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Abstract. In this note, firstly we introduce the intersection graph G(∆) of

a simplicial complex ∆, as a graph whose vertices are all facets of ∆ and two

distinct vertices are adjacent if they have non-empty intersection. We inves-

tigate some properties of this graph and simplicial complexes. Moreover, we
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covering number of ∆. Also, we introduce and study the intersection ideal of

a simplicial complex.
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1. Introduction

In the past ten or so years, there has been considerable researches done on
associating graphs with mathematical structures (e.g. [1], [2], [3], [5], [8] and [9]).

On the other hand, an intersection graph is an undirected graph formed from a
family of sets, by creating one vertex for each set and connecting two vertices by
an edge whenever the corresponding two sets have a non-empty intersection. Any
undirected graph G may be represented as an intersection graph: for each vertex
vi of G, form a set Si consisting of the edges which pass from vi; then two such
sets have a non-empty intersection if and only if the corresponding vertices share
an edge. For an overview of the theory of intersection graphs, and of important
special classes of intersection graphs, see [17]. There has been a couple of papers
devoted to study of the intersection graph of algebraic structures (see [8], [10], [15],
[16] and [19]).

Simplicial complexes are some algebraic and topological tools which are useful in
algebraic topology, commutative algebra and combinatorics. They can be consid-
ered as some generalizations of graphs. There has been a couple of graphs associated
to these objects. For instance (r, s)-adjacency graph is defined and studied in [15],
which is a special kind of intersection graph. In this paper, we are also going to
study the intersection graph of a simplicial complex, in some sense.
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The main purpose of this paper is studying the intersection of facets in a simpli-
cial complex using graph theoretic concepts. In fact, firstly, we introduce the total
graph of a simplicial complex, T (∆), as the (undirected) graph whose vertices are
all non-empty faces of ∆ and two distinct vertices are adjacent if they are contained
in the same facet or they have a non-empty intersection. Recall that when G is
a graph, the total graph T (G) of G is a graph whose vertices are all the vertices
and edges of G and two vertices are adjacent if they are adjacent in G, two edges
are adjacent if they are passes from the same vertex and a vertex and an edge are
adjacent if the edge passes through the vertex (see [7]). Also, the simplicial complex
∆(G) is a simplicial complex associated to G, with the edges of G as its facets.

Assume that ∆ is a simplicial complex with facets F1, . . . , Fm. Then it is easy to
see that T (∆) is a natural generalization of the known total graph of a graph. In
fact, if G is a graph, then T (∆(G)) is the total graph of G. Also, if we concentrate
on the induced subgraph of T (∆) whose vertices are all faces of ∆ contained in
Fi, then this subgraph is a complete graph of order 2|Fi| − 1. Moreover, if we
concentrate on the induced subgraph G(∆) of T (∆) whose vertices are all facets
of ∆, then G(∆) is the intersection graph with vertices F1, . . . , Fm. Furthermore,
if G is a graph, then G(∆(G)) is the line graph of G. So, studying G(∆), which
is a kind of intersection graph, can help us for obtaining characterizations of total
graphs and line graphs. In this regard, we limit our scope on G(∆).

In section two, among the other things, we study the diameter and radius of
the graph G(∆). Also, we find some lower and upper bounds for vertex covering
number α(∆) of ∆ by applying the intersection graph G(∆). In the third section,
we introduce and study the intersection ideal J∆ of a simplicial complex. We
investigate the interplay between the algebraic properties of the intersection ideal
and graph-theoretic properties of G(∆). Finally, in Theorem 3.12, we study the
graph G(∆) when ∆ is an order complex.

Now, we start to remind a brief necessary background of graph theory from [4].
In a graph G, V (G) and E(G) are the sets of vertices and edges of G, respectively
and for two distinct vertices a and b in G, the notation a − b means that a and b

are adjacent. A graph G is said to be connected if there exists a path between any
two distinct vertices, and it is complete if each pair of distinct vertices is joined by
an edge. For a positive integer n, we use Kn to denote the complete graph with n

vertices, which is a graph that any two distinct vertices are adjacent. We also use
Cn for a cycle graph with n vertices. In a graph G any edge in a cycle of G is called
a chord of G. Any complete subgraph of G is called a clique in G and the size of the
largest clique in G is called the clique number of G and denoted by w(G). Also, we
say that G is totally disconnected if no two vertices of G are adjacent. The size of
the largest subgraph of G, which is totally disconnected is denoted by Coclique(G).
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The distance between two distinct vertices a and b in G, denoted by dG(a, b), is the
length of a shortest path connecting a and b, if such a path exists; otherwise, we
set dG(a, b) :=∞. The diameter of a connected graph G is

diam(G) = sup{dG(a, b) | a and b are distinct vertices of G}.

