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1. Introduction

An element a of a ring R is said to be Lie regular if a = [e, u] for some idempotent
e and some unit u in R. A Lie regular element which is also a unit is called a Lie
regular unit. Lie regular elements and Lie regular units were introduced and studied
by the authors (cf. [3]) In [3], Lie regular units are used to study generators of linear
groups and the presentations of GL(2,Z4), GL(2,Z6), GL(2,Z8), and GL(2,Z10)
using these units are given. In this paper we continue this discussion and give Lie
regular generators of GL(2,Z3pn) where p is a prime greater than 3 (Theorem 2.10
and Theorem 2.11) and GL(2,Z5pn) where p is a prime greater than 5 (Theorem
2.12 and Theorem 2.13). For distinct primes p and q such that 5 < p < q, Lie
regular generators of GL(2,Zpqn) under some conditions are given (Theorem 2.14).
As special cases of Theorem 3.6 and Theorem 3.8 in [3] and the results in this
article, presentation of linear groups GL(2,Z9), GL(2,Z14), GL(2,Z15), GL(2,Z22),
GL(2,Z25), GL(2,Z26), GL(2,Z27) and GL(2,Z34) using Lie regular units are also
given.

Throughout this paper, φ denotes the Euler’s totient function and U(R) will
denote the unit group of the ring R.

2. Generators of Linear Groups

In this section we give Lie regular generators of some linear groups. We first give
some results on the order of linear groups GL(2,Zn).
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Proposition 2.1. ([3, Proposition 3.2]) For any prime p, the order of the linear
group GL(2,Zpn) is p2n−1(p+ 1)(φ(pn))2.

Corollary 2.2. For any n =
k∏
i=1

pαii , where pi’s are distinct primes, the order of

GL(2,Zn) is
k∏
i=1

o(GL(2,Zpαii )).

Corollary 2.3. For any two distinct primes p and q, the order of the linear group
GL(2,Zpq) is pq(p+ 1)(q + 1)φ(pq)2.

Since for each invertible element α in Zn, the number of matrices in M2(Zn)
having determinant α is equal to the order of SL(2,Zn), we have the following
corollary.

Corollary 2.4. The order of the linear group SL(2,Zn) is
o(GL(2,Zn))

φ(n)
.

Remark 2.5. The elements a =

(
1 0
−1 −1

)
and b =

(
0 k

1 0

)
, where k is

invertible in Zn, are Lie regular units in M2(Zn). Further, if 2 is invertible in Zn

then c =

(
1 0
0 −1

)
is also a Lie regular unit in M2(Zn). This follows once we

observe that (
1 0
−1 −1

)
=

[(
1 1
0 0

)
,

(
0 1
1 −1

)]
.

(
0 k

1 0

)
=

[(
1 0
0 0

)
,

(
0 k

−1 0

)]
.

(
1 0
0 −1

)
=

[(
1
2 1
1
4

1
2

)
,

(
1 0
1 1

)]
.

Lemma 2.6. Let p be an odd prime and α be an invertible primitive element modulo

pn. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
, c =

(
0 α

1 0

)
, x = (bc)

φ(pn)
2 a, and

y = c−1b−1cb. Then the following hold for a, b, c, x, and y as elements of
M2(Zpn).

(1) c2 is central element of M2(Zpn) and o(c) = 2φ(pn).
(2) o(cb) = o(bc) = φ(pn).
(3) o(y) = o(cb) = φ(pn).
(4) o(x) = pn.
(5) yx = xα

−2
y and xy = yxα

2
.



LIE REGULAR GENERATORS OF GENERAL LINEAR GROUPS II 93

Proof. (1) Since c2 = αI2, c2 is in the center of M2(Zpn). Also, since α is a
primitive element modulo pn, we have c2φ(pn) = I2 and ck 6= I2 for any k < φ(pn).

(2) We have bc =

(
1 0
0 α

)
and cb =

(
α 0
0 1

)
. Thus, for any i, (bc)i =(

1 0
0 αi

)
and (cb)i =

(
αi 0
0 1

)
. Since α is a primitive element modulo pn,

o(bc) = o(cb) = φ(pn).
(3) Since the order of b is 2, we have c−1b−1cb = c−1bcb = c−2(cb)2. Since c2

is central and o((cb)2) = 1
2o(c

2), we have o(c−1b−1cb) = o(c2).

