim F_2 \geq n 1$.
- (v) If $m = 3$ and $G(\Delta)$ is connected, then $\dim F_1 + \dim F_2 + \dim F_3 \geq n 1$.
- (vi) If dim $\Delta = 0$, then Δ is a tatally disconnected graph with n vertices.
- (vii) If dim $\Delta = n 1$, then $G(\Delta) = K_1$.
- (viii) If dim $\Delta = n 2$, then $G(\Delta) = K_m$ or $G(\Delta)$ is totally disconnected.

In the following result, we gain an upper bound for distance between two distinct vertices of $G(\Delta)$.

Theorem 2.4. Assume that $\Delta = \langle F_1, \ldots, F_m \rangle$ is a connected simplicial complex over the set of vertices V and i and j are two distinct positive integers with $1 \leq$ $i,j \leq m$. Then $d(F_i, F_j) = 1$ if $n - t \leq 1$ and else $d(F_i, F_j) \leq n - t$, where $t = \dim F_i + \dim F_i$.

Proof. Since $\dim F_i + \dim F_j = t$, we have $|F_i| + |F_j| = t + 2$. If $n - t \leq 1$, we have $t + 2 > n$ which implies that $F_i \cap F_j \neq \emptyset$ and hence there is nothing to prove in this situation. So, if we set $s = n - t - 2$, we may assume that s is a non-negative integer. If $F_i \cap F_j \neq \emptyset$, then $d(F_i, F_j) = 1 \leq n - t$ as required. So, we suppose that $F_i \cap F_j = \emptyset$. Hence, we may assume that $V \setminus (F_i \cup F_j)$ has exactly s elements and we use induction on s. If $s = 0$, since Δ is connected, every other facet of Δ has non-empty intersection with both of F_i and F_j . So, $d(F_i, F_j) = 2 \leq n - t$ as desired. Now, assume inductively that s is a positive integer and the result has been proved for any two facets F'_i and F'_j in a connected simplicial complex Δ' , with $|V \setminus (F'_i \cup F'_j)| = s'$, when s' is a non-negative integer smaller than s. Since Δ is connected, there is a path between F_i and F_j . Suppose that $F_i-F_{k_1}-\cdots-F_{k_{r-1}}-F_j$ is the shortest path from F_i to F_j of length r with $r \geq 2$. Now, if $F_{k_1} \cap F_j \neq \emptyset$, then $d(F_i, F_j) = 2 \leq n-t$. So, assume that $F_{k_1} \neq F_i$, $F_{k_1} \neq F_j$ and $F_{k_1} \cap F_j = \emptyset$. We set $F'_i := F_i \cup F_{k_1}$ and $\Delta' := \langle \{F_l \mid 1 \leq l \leq m, l \neq i, k_1\} \cup \{F'_i\} \rangle$. It is obvious that Δ' is connected, $|F'_i| > |F_i|$ and so $|V \setminus (F'_i \cup F_j)| = s'$, for some non-negative integer s' with $s' < s$. Therefore, inductive hypothesis insures that $d(F'_i, F_j) \leq s' + 2$ and so $d(F'_i, F_j) \leq s + 1$ in the graph $G(\Delta')$. Now, $d(F_i, F_j) = d(F'_i, F_j) + 1$ implies that $d(F_i, F_j) \leq n - t$ as desired.

The following corollary, which presents some upper bounds for the eccentricity of a vertex, radius and diameter of $G(\Delta)$, immediately follows from Theorem 2.4 and their definitions.

Corollary 2.5. Let Δ be a connected simplicial complex over the set of vertices V with $|V| = n$ and F be a facet of Δ . Then

$$
e(F) \le n - \dim F - \operatorname{codim}\Delta,
$$

$$
r(G(\Delta)) \le n - \dim \Delta - \operatorname{codim}\Delta,
$$

and

$$
diam G(\Delta) \leq n - 2codim \Delta.
$$

The next corollary is a direct consequence of Corollary 2.5. Recall that a simplicial complex is called pure if all of its facets have the same dimensions.