The girth of G, denoted by girth(G), is the length of the shortest cycle in G, if
G contains a cycle; otherwise, girth(G) := ∞. For any vertex x of a connected
graph G, the eccentricity of x, denoted by e(x), is the maximum of the distances
from x to the other vertices of G, and the minimum value of the eccentricity of
the vertices of G is called the radius of G, which is denoted by r(G). We shall say
that the diameter and radius of G are zero if G has no edges. Let χ(G) denote the
chromatic number of the graph G, that is the minimum number of colors which can
be assigned to the vertices of G in such a way that every two adjacent vertices have
different colors. A bipartite graph is one whose vertex-set can be partitioned into
two subsets so that no edge has both ends in any one subset. A complete bipartite
graph is a bipartite graph in which, each vertex is joined to every vertex that is
not in the same subset. The complete bipartite graph with part sizes m and n is
denoted by Km,n. The complete bipartite graph K1,n is called a star graph.

2. Total Graph of A Simplicial Complex

Recall that a simplicial complex ∆ over a finite set of vertices V = {x1, . . . , xn}
is a collection of subsets of V containing all singletons {xi} for each 1 ≤ i ≤ n,
with the property that if F ∈ ∆, then all subsets of F are also in ∆. An element
of ∆ is called a face of ∆ and the maximal faces of ∆ are called facets of ∆. Since
every simplicial complex can be uniquely determined by its facets, if F1, . . . , Fk are
all of the facets of ∆, ∆ is denoted by 〈F1, . . . , Fk〉. Also, for each face F of ∆,
dimension of F , which is denoted by dim(F ) equals to |F | − 1 and the dimension
and codimension of ∆ is defined as follows:

dim(∆) = max{dimF | F is a facet in ∆};

codim(∆) = min{dimF | F is a facet in ∆}.

Definition 2.1. Let ∆ = 〈F1, . . . , Fm〉 be a simplicial complex. We define the total
graph of ∆, denoted by T (∆), as a graph whose vertices are all non-empty faces of
∆ and two distinct vertices are adjacent if they are contained in the same facet or
they have a non-empty intersection. We set

E∆ = {Fi ∩ Fj | 1 ≤ i, j ≤ m, i 6= j and Fi ∩ Fj 6= ∅},

and for each 1 ≤ i ≤ m, we set

NE(Fi) = {Fi ∩ Fj | 1 ≤ j ≤ m, j 6= i and Fi ∩ Fj 6= ∅},
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and

NV (Fi) = {Fj | 1 ≤ j ≤ m, j 6= i and Fi ∩ Fj 6= ∅}.

A facet F of ∆ is called an isolated facet of ∆ if NE(F ) = ∅ or equivalently
NV (F ) = ∅.

In the reminder of our note, ∆ = 〈F1, . . . , Fm〉 is a simplicial complex over a
finite set of vertices V = {x1, . . . , xn}. Also, we use Fi for both of the facet Fi of
∆ and the vertex of G(∆) corresponding to Fi.

Recall that a facet F of ∆ is called a leaf of ∆ if either it is an isolated facet
of ∆ or there is a facet G of ∆ distinct from F such that for each facet F ′ of ∆
with F ′ 6= F , we have F ∩ F ′ ⊆ F ∩G (see [12]). Let ∆1 and ∆2 be two simplicial
complexes. Then we say that ∆1 is a subcollection of ∆2 if every facet in ∆1 is a
facet in ∆2. For other concepts in the context of simplicial complexes we refer the
reader to [12] and [14].

The following remarks can be immediately gained.

Remarks 2.2. (1) G(∆) is connected if and only if ∆ is connected.
(2) G(∆) is totally disconnected if and only if

∑m
i=1 dimFi = n−m.

(3) β(∆) = Coclique(G(∆)), where β(∆) is the independence number of ∆.
(4) The facet F of ∆ is a leaf if and only if it is an isolated vertex in G(∆) or

NE(F ) has a unique maximal element.
(5) If ∆ is a cycle, then G(∆) is either Cm or Km such that all chords are⋂m

i=1 Fi (See [14].)
(6) If ∆′ is a subcollection of ∆, then G(∆′) is an induced subgraph of G(∆).