(4) Since (bc)i =

(
1 0
0 αi

)
and α

φ(pn)
2 ≡ −1(mod pn), we get (bc)

φ(pn)
2 =(

1 0
0 −1

)
. Thus, x = (bc)

φ(pn)
2 a =

(
1 0
1 1

)
.

It is now easy to see that xn =

(
1 0
n 1

)
for all n. In particular, xp

n

=(
1 0
pn 1

)
=

(
1 0
0 1

)
. Since xk 6= I2 for any k < pn we have o(x) = pn.

(5) As in Part 4, x = (bc)
φ(pn)

2 a =

(
1 0
1 1

)
. Also, y = c−1b−1cb =

(
α 0
0 α−1

)
.

Thus, yx =

(
α 0
α−1 α−1

)
and xy =

(
α 0
α α−1

)
.

Also, xα
−2
y =

(
1 0
α−2 1

)(
α 0
0 α−1

)
=

(
α 0
α−1 α−1

)
and yxα

2
=(

α 0
α α−1

)
. Hence, yx = xα

−2
y and xy = yxα

2
. �

The proof of the following lemma is similar to the above proof.

Lemma 2.7. Let p be an odd prime and α be an invertible primitive element modulo

pn. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
, c =

(
0 α

1 0

)
, x = (bc)

φ(pn)
2 a, and

y = c−1b−1cb. Then the following hold for a, b, c, x, and y as elements of
M2(Z2pn).

(1) c2 is a central element of M2(Z2pn) and o(c) = 2φ(pn).
(2) o(cb) = o(bc) = φ(pn).
(3) o(y) = o(cb) = φ(pn).
(4) o(x) = 2pn.
(5) yx = xα

−2
y and xy = yxα

2
.
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Lemma 2.8. If p and q are distinct odd primes then the order of any invertible
element x in Zpmqn is at most 1

2φ(pmqn).

Proof. Let x be an invertible element in Zpmqn . Then gcd(x, pm) = 1 and
gcd(x, qn) = 1. Thus, xφ(pm) ≡ 1(mod pm) and xφ(qn) ≡ 1(mod qn). Conse-
quently, x

1
2φ(pmqn) ≡ 1(mod pm) and x

1
2φ(pmqn) ≡ 1(mod qn). Thus, x

1
2φ(pmqn) ≡

1(mod pmqn). �

Lemma 2.9. If p and q are two distinct odd primes such that q > p then for
0 ≤ k < p there exists α ∈ U(Zpqn) such that α ≡ k(mod p) and α is primitive
element modulo qn.

Proof. The proof follows from the fact that if α is a primitive root modulo qn

then α + kqn is also a primitive root modulo qn and the order of U(Zpqn) is (p −
1)φ(qn). �

Let p be a prime greater than 3 and let α ∈ U(Z3pn) be a primitive element

modulo pn. Let A =

(
1 0

1− α−1 1

)
. Since Am =

(
1 0

m(1− α−1) 1

)
for any

m, Ak =

(
1 0
1 1

)
for some k if and only if 1 − α−1 is invertible in Z3pn . Since

α ∈ U(Z3pn), it follows that α ≡ 2(mod 3). Moreover, in this case, if p ≡ 3(mod 4),
then α

φ(pn)
2 ≡ −1(mod 3pn), and if p ≡ 1(mod 4), then αk is not congruent to −1

modulo 3pn for any k < φ(pn).
Also, since the order of U(Z3pn) ' U(Z3) × U(Zpn), there is an element β in

U(Z3pn), β 6= αi, (1 ≤ i ≤ φ(pn)) and the order of β is 2.

Theorem 2.10. Let p be a prime greater than 3 such that p ≡ 1 (mod 4) and
α ∈ U(Z3pn) be a primitive element modulo pn such that α ≡ 2(mod 3). Then

GL(2,Z3pn) is generated by Lie regular elements a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
,

and c =

(
0 α

1 0

)
.