Corollary 2.6. Let Δ be a connected pure simplicial complex with dimension d. If $d \geq \frac{n-1}{2}$, then $G(\Delta)$ is a complete graph and else for each vertex F in $G(\Delta)$, we have $e(F) \leq n-2d$ and so $n-2d$ is an upper bound for diameter and radius of $G(\Delta)$ in this case.

In the following result we find another upper bound for the diameter of $G(\Delta)$.

Theorem 2.7. Let Δ be a connected simplicial complex. Then $G(\Delta)$ is complete or

$$
\operatorname{diam}(G(\Delta)) \le n - \operatorname{dim}\Delta - 1.
$$

Proof. Suppose that dim $\Delta = n - s - 1$, where $0 \leq s \leq n - 1$. We are supposed to show that diam($G(\Delta)$) \leq s. We use induction on s. If $s = 0$, then dim $\Delta = n - 1$, which means that Δ is a simplicial complex with only one facet. Hence $G(\Delta) = K_1$ in this case. Therefore, inductively suppose that s is a positive integer and the result has been proved for smaller values of s. Since dim $\Delta = n - s - 1$, there is a facet, say F_i , of Δ with $n-s$ elements. Hence, $V \setminus F_i$ has s elements. Since Δ is connected, there is a facet F_k in Δ intersecting with F_i . We set $F'_i := F_i \cup F_k$ and $\Delta' := \langle \{F_r \mid 1 \leq r \leq m, r \neq i, k\} \cup \{F'_i\} \rangle$. It is obvious that $\dim \Delta' = |F'_i| - 1 =$ $n - s' - 1$, where s' is a non-negative integer smaller than s. Also, one can observe that Δ' is connected. In fact, every path in Δ' is the corresponding path in Δ , where F'_i is inserted instead of F_i and F_k if necessary. Hence, for each $1 \le r, r' \le m$ with $r \neq r'$ and $\{r, r'\} \cap \{i, k\} = \emptyset$ we also have $d_{G(\Delta)}(F_r, F_{r'}) \leq d_{G(\Delta')}(F_r, F_{r'}) + 1$. Since $s' \leq s-1$, inductive hypothesis implies that $\text{diam}(G(\Delta')) \leq s-1$. Therefore, for each $1 \le r, r' \le m$ with $r \ne r'$ and $\{r, r'\} \cap \{i, k\} = \emptyset$ we have $d_{G(\Delta)}(F_r, F_{r'}) \le$ s. Moreover, for each $1 \leq r, r' \leq m$ with $r, r' \neq i, k$ we have $d_{G(\Delta)}(F_i, F_r) \leq$ $d_{G(\Delta')}(F_i', F_r)+1 \leq s$ and $d_{G(\Delta)}(F_k, F_{r'}) \leq d_{G(\Delta')}(F_i', F_{r'})+1 \leq s$. These complete the proof. \Box

Recall that a vertex cover for Δ , over a finite set of vertices V, is a subset A of V that intersects every facet of Δ . If A is a minimal element (under inclusion) of the set of vertex covers of Δ , it is called a *minimal vertex cover*. The smallest of the cardinalities of the vertex covers of Δ is called the *vertex covering number* of Δ and is denoted by $\alpha(\Delta)$ (see [14]).

In the next result, we find some lower and upper bounds for $\alpha(\Delta)$.

Theorem 2.8. Let Δ be a simplicial complex such that Δ has t isolated facets. Set $T = \{C \subseteq E_\Delta \mid \text{for all facets } F \in \Delta, \text{ there are } e \in N_E(F) \text{ and } e' \in C \text{ such that } e \cap e' \neq \emptyset \}.$ Then

$$
\min\{|C| \mid C \in T\} + t \le \alpha(\Delta) \le \min\{|A| \mid A = \bigcup_{e \in C} e \text{ when } C \in T\} + t.
$$