In the following examples, we exhibit the intersection graph G(∆) for special
values of n,m or dim(∆).

Examples 2.3. (i) If m = 1, then G(∆) = K1.
(ii) If n = 2, then G(∆) is K1 or the totally disconnected graph with two ver-

tices.
(iii) If n = 3, then G(∆) is K1 or K2 or totally disconnected graph with two or

three vertices.
(iv) If m = 2, then G(∆) is connected if and only if dimF1 + dimF2 ≥ n− 1.
(v) If m = 3 and G(∆) is connected, then dimF1 + dimF2 + dimF3 ≥ n− 1.
(vi) If dim ∆ = 0, then ∆ is a tatally disconnected graph with n vertices.

(vii) If dim ∆ = n− 1, then G(∆) = K1.
(viii) If dim ∆ = n− 2, then G(∆) = Km or G(∆) is totally disconnected.

In the following result, we gain an upper bound for distance between two distinct
vertices of G(∆).
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Theorem 2.4. Assume that ∆ = 〈F1, . . . , Fm〉 is a connected simplicial complex
over the set of vertices V and i and j are two distinct positive integers with 1 ≤
i, j ≤ m. Then d(Fi, Fj) = 1 if n − t ≤ 1 and else d(Fi, Fj) ≤ n − t, where
t = dimFi + dimFj.

Proof. Since dimFi + dimFj = t, we have |Fi|+ |Fj | = t+ 2. If n− t ≤ 1, we have
t + 2 > n which implies that Fi ∩ Fj 6= ∅ and hence there is nothing to prove in
this situation. So, if we set s = n− t− 2, we may assume that s is a non-negative
integer. If Fi ∩ Fj 6= ∅, then d(Fi, Fj) = 1 ≤ n − t as required. So, we suppose
that Fi ∩ Fj = ∅. Hence, we may assume that V \ (Fi ∪ Fj) has exactly s elements
and we use induction on s. If s = 0, since ∆ is connected, every other facet of ∆
has non-empty intersection with both of Fi and Fj . So, d(Fi, Fj) = 2 ≤ n − t as
desired. Now, assume inductively that s is a positive integer and the result has
been proved for any two facets F ′i and F ′j in a connected simplicial complex ∆′,
with |V \(F ′i ∪F ′j)| = s′, when s′ is a non-negative integer smaller than s. Since ∆ is
connected, there is a path between Fi and Fj . Suppose that Fi−Fk1−· · ·−Fkr−1−Fj

is the shortest path from Fi to Fj of length r with r ≥ 2. Now, if Fk1 ∩Fj 6= ∅, then
d(Fi, Fj) = 2 ≤ n−t. So, assume that Fk1 6= Fi, Fk1 6= Fj and Fk1∩Fj = ∅. We set
F ′i := Fi ∪ Fk1 and ∆′ := 〈{Fl | 1 ≤ l ≤ m, l 6= i, k1} ∪ {F ′i}〉. It is obvious that ∆′

is connected, |F ′i | > |Fi| and so |V \ (F ′i ∪ Fj)| = s′, for some non-negative integer
s′ with s′ < s. Therefore, inductive hypothesis insures that d(F ′i , Fj) ≤ s′ + 2 and
so d(F ′i , Fj) ≤ s + 1 in the graph G(∆′). Now, d(Fi, Fj) = d(F ′i , Fj) + 1 implies
that d(Fi, Fj) ≤ n− t as desired. �

The following corollary, which presents some upper bounds for the eccentricity
of a vertex, radius and diameter of G(∆), immediately follows from Theorem 2.4
and their definitions.

Corollary 2.5. Let ∆ be a connected simplicial complex over the set of vertices V
with |V | = n and F be a facet of ∆. Then

e(F ) ≤ n− dimF − codim∆,

r(G(∆)) ≤ n− dim ∆− codim∆,

and
diamG(∆) ≤ n− 2codim∆.

The next corollary is a direct consequence of Corollary 2.5. Recall that a sim-
plicial complex is called pure if all of its facets have the same dimensions.

Corollary 2.6. Let ∆ be a connected pure simplicial complex with dimension d. If
d ≥ n−1

2 , then G(∆) is a complete graph and else for each vertex F in G(∆), we
have e(F ) ≤ n − 2d and so n − 2d is an upper bound for diameter and radius of
G(∆) in this case.
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In the following result we find another upper bound for the diameter of G(∆).

Theorem 2.7. Let ∆ be a connected simplicial complex. Then G(∆) is complete
or

diam(G(∆)) ≤ n− dim∆− 1.