Proof. Since p ≡ 1(mod 4) and α ≡ 2(mod 3), as remarked above, αi is not
congruent to −1 modulo 3pn for any i < φ(pn). Let G be the finite group generated
by a, b, and c. Since α ≡ 2(mod 3), 1 − α−1 is invertible in Z3pn . Let m be the
inverse of 1 − α−1. Let x = (cabac−1a)m and y = c−1b−1cb. Then x, y ∈ G.

Since cabac−1a =

(
1 0

1− α−1 1

)
, x =

(
1 0
1 1

)
. Also, y =

(
α 0
0 α−1

)
.

Thus, the order of x is 3pn and the order of y is φ(pn). Also, yx = xα
−2
y. Let

H1 = 〈x, y | x3pn , yφ(pn), yx = xα
−2
y〉. Then H1 is a subgroup of G. Since xi 6= yj
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for 1 ≤ i ≤ 3pn − 1 and 1 ≤ j ≤ φ(pn) − 1 and the canonical form of H1 is
{xiyj | 0 ≤ i ≤ 3pn− 1, 0 ≤ j ≤ φ(pn)− 1}, the order of H1 is 3pnφ(pn). Moreover,

any arbitrary element of H1 is of the form

(
αi 0
γ α−i

)
.

Let r = bxb and s = (b(cabac−1a)ma)2. Then r, s ∈ G, the order of r is 3pn, and
the order of s is 2. Also, sr = rs. Let H2 = 〈r, s | r3pn , s2, rs = sr〉. Then H2 is an

abelian subgroup of G and any arbitrary element of H2 is of the form ±

(
1 k

0 1

)
.

Thus, the order of H2 is 6pn. Since H1 ∩ H2 = {I2}, o(H1H2) =
o(H1)o(H2)
o(H1 ∩H2)

=

18p2nφ(pn). Let H be the subgroup of G generated by x, y, r, and s. Since x, y, r,
and s are all of determinant 1, H ⊂ SL(2,Z3pn). Also, H1H2 ⊂ H and by Corollary
2.4, o(SL(2,Z3pn)) = 24p2n−1(p + 1)φ(pn). Thus, the order of the subgroup H is
greater than equal to 18p2nφ(pn) and is less than equal to 24p2n−1(p + 1)φ(pn).
Since p > 3, 18p ≥ 12(p + 1), and hence o(H1H2) > 1

2o(SL(2,Z3pn)). Thus, the
order of H is 24p2n−1(p+ 1)φ(pn).

Let u = bc =

(
1 0
0 α

)
and v = (cabac−1a)ma =

(
1 0
0 −1

)
. Then u, v ∈ G,

the order of u is φ(pn), and the order of v is 2. Let K = 〈u, v | uφ(pn), v2, uv = vu〉.
Since αi 6= ±1 for any positive integer i < φ(pn), H∩K = {I2}, and hence o(HK) =
o(H)o(K)
o(H ∩K)

= 48p2n−1(p+1)(φ(pn))2. Since HK ⊆ GL(2,Z3pn) and by Proposition

2.1, the order of GL(2,Z3pn) is 48p2n−1(p+1)(φ(pn))2, HK = GL(2,Z3pn). Hence,
GL(2,Z3pn) is generated by a, b and c. �

Theorem 2.11. Let p be a prime greater than 3 such that p ≡ 3 (mod 4), α ∈
U(Z3pn) be a primitive element modulo pn such that α ≡ 2(mod 3), and β is an
invertible element in Z3pn such that the order of β is 2 and β 6= αi, (1 ≤ i ≤ φ(pn)).

Then GL(2,Z3pn) is generated by Lie regular elements a =

(
1 0
−1 −1

)
, b =(

0 1
1 0

)
, c =

(
0 α

1 0

)
, and d =

(
0 β

1 0

)
.

Proof. Since p ≡ 3(mod 4) and α ≡ 2(mod 3), as remarked above α
φ(pn)

2 ≡
−1 (mod 3pn). Let G be the finite group generated by a, b, c, and d.

Let x = (bc)
φ(pn)

2 a =

(
1 0
1 1

)
and y = c−1b−1cb =

(
α 0
0 α−1

)
. Then

x, y ∈ G. As in Lemma 2.6, the order of x is 3pn, and the order of y is φ(pn). Also,
yx = xα

−2
y. Let H1 = 〈x, y | x3pn , yφ(pn), yx = xα

−2
y〉. Then H1 is a subgroup of

G. Since xi 6= yj for 1 ≤ i ≤ 3pn− 1 and 1 ≤ j ≤ φ(pn)− 1 and the canonical form
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of H1 is {xiyj | 0 ≤ i ≤ 3pn − 1, 0 ≤ j ≤ φ(pn) − 1}, the order of H1 is 3pnφ(pn).