Proof. Without loss of generality, one can assume that $t = 0$. To prove the first inequality, suppose that A is a minimal vertex cover of Δ . Then it is enough to show that there is an element C in T with $|C| = |A|$. Since A is a vertex cover of Δ , for each facet F of Δ , there is an element $x \in A \cap F$. Now, assume that for each facet G of Δ with $G \neq F$, we have $x \notin G$. Since F is not an isolated facet,

there is a facet G of Δ with $G \neq F$ such that $F \cap G \neq \emptyset$. So, there is an element $x' \in F \cap G$. Now, set $A' = A \cup \{x'\} \setminus \{x\}$. Hence, A' is also a minimal vertex cover of Δ with $|A| = |A'|$. Therefore, we may assume that each element of A belongs to at least two facets of Δ . Hence, for each $x \in A$, there are distinct facets F_x and G_x with $x \in F_x \cap G_x$. Also, minimality of A shows that for two distinct elements $x, y \in A$, we can choose F_x, G_x, F_y and G_y such that $F_x \cap G_x \neq F_y \cap G_y$. Now, we set

$$
C = \{ F_x \cap G_x \mid x \in A \}.
$$

It is clear that $C \subseteq E_{\Delta}$ and $|C| = |A|$. Moreover, for each facet F of Δ , there are $x \in A$ and a facet G of Δ with $G \neq F$ such that $x \in F \cap G$. If we set $e = F \cap G$ and $e' = F_x \cap G_x$, then $x \in e \cap e'$. So, $C \in T$ and $|C| = |A|$ as desired.

To prove the second inequality, we show that for each $C \in T$, the set $\bigcup_{e \in C} e$ is a vertex cover of Δ . Let $C \in T$ and F be a facet of Δ . Then there are $e \in N_E(F)$ and $e' \in C$ such that $e \cap e' \neq \emptyset$. So, by choosing $x \in e \cap e'$, we have $x \in F \cap \bigcup_{e \in C} e$ as required. \Box

The following corollary is immediately gained from Theorem 2.8.

Corollary 2.9. By the notions that was used in Theorem 2.8, if all elements in each minimal member of T are of zero dimension, then

$$
\alpha(\Delta) = \min\{|C| \mid C \in T\} + t.
$$

3. The Intersection Ideal of A Simplicial Complex

Assume that $\Delta = \langle F_1, \ldots, F_m \rangle$ is a simplicial complex over a finite set of vertices $V = \{x_1, \ldots, x_n\}$ and k is a ring. Hereafter, we use the same notion $x_{i_1} \ldots x_{i_s}$ for the face $\{x_{i_1},...,x_{i_s}\}\$ of Δ and the monomial $x_{i_1}...x_{i_s}$ in the polynomial ring $R = k[x_1, \ldots, x_n]$. Let

$$
J_{\Delta} = \langle e \mid e \in E_{\Delta} \rangle.
$$

We call J_{Δ} as the *intersection ideal* of Δ .

As we promised in the introduction, in this section, we are going to study the relations between algebraic properties of J_{Δ} and graph theoretic concepts concerning $G(\Delta)$. We begin with the following result.

Proposition 3.1. Let Δ be a simplicial complex without any isolated facet such that any two generators of J_{Δ} are not coprime. Then $G(\Delta)$ is complete. In particular, if Δ is a simplicial complex with no isolated facet such that its intersection ideal is principal, then $G(\Delta)$ is complete.

Proof. Assume that F and G are two distinct facets of Δ . Since they are not isolated, there are two facets $F' \neq F$ and $G' \neq G$ of Δ such that $F \cap F' \neq \emptyset$ and $G \cap G' \neq \emptyset$. Hence, $F \cap F', G \cap G' \in J_{\Delta}$. Now, there are two generators e and f

of J_{Δ} such that $e|F \cap F'$ and $f|G \cap G'$ and by our assumption, e and f are not coprime. So, the non-empty face $e \cap f$ is contained in $F \cap G$, which insures that F and G are adjacent in $G(\Delta)$.

Note that the converse of Proposition 3.1 is not generally true. For example, if $F_1 = \{a, b, c\}, F_2 = \{b, d, e\}, F_3 = \{a, d, f\}$ and $F_4 = \{c, e, f\},$ then $J_\Delta =$ $\langle a, b, c, d, e, f \rangle$ and so all of the generators of J_{Δ} are mutually coprime.