Proof. Suppose that dim ∆ = n− s− 1, where 0 ≤ s ≤ n− 1. We are supposed to
show that diam(G(∆)) ≤ s. We use induction on s. If s = 0, then dim ∆ = n− 1,
which means that ∆ is a simplicial complex with only one facet. Hence G(∆) = K1

in this case. Therefore, inductively suppose that s is a positive integer and the
result has been proved for smaller values of s. Since dim ∆ = n− s− 1, there is a
facet, say Fi, of ∆ with n − s elements. Hence, V \ Fi has s elements. Since ∆ is
connected, there is a facet Fk in ∆ intersecting with Fi. We set F ′i := Fi ∪ Fk and
∆′ := 〈{Fr | 1 ≤ r ≤ m, r 6= i, k} ∪ {F ′i}〉. It is obvious that dim ∆′ = |F ′i | − 1 =
n− s′ − 1, where s′ is a non-negative integer smaller than s. Also, one can observe
that ∆′ is connected. In fact, every path in ∆′ is the corresponding path in ∆, where
F ′i is inserted instead of Fi and Fk if necessary. Hence, for each 1 ≤ r, r′ ≤ m with
r 6= r′ and {r, r′} ∩ {i, k} = ∅ we also have dG(∆)(Fr, Fr′) ≤ dG(∆′)(Fr, Fr′) + 1.
Since s′ ≤ s−1, inductive hypothesis implies that diam(G(∆′)) ≤ s−1. Therefore,
for each 1 ≤ r, r′ ≤ m with r 6= r′ and {r, r′} ∩ {i, k} = ∅ we have dG(∆)(Fr, Fr′) ≤
s. Moreover, for each 1 ≤ r, r′ ≤ m with r, r′ 6= i, k we have dG(∆)(Fi, Fr) ≤
dG(∆′)(F ′i , Fr)+1 ≤ s and dG(∆)(Fk, Fr′) ≤ dG(∆′)(F ′i , Fr′)+1 ≤ s. These complete
the proof. �

Recall that a vertex cover for ∆, over a finite set of vertices V , is a subset A of
V that intersects every facet of ∆. If A is a minimal element (under inclusion) of
the set of vertex covers of ∆, it is called a minimal vertex cover. The smallest of
the cardinalities of the vertex covers of ∆ is called the vertex covering number of
∆ and is denoted by α(∆) (see [14]).

In the next result, we find some lower and upper bounds for α(∆).

Theorem 2.8. Let ∆ be a simplicial complex such that ∆ has t isolated facets. Set

T = {C ⊆ E∆ | for all facets F ∈ ∆, there are e ∈ NE(F ) and e′ ∈ C such that e∩e′ 6= ∅}.

Then

min{|C| | C ∈ T}+ t ≤ α(∆) ≤ min{|A| | A =
⋃
e∈C

e when C ∈ T}+ t.

Proof. Without loss of generality, one can assume that t = 0. To prove the first
inequality, suppose that A is a minimal vertex cover of ∆. Then it is enough to
show that there is an element C in T with |C| = |A|. Since A is a vertex cover of
∆, for each facet F of ∆, there is an element x ∈ A ∩ F . Now, assume that for
each facet G of ∆ with G 6= F , we have x 6∈ G. Since F is not an isolated facet,
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there is a facet G of ∆ with G 6= F such that F ∩ G 6= ∅. So, there is an element
x′ ∈ F ∩G. Now, set A′ = A∪{x′} \ {x}. Hence, A′ is also a minimal vertex cover
of ∆ with |A| = |A′|. Therefore, we may assume that each element of A belongs to
at least two facets of ∆. Hence, for each x ∈ A, there are distinct facets Fx and
Gx with x ∈ Fx ∩ Gx. Also, minimality of A shows that for two distinct elements
x, y ∈ A, we can choose Fx, Gx, Fy and Gy such that Fx ∩Gx 6= Fy ∩Gy. Now, we
set

C = {Fx ∩Gx | x ∈ A}.

It is clear that C ⊆ E∆ and |C| = |A|. Moreover, for each facet F of ∆, there are
x ∈ A and a facet G of ∆ with G 6= F such that x ∈ F ∩ G. If we set e = F ∩ G
and e′ = Fx ∩Gx, then x ∈ e ∩ e′. So, C ∈ T and |C| = |A| as desired.