Moreover, any element of H1 is of the form

(
αi 0
γ α−i

)
.

Let r = bxb =

(
1 1
0 1

)
and s = d2 =

(
β 0
0 β

)
. Then r, s ∈ G. Since

β is of order 2, order of r is 3pn, and order of s is 2. Also, sr = rs. Let H2 =
〈r, s | r3pn , s2, rs = sr〉. Then H2 is an abelian subgroup of G and any arbitrary

element of H2 is of the form

(
βi k

0 βi

)
, where i = 0 or 1. Thus, the order of

H2 is 6pn. Since H1 ∩ H2 = {I2}, o(H1H2) =
o(H1)o(H2)
o(H1 ∩H2)

= 18p2nφ(pn). Let

H be the subgroup of G generated by x, y, r, and s. Since x, y, r, and s are
all of determinant 1, H ⊂ SL(2,Z3pn). Also, H1H2 ⊂ H and by Corollary 2.4,
o(SL(2,Z3pn)) = 24p2n−1(p+ 1)φ(pn), the order of the subgroup H is greater than
equal to 18p2nφ(pn) and is less than equal to 24p2n−1(p + 1)φ(pn). Since p > 3,
18p ≥ 12(p + 1), and hence o(H1H2) > 1

2o(SL(2,Z3pn)). Thus, the order of H is
24p2n−1(p+ 1)φ(pn).

Let u = bc =

(
1 0
0 α

)
and v = db =

(
β 0
0 1

)
. Then u, v ∈ G, the order of

u is φ(pn), the order of v is 2, and uv = vu. Let K = 〈u, v | uφ(pn), v2, uv = vu〉.
Since αi 6= β for any i ≤ φ(pn), det(uivj) 6= 1 for 0 ≤ i < φ(pn) and j = 0 or

1, H ∩ K = {I2}. Thus, o(HK) =
o(H)o(K)
o(H ∩K)

= 48p2n−1(p + 1)(φ(pn))2. Since

HK ⊂ GL(2,Z3pn) and by Proposition 2.1, the order of GL(2,Z3pn) is 48p2n−1(p+
1)(φ(pn))2, HK = GL(2,Z3pn). Hence, GL(2,Z3pn) is generated by a, b, c and d

in this case. �

Next we give generators of GL(2,Z5pn), where p is a prime greater than 5.
First observe that, in this case, if α is a primitive element modulo pn such that
α ≡ 2(mod 5) then α−1 ≡ 3(mod 5), and thus 1 − α−1 ∈ U(Z5). Also, if
1− α−1 /∈ U(Zpn) then 1− α /∈ U(Zpn). Thus, α = pmk + 1 for some nonnegative
integer k and positive integer m < n. But then αp

n−m ≡ 1(mod pn), a contradiction
as pn−m < φ(pn) and α is a primitive element modulo pn. Thus, 1−α−1 ∈ U(Zpn).
Moreover, if α ≡ 2(mod 5) then the order of α modulo 5 is 4. It follows that if
α is a primitive element modulo pn such that α ≡ 2(mod 5), then the order of α
modulo 5pn is φ(pn) if p ≡ 1(mod 4) and the order of α modulo 5pn is 2φ(pn) if
p ≡ 3(mod 4) .

Theorem 2.12. Let p be a prime greater than 5 such that p ≡ 3(mod 4) and
α ∈ U(Z5pn) be a primitive element modulo pn such that α ≡ 2(mod 5). Then
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GL(2,Z5pn) is generated by Lie regular elements a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
,

and c =

(
0 α

1 0

)
.

Proof. Since p ≡ 3(mod 4) and α ≡ 2(mod 5), the order of α modulo 5pn is
2φ(pn). Let G be the finite group generated by a, b, c, and d. Let m be the inverse
of 1 − α−1 in Z5pn . Let x = (cabac−1a)m and y = c−1b−1cb. Then x, y ∈ G.