Proposition 3.2. Assume that $G(\Delta)$ is a star graph with m vertices. Then the intersection ideal J_{Δ} has $m-1$ generators which are mutually coprime.

Proof. Without loss of generality one may assume that $G(\Delta)$ is a star graph with center F_1 . Hence, for each $2 \leq i \leq m$, $F_1 \cap F_i \neq \emptyset$ and for every two distinct positive integers $2 \leq i, j \leq m$, $F_i \cap F_j = \emptyset$. Hence, $J_\Delta = \langle F_1 \cap F_i \mid 2 \leq i \leq m \rangle$. Also, suppose in contrary that for some integers i and j with $2 \le i, j \le m$, the monomials $F_1 \cap F_i$ and $F_1 \cap F_j$ are not coprime. So, $(F_1 \cap F_i) \cap (F_1 \cap F_j) \neq \emptyset$. Now, since $F_i \cap F_j$ includes the non-empty set $F_1 \cap F_i \cap F_j$, we have that $F_i \cap F_j \neq \emptyset$, which is a contradiction. \Box

Recall that a subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. If G and H are two graphs, we say that G is a refinement of H if $E(H) \subseteq E(G)$. Also, a graph is said to be planar if it can be drawn in the plane, so that its edges intersect only at their ends. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [4, p. 153]).

In the following result, by using a minimal generating set of the intersection ideal J_{Δ} , we obtain some properties of $G(\Delta)$.

Proposition 3.3. Let $\{e_1, \ldots, e_s\}$ be a minimal generating set for J_Δ and $s > 1$. Also, suppose that $G(\Delta)$ has no isolated vertex. Then the following statements hold.

- (i) If there exists a facet F such that $e_i \cap F \neq \emptyset$, for all i with $1 \leq i \leq s$, then $G(\Delta)$ is a refinement of a star graph.
- (ii) Suppose that for all facets F, $|N_E(F)| = 1$. Then $G(\Delta)$ is the union of complete graphs.
- (iii) If there exists a facet F such that $|N_E(F)| = 1$ and $|N_V(F)| > 3$, then $G(\Delta)$ is not planar.

Proof. (i) We show that F is adjacent to all other vertices in $G(\Delta)$. To this end, let F' be an arbitrary vertex with $F' \neq F$. Since $G(\Delta)$ has no isolated vertex, we have that $F' \cap H \neq \emptyset$, for some facet H in Δ . So $e_i \subseteq F' \cap H$, for some i with $1 \leq i \leq s$. Thus $e_i \subseteq F'$ and hence $e_i \cap F \subseteq F' \cap F$. Therefore, we have that

 $F' \cap F \neq \emptyset$ and so F' is adjacent to F, which insures that $G(\Delta)$ is a refinement of a star graph with center F.

(ii) For any facet F in Δ , suppose that $N_V(F) = \{F_1, \ldots, F_k\}$. Since $|N_E(F)| =$ 1, we have $F \cap F_i = F \cap F_j$, for all i, j with $1 \leq i, j \leq k$. This implies that $F_i \cap F_j \neq \emptyset$. So a subgraph of $G(\Delta)$ with vertex-set $\{F, F_1, \ldots, F_k\}$ forms a complete subgraph. Now, one can easily see that $G(\Delta)$ is the union of complete graphs.

(iii) In view of the proof of part (ii), it is easy to check that K_5 is isomorphic to a subgraph of $G(\Delta)$ and so by Kuratowski's Theorem $G(\Delta)$ is not planar. \square

In the next two results, we present some circumstances under which the girth of $G(\Delta)$ is three.

Proposition 3.4. If J_{Δ} has two distinct generators which are not coprime, then the girth of $G(\Delta)$ is three.

Proof. Let $F_i \cap F_j$ and $F_r \cap F_s$ are two generators of J_{Δ} which are not coprime. Then $(F_i \cap F_j) \cap (F_r \cap F_s) \neq \emptyset$. So, all the sets $F_i \cap F_r$, $F_i \cap F_s$, $F_j \cap F_r$ and $F_j \cap F_s$ are non-empty. This shows that the girth of $G(\Delta)$ is three.