To prove the second inequality, we show that for each C ∈ T , the set
⋃

e∈C e is
a vertex cover of ∆. Let C ∈ T and F be a facet of ∆. Then there are e ∈ NE(F )
and e′ ∈ C such that e∩ e′ 6= ∅. So, by choosing x ∈ e∩ e′, we have x ∈ F ∩

⋃
e∈C e

as required. �

The following corollary is immediately gained from Theorem 2.8.

Corollary 2.9. By the notions that was used in Theorem 2.8, if all elements in
each minimal member of T are of zero dimension, then

α(∆) = min{|C| | C ∈ T}+ t.

3. The Intersection Ideal of A Simplicial Complex

Assume that ∆ = 〈F1, . . . , Fm〉 is a simplicial complex over a finite set of vertices
V = {x1, . . . , xn} and k is a ring. Hereafter, we use the same notion xi1 . . . xis

for
the face {xi1 , . . . , xis} of ∆ and the monomial xi1 . . . xis in the polynomial ring
R = k[x1, . . . , xn]. Let

J∆ = 〈e | e ∈ E∆〉.

We call J∆ as the intersection ideal of ∆.
As we promised in the introduction, in this section, we are going to study the re-

lations between algebraic properties of J∆ and graph theoretic concepts concerning
G(∆). We begin with the following result.

Proposition 3.1. Let ∆ be a simplicial complex without any isolated facet such that
any two generators of J∆ are not coprime. Then G(∆) is complete. In particular,
if ∆ is a simplicial complex with no isolated facet such that its intersection ideal is
principal, then G(∆) is complete.

Proof. Assume that F and G are two distinct facets of ∆. Since they are not
isolated, there are two facets F ′ 6= F and G′ 6= G of ∆ such that F ∩ F ′ 6= ∅ and
G ∩ G′ 6= ∅. Hence, F ∩ F ′, G ∩ G′ ∈ J∆. Now, there are two generators e and f



INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX 83

of J∆ such that e|F ∩ F ′ and f |G ∩ G′ and by our assumption, e and f are not
coprime. So, the non-empty face e∩ f is contained in F ∩G, which insures that F
and G are adjacent in G(∆). �

Note that the converse of Proposition 3.1 is not generally true. For example,
if F1 = {a, b, c}, F2 = {b, d, e}, F3 = {a, d, f} and F4 = {c, e, f}, then J∆ =
〈a, b, c, d, e, f〉 and so all of the generators of J∆ are mutually coprime.

Proposition 3.2. Assume that G(∆) is a star graph with m vertices. Then the
intersection ideal J∆ has m− 1 generators which are mutually coprime.

Proof. Without loss of generality one may assume that G(∆) is a star graph with
center F1. Hence, for each 2 ≤ i ≤ m, F1 ∩ Fi 6= ∅ and for every two distinct
positive integers 2 ≤ i, j ≤ m, Fi ∩ Fj = ∅. Hence, J∆ = 〈F1 ∩ Fi | 2 ≤ i ≤ m〉.
Also, suppose in contrary that for some integers i and j with 2 ≤ i, j ≤ m, the
monomials F1∩Fi and F1∩Fj are not coprime. So, (F1∩Fi)∩ (F1∩Fj) 6= ∅. Now,
since Fi ∩ Fj includes the non-empty set F1 ∩ Fi ∩ Fj , we have that Fi ∩ Fj 6= ∅,
which is a contradiction. �

Recall that a subdivision of a graph is any graph that can be obtained from the
original graph by replacing edges by paths. If G and H are two graphs, we say
that G is a refinement of H if E(H) ⊆ E(G). Also, a graph is said to be planar
if it can be drawn in the plane, so that its edges intersect only at their ends. A
remarkable simple characterization of the planar graphs was given by Kuratowski
in 1930. Kuratowski’s Theorem says that a graph is planar if and only if it contains
no subdivision of K5 or K3,3 (cf. [4, p. 153]).

In the following result, by using a minimal generating set of the intersection ideal
J∆, we obtain some properties of G(∆).

Proposition 3.3. Let {e1, . . . , es} be a minimal generating set for J∆ and s > 1.
Also, suppose that G(∆) has no isolated vertex. Then the following statements hold.

(i) If there exists a facet F such that ei ∩ F 6= ∅, for all i with 1 ≤ i ≤ s, then
G(∆) is a refinement of a star graph.

(ii) Suppose that for all facets F , |NE(F )| = 1. Then G(∆) is the union of
complete graphs.

(iii) If there exists a facet F such that |NE(F )| = 1 and |NV (F )| > 3, then
G(∆) is not planar.