Since cabac−1a =

(
1 0

1− α−1 1

)
, x =

(
1 0
1 1

)
. Also, y =

(
α 0
0 α−1

)
. As

in Lemma 2.6, the order of x is 5pn and the order of y is 2φ(pn). Also, yx = xα
−2
y.

Let

H1 = 〈x, y | x5pn , y2φ(pn), yx = xα
−2
y〉.

Since xi 6= yj for 0 ≤ i ≤ 5pn − 1, 0 ≤ j ≤ 2φ(pn) − 1 and the canonical form of
H1 is {xiyj | 0 ≤ i ≤ 5pn − 1, 0 ≤ j ≤ 2φ(pn) − 1}, the order of H1 is 10pnφ(pn).

Moreover, any element of H1 is of the form

(
αi 0
γ α−i

)
.

Let r = bxb =

(
1 1
0 1

)
and s = (bxa)2 = −I2. Then r, s ∈ G, the order of r is

5pn and the order of s is 2. Also, rs = sr. Let H2 = 〈r, s | r5pn , s2, rs = sr〉. Then
H2 is an abelian subgroup of G and the order of H2 is 10pn. Clearly, H1 ∩H2 =

{I2}. Thus, o(H1H2) =
o(H1)o(H2)
o(H1 ∩H2)

= 100p2nφ(pn). Let H be the subgroup

of G generated by x, y, r, and s. Since x, y, r, and s are all of determinant
1, H ⊂ SL(2,Z5pn). Also, H1H2 ⊂ H and by Corollary 2.4, o(SL(2,Z5pn)) =
120p2n−1(p + 1)φ(pn), the order of the subgroup H generated by x, y, r and s is
greater than equal to 100p2nφ(pn) and is less than equal to 120p2n−1(p+ 1)φ(pn).
Since p > 5, 100p ≥ 60(p + 1), and hence the order of H is 120p2n−1(p + 1)φ(pn).
Thus, H = SL(2,Z5pn).

Let u = bc =

(
1 0
0 α

)
and v = xa =

(
1 0
0 −1

)
. Then u, v ∈ G, the order of

u is 2φ(pn) and the order of v is 2. Also, uv = vu. Let K = 〈u, v | u2φ(pn), v2, uv =
vu〉. Since the determinant of any nonidentity element in K is different from 1, H∩

K = {I2}, and hence o(HK) =
o(H)o(K)
o(H ∩K)

= 480p(2n−1)(p+ 1)(φ(pn))2. As HK ⊂

GL(2,Z5pn) and by Proposition 2.1, the order of GL(2,Z5pn) is 480p(2n−1)(p +
1)(φ(pn))2, HK = GL(2,Z5pn). Hence, GL(2,Z5pn) is generated by a, b, c, and
d. �

Theorem 2.13. Let p be a prime greater than 5 such that p ≡ 1 (mod 4) and
α ∈ U(Z5pn) be a primitive element modulo pn such that α ≡ 2(mod 5) and
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β is an invertible element in Z5pn such that the order of β is 4 and β 6= αi,
(1 ≤ i ≤ φ(pn)). Then GL(2,Z5pn) is generated by Lie regular elements a =(

1 0
−1 −1

)
, b =

(
0 1
1 0

)
, c =

(
0 α

1 0

)
, and d =

(
0 β

1 0

)
.

Proof. Since p ≡ 1(mod 4) and α ≡ 2(mod 5), the order of α modulo 5pn is
φ(pn). Let G be the finite group generated by a, b, c, and d. Let m be the inverse
of 1 − α−1 in Z5pn . Let x = (cabac−1a)m and y = c−1b−1cb. Then x, y ∈ G.

Since cabac−1a =

(
1 0

1− α−1 1

)
, x =

(
1 0
1 1

)
. Also, y =

(
α 0
0 α−1

)
. As

in Lemma 2.6, the order of x is 5pn and the order of y is φ(pn). Also, yx = xα
−2
y.

Let

H1 = 〈x, y | x5pn , yφ(pn), yx = xα
−2
y〉.