Theorem 3.5. Let Δ be a simplicial complex without any isolated facet. If $2\text{ara}(J_{\Delta})$ $\langle m, h \rangle$ then the girth of $G(\Delta)$ is three.

Proof. Suppose that $\text{ara}(J_{\Delta}) = s$ and $J_{\Delta} = \langle F_{i_k} \cap F_{j_k} \mid 1 \leq k \leq s, i_k \neq j_k, 1 \leq k$ $i_k, j_k \leq m$. Now, since $m > 2s$, there is an integer $1 \leq r \leq m$ such that for each $1 \leq k \leq s, r \neq i_k$ and $r \neq j_k$. Also, we know that F_r is not an isolated facet. So, there is a facet G of Δ so that $F_r \cap G \in J_{\Delta}$. Therefore, there exists an integer $1 \leq k \leq s$ such that $F_{i_k} \cap F_{j_k} | F_r \cap G$ and hence $F_{i_k} \cap F_{j_k} \subseteq F_r$. This implies that F_r is adjacent to both of F_{i_k} and F_{j_k} , which implies that girth $(G(\Delta)) = 3$.

We recall that for a graph G , a subset S of the vertex-set of G is called a *dominating set* if every vertex not in S is adjacent to a vertex in S .

Proposition 3.6. Let Δ be a connected simplicial complex such that $\text{ara}(J_{\Delta})=s$. Then we can find a dominating set with s elements for $G(\Delta)$.

Proof. Assume that $J_{\Delta} = \langle F_{i_k} \cap F_{j_k} \mid 1 \leq k \leq s, i_k \neq j_k, 1 \leq i_k, j_k \leq m \rangle$ and F is a facet of Δ . Then since Δ is connected, there is a facet G in Δ such that $F \cap G \in J_{\Delta}$. Therefore, $F_{i_k} \cap F_{j_k} \subseteq F \cap G$ for some $1 \leq k \leq s$. This implies that F is adjacent to both of F_{i_k} and F_{j_k} . So, $\{F_{i_1}, \ldots, F_{i_s}\}$ is a dominating set for $G(\Delta)$.

Theorem 3.7. If Δ is a connected simplicial complex, then either $G(\Delta)$ is a refinement of a star graph, or there is a dominating set with $|V|-\dim \Delta - 2$ elements.

Proof. Let $\dim \Delta = s$. Then there is a facet F such that $|F| = s + 1$. Without loss of generality one may assume that $V \setminus F = \{x_1, \ldots, x_{n-s-1}\}.$ For each $1 \leq i \leq s$ $n-s-1$, there is a facet F_{j_i} containing x_i . If for every choice of $F_{j_1}, \ldots, F_{j_{n-s-1}},$ we have $F_{j_i} \cap \{x_1, \ldots, x_{n-s-1}\} = \{x_i\}$, then we should have $F \cap F' \neq \emptyset$ for all facets F' of Δ and so $G(\Delta)$ is a refinement of a star graph in this case. Otherwise, without loss of generality we may assume that $F_{j_{n-s-1}} = F_{j_{n-s-2}}$. Now, for every facet F' of Δ , we have $F' \cap F_{j_i} \neq \emptyset$, for some $1 \leq i \leq n - s - 2$, which implies that { $F_{j_1}, \ldots, F_{j_{n-s-2}}$ } is a dominating set for $G(\Delta)$. □

In the next two propositions, by applying the intersection ideal, we find some relations between connectedness of a simplicial complex and its subcollections.

Proposition 3.8. Let Δ_1 be a subcollection of the simplicial complex Δ_2 such that $I_{\Delta_1} = I_{\Delta_2}$ and Δ_2 doesn't have any isolated facet. Then if Δ_1 is connected, then Δ_2 is also connected.