Proof. (i) We show that F is adjacent to all other vertices in G(∆). To this end,
let F ′ be an arbitrary vertex with F ′ 6= F . Since G(∆) has no isolated vertex, we
have that F ′ ∩ H 6= ∅, for some facet H in ∆. So ei ⊆ F ′ ∩ H, for some i with
1 ≤ i ≤ s. Thus ei ⊆ F ′ and hence ei ∩ F ⊆ F ′ ∩ F . Therefore, we have that
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F ′ ∩ F 6= ∅ and so F ′ is adjacent to F , which insures that G(∆) is a refinement of
a star graph with center F .

(ii) For any facet F in ∆, suppose that NV (F ) = {F1, . . . , Fk}. Since |NE(F )| =
1, we have F∩Fi = F∩Fj , for all i, j with 1 ≤ i, j ≤ k. This implies that Fi∩Fj 6= ∅.
So a subgraph of G(∆) with vertex-set {F, F1, . . . , Fk} forms a complete subgraph.
Now, one can easily see that G(∆) is the union of complete graphs.

(iii) In view of the proof of part (ii), it is easy to check that K5 is isomorphic to
a subgraph of G(∆) and so by Kuratowski’s Theorem G(∆) is not planar. �

In the next two results, we present some circumstances under which the girth of
G(∆) is three.

Proposition 3.4. If J∆ has two distinct generators which are not coprime, then
the girth of G(∆) is three.

Proof. Let Fi ∩ Fj and Fr ∩ Fs are two generators of J∆ which are not coprime.
Then (Fi ∩Fj)∩ (Fr ∩Fs) 6= ∅. So, all the sets Fi ∩Fr, Fi ∩Fs, Fj ∩Fr and Fj ∩Fs

are non-empty. This shows that the girth of G(∆) is three. �

Theorem 3.5. Let ∆ be a simplicial complex without any isolated facet. If 2ara(J∆)
< m, then the girth of G(∆) is three.

Proof. Suppose that ara(J∆) = s and J∆ = 〈Fik
∩ Fjk

| 1 ≤ k ≤ s, ik 6= jk, 1 ≤
ik, jk ≤ m〉. Now, since m > 2s, there is an integer 1 ≤ r ≤ m such that for each
1 ≤ k ≤ s, r 6= ik and r 6= jk. Also, we know that Fr is not an isolated facet. So,
there is a facet G of ∆ so that Fr ∩ G ∈ J∆. Therefore, there exists an integer
1 ≤ k ≤ s such that Fik

∩ Fjk
|Fr ∩G and hence Fik

∩ Fjk
⊆ Fr. This implies that

Fr is adjacent to both of Fik
and Fjk

, which implies that girth(G(∆)) = 3. �

We recall that for a graph G, a subset S of the vertex-set of G is called a
dominating set if every vertex not in S is adjacent to a vertex in S.

Proposition 3.6. Let ∆ be a connected simplicial complex such that ara(J∆) = s.
Then we can find a dominating set with s elements for G(∆).

Proof. Assume that J∆ = 〈Fik
∩ Fjk

| 1 ≤ k ≤ s, ik 6= jk, 1 ≤ ik, jk ≤ m〉 and
F is a facet of ∆. Then since ∆ is connected, there is a facet G in ∆ such that
F ∩G ∈ J∆. Therefore, Fik

∩ Fjk
⊆ F ∩G for some 1 ≤ k ≤ s. This implies that

F is adjacent to both of Fik
and Fjk

. So, {Fi1 , . . . , Fis
} is a dominating set for

G(∆). �

Theorem 3.7. If ∆ is a connected simplicial complex, then either G(∆) is a re-
finement of a star graph, or there is a dominating set with |V |−dim ∆−2 elements.
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Proof. Let dim ∆ = s. Then there is a facet F such that |F | = s + 1. Without
loss of generality one may assume that V \F = {x1, . . . , xn−s−1}. For each 1 ≤ i ≤
n− s− 1, there is a facet Fji

containing xi. If for every choice of Fj1 , . . . , Fjn−s−1 ,
we have Fji ∩ {x1, . . . , xn−s−1} = {xi}, then we should have F ∩ F ′ 6= ∅ for all
facets F ′ of ∆ and so G(∆) is a refinement of a star graph in this case. Otherwise,
without loss of generality we may assume that Fjn−s−1 = Fjn−s−2 . Now, for every
facet F ′ of ∆, we have F ′ ∩Fji

6= ∅, for some 1 ≤ i ≤ n− s− 2, which implies that
{Fj1 , . . . , Fjn−s−2} is a dominating set for G(∆). �

In the next two propositions, by applying the intersection ideal, we find some
relations between connectedness of a simplicial complex and its subcollections.

Proposition 3.8. Let ∆1 be a subcollection of the simplicial complex ∆2 such that
I∆1 = I∆2 and ∆2 doesn’t have any isolated facet. Then if ∆1 is connected, then
∆2 is also connected.

Proof. By Remarks 2.2(1), it is enough to show that if G(∆1) is connected, then
G(∆2) is also connected. So suppose that G(∆1) is connected and let F and G be
two distinct vertices in G(∆2). Since they are not isolated, there are two vertices
F ′ and G′ in G(∆2) such that F ∩F ′ 6= ∅ and G∩G′ 6= ∅. Hence, F ∩F ′ and G∩G′

belong to I∆2 and so to I∆1 . Therefore, there are elements e, f ∈ I∆1 such that
e|F ∩ F ′ and f |G ∩G′. Hence, there are vertices H,H ′,K, and K ′ in G(∆1) such
that e = H ∩H ′ ⊆ F ∩F ′ and f = K ∩K ′ ⊆ G∩G′, which insures that e ⊆ F ∩H
and f ⊆ G ∩K. This implies that F is adjacent to H and also G is adjacent to K
in G(∆2). Now, since H and K are two vertices in G(∆1) and G(∆1) is connected,
F and G are connected in G(∆2). So, G(∆2) is also connected as desired. �

Proposition 3.9. Let ∆ be a simplicial complex without any isolated facet such
that

J∆ = 〈Hi ∩Ki | 1 ≤ i ≤ k〉

and ∆′ = 〈H1, . . . ,Hk〉. Then if G(∆′) is connected, then so is G(∆).

Proof. Let F and G be two distinct vertices in G(∆). Since they are not isolated,
there are two vertices F ′ and G′ in G(∆) such that F ∩ F ′ 6= ∅ and G ∩ G′ 6= ∅.
Hence, there are integers i and j with 1 ≤ i, j ≤ k such that Hi ∩Ki ⊆ F ∩F ′ and
Hj ∩Kj ⊆ G ∩G′. Therefore, we have Hi ∩Ki ⊆ F ∩Hi and Hj ∩Kj ⊆ G ∩Hj .
So, F is adjacent to Hi and also G is adjacent to Hj in G(∆). Now, if i = j, it is
clear that F −Hi − G is a path from F to G in G(∆). Otherwise, since G(∆′) is
connected, there is a path from Hi to Hj which completes our proof. �

In the following result, for a simplicial complex ∆, we present some relations
between the intersection ideal J∆ and α(∆).
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Theorem 3.10. (i) If ∆ is a tree (or forest), then

α(∆) = Coclique(G(∆)).

(ii) Let ∆ be a simplicial complex without any isolated facet. Then

α(∆) ≤ min{
∑
e∈T

|e| | T is a minimal generating set of J∆}.

(iii) Let ∆ be a simplicial complex without any isolated facet. Then

α(∆) ≤ heightR(J∆).

Proof. (i) The result follows from [13, Theorem 5.3] and part (3) in Remarks 2.2.
(ii) Let T = {e1, . . . , ek} be a minimal generating set for J∆ and F be a facet of
∆. Since F is not an isolated facet, there is a facet G in ∆ such that F ∩G ∈ J∆.
Hence, there is an integer 1 ≤ i ≤ k such that ei|F ∩ G. So, ei is contained in F .
Now, choose an element xF from ei. It is clear that the set {xF | F is a facet in ∆}
is a vertex cover of ∆ and it has at most

∑
e∈T |e| elements. This completes the

proof.
(iii) Let heightR(J∆) = k. Then there is a minimal prime ideal p = 〈xi1 , . . . , xik

〉 of
J∆, where {xi1 , . . . , xik

} is contained in {x1, . . . , xn}. Now, for each facet F of ∆
there is a facet G of ∆ such that F ∩G is contained in J∆ and so in p. Therefore,
there exists an integer 1 ≤ j ≤ k such that xij

|F ∩G, that is xij
∈ F . This implies

that {xi1 , . . . , xik
} is a vertex cover for ∆. �

In the following example, we state that the inequality in part (iii) of Theorem 3.10,
may be strict.