Proof. By Remarks 2.2(1), it is enough to show that if $G(\Delta_1)$ is connected, then $G(\Delta_2)$ is also connected. So suppose that $G(\Delta_1)$ is connected and let F and G be two distinct vertices in $G(\Delta_2)$. Since they are not isolated, there are two vertices F' and G' in $G(\Delta_2)$ such that $F \cap F' \neq \emptyset$ and $G \cap G' \neq \emptyset$. Hence, $F \cap F'$ and $G \cap G'$ belong to I_{Δ_2} and so to I_{Δ_1} . Therefore, there are elements $e, f \in I_{\Delta_1}$ such that $e|F \cap F'$ and $f|G \cap G'$. Hence, there are vertices H, H', K , and K' in $G(\Delta_1)$ such that $e = H \cap H' \subseteq F \cap F'$ and $f = K \cap K' \subseteq G \cap G'$, which insures that $e \subseteq F \cap H$ and $f \subseteq G \cap K$. This implies that F is adjacent to H and also G is adjacent to K in $G(\Delta_2)$. Now, since H and K are two vertices in $G(\Delta_1)$ and $G(\Delta_1)$ is connected, F and G are connected in $G(\Delta_2)$. So, $G(\Delta_2)$ is also connected as desired.

Proposition 3.9. Let Δ be a simplicial complex without any isolated facet such that

 $J_{\Delta} = \langle H_i \cap K_i \mid 1 \leq i \leq k \rangle$

and $\Delta' = \langle H_1, \ldots, H_k \rangle$. Then if $G(\Delta')$ is connected, then so is $G(\Delta)$.

Proof. Let F and G be two distinct vertices in $G(\Delta)$. Since they are not isolated, there are two vertices F' and G' in $G(\Delta)$ such that $F \cap F' \neq \emptyset$ and $G \cap G' \neq \emptyset$. Hence, there are integers i and j with $1 \leq i, j \leq k$ such that $H_i \cap K_i \subseteq F \cap F'$ and $H_j \cap K_j \subseteq G \cap G'$. Therefore, we have $H_i \cap K_i \subseteq F \cap H_i$ and $H_j \cap K_j \subseteq G \cap H_j$. So, F is adjacent to H_i and also G is adjacent to H_j in $G(\Delta)$. Now, if $i = j$, it is clear that $F - H_i - G$ is a path from F to G in $G(\Delta)$. Otherwise, since $G(\Delta')$ is connected, there is a path from H_i to H_j which completes our proof.

In the following result, for a simplicial complex Δ , we present some relations between the intersection ideal J_{Δ} and $\alpha(\Delta)$.

Theorem 3.10. (i) If Δ is a tree (or forest), then

$$
\alpha(\Delta) = \text{Coclique}(G(\Delta)).
$$

(ii) Let Δ be a simplicial complex without any isolated facet. Then

$$
\alpha(\Delta) \le \min \{ \sum_{e \in T} |e| \mid T \text{ is a minimal generating set of } J_{\Delta} \}.
$$

(iii) Let Δ be a simplicial complex without any isolated facet. Then

 $\alpha(\Delta) \leq \text{height}_B(J_\Delta).$

Proof. (i) The result follows from [13, Theorem 5.3] and part (3) in Remarks 2.2. (ii) Let $T = \{e_1, \ldots, e_k\}$ be a minimal generating set for J_Δ and F be a facet of Δ . Since F is not an isolated facet, there is a facet G in Δ such that $F \cap G \in J_{\Delta}$. Hence, there is an integer $1 \leq i \leq k$ such that $e_i \mid F \cap G$. So, e_i is contained in F. Now, choose an element x_F from e_i . It is clear that the set $\{x_F \mid F$ is a facet in $\Delta\}$ is a vertex cover of Δ and it has at most $\sum_{e \in T} |e|$ elements. This completes the proof.