Example 3.11. Consider the simplicial complex ∆ in Figure (1), with facets F1 =
{a, b, c}, F2 = {c, d}, F3 = {d, e, f} and F4 = {b, f}. It is easy to see that α(∆) = 2
and heightR(J∆) = 4.
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Here, we recall some definitions and notations on partially ordered sets. We use
the standard terminology of partially ordered sets in [11].
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In a partially ordered set (P,≤) (poset, briefly) an element m in P is minimal
if x ≤ m for some x ∈ P , implies that x = m and it is called the least element if
m ≤ x, for all x ∈ P . Also, an element m in P is maximal if m ≤ x for some x ∈ P ,
implies that x = m and it is said to be the greatest element if x ≤ m, for all x ∈ P .
(P,≤) is called bounded if it has the least and the greatest elements. Assume that
S is a subset of P . Then an element x in P is a lower bound of S if x ≤ s for all
s ∈ S. An upper bound is defined in a dual manner. The set of all lower bounds of
S is denoted by S` and the set of all upper bounds of S is denoted by Su, i.e.,

S` := {x ∈ P | x ≤ s, for all s ∈ S}

and

Su := {x ∈ P | s ≤ x, for all s ∈ S}.

If S = {s}, we denote Su and S` by [s]u and [s]`, respectively. If for any a and b in
P , either a ≤ b or b ≤ a, then the partial order is called a total order. If a subset
of P is totally ordered, it is called a chain. An antichain is a set of elements that
are pairwise incomparable.

Recall that the order complex ∆(Π) of a poset (Π,≤) is the set of chains of Π
(see [6]). In the sequel, we study G(Π) which is the intersection graph of the order
complex of the poset (Π,≤).

Theorem 3.12. Let Π be a finite poset with minimal elements a1, . . . , an. Then
the following statements hold.

(i) If t is the maximum number of elements in an antichain of Π, then |V (G(Π))| >
t.

(ii) If Π is bounded, then G(Π) is complete.
(iii) Suppose that there exists a minimal element a in Π such that [a]u has more

than four maximal elements, then G(Π) is not planar.
(iv) Let ti be the number of maximal elements in [ai]u. Then

χ(G(Π)) ≥ ω(G(Π)) ≥ max{ti | i = 1, . . . , n}.

In particular, if [ai]u ∩ [aj ]u = ∅, for all 1 ≤ i, j ≤ n with i 6= j, then G(Π)
is the union of complete graphs and we also have

χ(G(Π)) = ω(G(Π)) = max{ti | i = 1, . . . , n}.

Proof. (i) The vertices of G(Π) are the maximal chains in Π and one can easily
see that |V (G(Π))| is equal to or greater than the minimum number of disjoint
chains which together contain all elements of Π. Now, by Dilworth’s Theorem [18],
we have that the minimum number of disjoint chains which together contain all
elements of Π is equal to the maximum number of elements in an antichain of π.
Thus the result holds.
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(ii) If Π is bounded, then all maximal chains in Π contain the least element and
so they have non-empty intersection. So, G(Π) is a complete graph.

(iii) Consider m1, . . . ,m5 in [a]u. For 1 ≤ i ≤ 5, let Fi be the maximal chain
descending from mi and contains a. Therefore, the set of vertices {F1, . . . , F5}
forms a complete subgraph isomorphic to K5 and so by Kuratowski’s Theorem,
G(Π) is not planar.

(iv) Clearly χ(G(Π)) ≥ ω(G(Π)). Let mi1, . . . ,miti
be distinct maximal elements

in [ai]u. Also, for each j = 1, . . . , ti, let Fij be a maximal chain descending from
mij and containing ai. Now, it is easy to check that the set of vertices Fi1, . . . , Fiti

forms a clique for G(Π). Thus we have

χ(G(Π)) ≥ ω(G(Π)) ≥ max{ti | i = 1, . . . , n}.

Also, since [ai]u ∩ [aj ]u = ∅, for all 1 ≤ i, j ≤ n with i 6= j, one can easily see
that G(Π) is the union of n complete graphs which are isomorphic to Kt1 , . . . ,Ktn

and so we have

χ(G(Π)) = ω(G(Π)) = max{ti | i = 1, . . . , n}.

�

We end this note by the following example which states that the inequality in part
(i) of Theorem 3.12, may be strict.

Example 3.13. Consider the order complex ∆(Π) of the poset (Π,≤) in Fig-
ure 2, with chains {a, c, d}, {a, c, e}, {b, c, d} and {b, c, e}. It is easy to see that
|V (G(Π))| = 4 and the maximum number of elements in an antichain of π is equal
to 2.
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