(iii) Let height $_R(J_\Delta) = k$. Then there is a minimal prime ideal $\mathfrak{p} = \langle x_{i_1}, \ldots, x_{i_k} \rangle$ of J_{Δ} , where $\{x_{i_1}, \ldots, x_{i_k}\}$ is contained in $\{x_1, \ldots, x_n\}$. Now, for each facet F of Δ there is a facet G of Δ such that $F \cap G$ is contained in J_{Δ} and so in p. Therefore, there exists an integer $1 \leq j \leq k$ such that $x_{i_j} \mid F \cap G$, that is $x_{i_j} \in F$. This implies that $\{x_{i_1}, \ldots, x_{i_k}\}$ is a vertex cover for Δ .

In the following example, we state that the inequality in part (iii) of Theorem 3.10, may be strict.

Example 3.11. Consider the simplicial complex Δ in Figure (1), with facets $F_1 =$ ${a, b, c}, F_2 = {c, d}, F_3 = {d, e, f}$ and $F_4 = {b, f}.$ It is easy to see that $\alpha(\Delta) = 2$ and height_R(J_{Δ}) = 4.

Here, we recall some definitions and notations on partially ordered sets. We use the standard terminology of partially ordered sets in [11].

In a partially ordered set (P, \leq) (poset, briefly) an element m in P is minimal if $x \leq m$ for some $x \in P$, implies that $x = m$ and it is called the *least element* if $m \leq x$, for all $x \in P$. Also, an element m in P is maximal if $m \leq x$ for some $x \in P$, implies that $x = m$ and it is said to be the *greatest element* if $x \leq m$, for all $x \in P$. (P, \leq) is called *bounded* if it has the least and the greatest elements. Assume that S is a subset of P. Then an element x in P is a lower bound of S if $x \leq s$ for all $s \in S$. An upper bound is defined in a dual manner. The set of all lower bounds of S is denoted by S^{ℓ} and the set of all upper bounds of S is denoted by S^u , i.e.,

$$
S^{\ell} := \{ x \in P \mid x \le s, \text{ for all } s \in S \}
$$

and

$$
S^u := \{ x \in P \mid s \le x, \text{ for all } s \in S \}.
$$

If $S = \{s\}$, we denote S^u and S^{ℓ} by $[s]^u$ and $[s]^{\ell}$, respectively. If for any a and b in P, either $a \leq b$ or $b \leq a$, then the partial order is called a *total order*. If a subset of P is totally ordered, it is called a chain. An antichain is a set of elements that are pairwise incomparable.

Recall that the *order complex* $\Delta(\Pi)$ of a poset (Π, \leq) is the set of chains of Π (see [6]). In the sequel, we study $G(\Pi)$ which is the intersection graph of the order complex of the poset (Π, \leq) .

Theorem 3.12. Let Π be a finite poset with minimal elements a_1, \ldots, a_n . Then the following statements hold.

- (i) If t is the maximum number of elements in an antichain of Π , then $|V(G(\Pi))| \ge$ t.
- (ii) If Π is bounded, then $G(\Pi)$ is complete.
- (iii) Suppose that there exists a minimal element a in Π such that $[a]^u$ has more than four maximal elements, then $G(\Pi)$ is not planar.
- (iv) Let t_i be the number of maximal elements in $[a_i]^u$. Then

$$
\chi(G(\Pi)) \ge \omega(G(\Pi)) \ge \max\{t_i \mid i = 1, \ldots, n\}.
$$

In particular, if $[a_i]^u \cap [a_j]^u = \emptyset$, for all $1 \le i, j \le n$ with $i \ne j$, then $G(\Pi)$ is the union of complete graphs and we also have

$$
\chi(G(\Pi)) = \omega(G(\Pi)) = \max\{t_i \mid i = 1,\ldots,n\}.
$$

Proof. (i) The vertices of $G(\Pi)$ are the maximal chains in Π and one can easily see that $|V(G(\Pi))|$ is equal to or greater than the minimum number of disjoint chains which together contain all elements of Π. Now, by Dilworth's Theorem [18], we have that the minimum number of disjoint chains which together contain all elements of Π is equal to the maximum number of elements in an antichain of π . Thus the result holds.

(ii) If Π is bounded, then all maximal chains in Π contain the least element and so they have non-empty intersection. So, $G(\Pi)$ is a complete graph.

(iii) Consider m_1, \ldots, m_5 in $[a]^u$. For $1 \leq i \leq 5$, let F_i be the maximal chain descending from m_i and contains a. Therefore, the set of vertices $\{F_1, \ldots, F_5\}$ forms a complete subgraph isomorphic to K_5 and so by Kuratowski's Theorem, $G(\Pi)$ is not planar.

(iv) Clearly $\chi(G(\Pi)) \ge \omega(G(\Pi))$. Let m_{i1}, \ldots, m_{it_i} be distinct maximal elements in $[a_i]^u$. Also, for each $j = 1, \ldots, t_i$, let F_{ij} be a maximal chain descending from m_{ij} and containing a_i . Now, it is easy to check that the set of vertices F_{i1}, \ldots, F_{it_i} forms a clique for $G(\Pi)$. Thus we have

$$
\chi(G(\Pi)) \ge \omega(G(\Pi)) \ge \max\{t_i \mid i = 1,\ldots,n\}.
$$

Also, since $[a_i]^u \cap [a_j]^u = \emptyset$, for all $1 \le i, j \le n$ with $i \ne j$, one can easily see that $G(\Pi)$ is the union of n complete graphs which are isomorphic to K_{t_1}, \ldots, K_{t_n} and so we have

$$
\chi(G(\Pi)) = \omega(G(\Pi)) = \max\{t_i \mid i = 1, \dots, n\}.
$$

We end this note by the following example which states that the inequality in part (i) of Theorem 3.12, may be strict.

Example 3.13. Consider the order complex $\Delta(\Pi)$ of the poset (Π, \leq) in Figure 2, with chains $\{a, c, d\}$, $\{a, c, e\}$, $\{b, c, d\}$ and $\{b, c, e\}$. It is easy to see that $|V(G(\Pi))|=4$ and the maximum number of elements in an antichain of π is equal to 2.

Acknowledgement. The authors would like to thank the referee for comments.

References

- [1] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math., 35 (2011), 753–762.
- [2] D. D. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706–2719.
- [3] I. Beck, *Coloring of commutative rings*, J. Algebra, 116 (1998), 208–226.
- [4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., New York, 1976.
- [5] J. Bosak, The graphs of semigroups, Theory of Graphs and its Applications, (Proc. Sympos. Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., Prague, (1964), 119–125.
- [6] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Vol. 39, Cambridge Studies in Advanced Mathematics, Revised Edition, 1998.
- [7] M. Capobianco and J. Molluzzo, Examples and Counterexamples in Graph Theory, New York: North-Holland, 1978.
- [8] I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309(17) (2009), 5381–5392.
- [9] P. Chen, A kind of graph struture of rings, Algebra Colloq., 10(2) (2003), 229–238.
- [10] B. Csakany and G. Pollak, The graph of subgroups of a finite group, Czechoslovak Math. J., 19(94) (1969), 241–247.
- [11] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002.
- [12] S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure Appl. Algebra, 190 (2004), 121–136.
- [13] S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, J. Combin. Theory Ser. A, 109(2) (2005), 299–329.
- [14] S. Faridi and M. Caboara and P. Selinger, Simplicial cycles and the computation of simplicial trees, J. Symbolic Comput., 42 (2007), 74–88.
- [15] M. Gardner and F. Harary, *Characterization of* (r, s) -*adjacency graphs of com*plexes, Proc. Amer. Math. Soc., 83(1) (1981), 211–214.
- [16] S. H. Jafari and N. Jafari Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166.
- [17] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, 2, Philadelphia: Society for Industrial and Applied Mathematics, 1999.
- [18] J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.

[19] B. Zelinka, Intersection graphs of finite abelian groups, Czechoslovak Math. J., 25(100) (1975), 171–174.

Mojgan Afkhami

Department of Mathematics University of Neyshabur P.O.Box 91136-899, Neyshabur, Iran e-mail: mojgan.afkhami@yahoo.com

Fahimeh Khosh-Ahang Department of Mathematics Ilam University P.O.Box 69315-516, Ilam, Iran e-mail: fahime khosh@yahoo.com