Since xi 6= yj for 0 ≤ i ≤ 5pn − 1, 0 ≤ j ≤ φ(pn)− 1 and the canonical form of H1

is {xiyj | 0 ≤ i ≤ 5pn − 1, 0 ≤ j ≤ φ(pn) − 1}, the order of H1 is 5pnφ(pn). Also,

elements of H1 are of the form

(
αi 0
γ α−i

)
.

Let r = bxb =

(
1 1
0 1

)
and s = d−1b−1db =

(
β 0
0 β−1

)
. Then r, s ∈

G, the order of r is 5pn and the order of s is 4. Also, rs2 = sr. Let H2 =
〈r, s | r5pn , s4, rs2 = sr〉. Since ri 6= sj for 0 ≤ i ≤ 5pn − 1, 0 ≤ j ≤ 3, and the
canonical form of H2 is {risj | 0 ≤ i ≤ 5pn− 1, 0 ≤ j ≤ 3}, the order of H2 is 20pn.

Also, any element of H2 is of the form

(
βi δ

0 β−i

)
. Since β 6= αi, (1 ≤ i ≤ φ(pn),

H1 ∩ H2 = {I2}. Therefore, o(H1H2) =
o(H1)o(H2)
o(H1 ∩H2)

= 100p2nφ(pn). Let H

be the subgroup of G generated by x, y, r, and s. Since x, y, r, and s are
all of determinant 1, H ⊂ SL(2,Z5pn). Also, H1H2 ⊂ H and by Corollary 2.4,
o(SL(2,Z5pn)) = 120p2n−1(p + 1)φ(pn), the order of the subgroup H generated
by x, y, r and s is greater than equal to 100p2nφ(pn) and is less than equal to
120p2n−1(p+ 1)φ(pn). Since p > 5, 100p ≥ 60(p+ 1), and hence the order of H is
120p2n−1(p+ 1)φ(pn). Thus, H = SL(2,Z5pn).

Let u = bc =

(
1 0
0 α

)
and v = d2 =

(
β 0
0 β

)
. Then u, v ∈ G, the order

of u is φ(pn), and the order of v is 2. Let K = 〈u, v | u2φ(pn), v2, uv = vu〉.
Then the order of K is 4φ(pn). Since determinant of nonidentity elements of K

is different from 1, we have H ∩ K = {I2}, and hence o(HK) =
o(H)o(K)
o(H ∩K)

=

480p(2n−1)(p + 1)(φ(pn))2. As HK ⊂ GL(2,Z5pn) and by Proposition 2.1, the
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order of GL(2,Z5pn) is 480p(2n−1)(p + 1)(φ(pn))2 , HK = GL(2,Z5pn). Hence,
GL(2,Z5pn) is generated by a, b, c and d. �

For the case when p and q are distinct primes greater than 5, we have the
following result.

Theorem 2.14. Let p and q be distinct primes such that 5 < p < q. Suppose there
exists an invertible element α of order (p−1)φ(qn)

2 in U(Zpqn) such that α is a prim-
itive element modulo qn. Let β be an invertible element in Zpqn such that the order
of β is p − 1 and β 6= αi for any i, 1 ≤ i ≤ φ(qn). Then GL(2,Zpqn) is generated

by Lie regular elements a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
, c =

(
0 α

1 0

)
, and

d =

(
0 β

1 0

)
.

Proof. LetG be a finite group generated by a, b, c, and d. First observe that 1−α−1

is invertible in Zpqn . Let m be the inverse of 1−α−1 in Zpqn . Let x = (cabac−1a)m,

and y = c−1b−1cb. Then x, y ∈ G. Since cabac−1a =

(
1 0

1− α−1 1

)
, x =(

1 0
1 1

)
. Also, y =

(
α 0
0 α−1

)
. As in Lemma 2.6, the order of x is pqn and

the order of y is (p−1)φ(qn)
2 . Also, yx = xα

−2
y. Let

H1 = 〈x, y | xpq
n

, y
(p−1)φ(qn)

2 , yx = xα
−2
y〉.

Since xi 6= yj for 0 ≤ i ≤ pqn − 1, 0 ≤ j ≤ φ(qn) − 1 and the canonical form of

H1 is {xiyj | 0 ≤ i ≤ pqn − 1, 0 ≤ j ≤ φ(qn) − 1}, the order of H1 is
pqnφ(pqn)

2
.

Moreover, any element of H1 is of the form

(
αi 0
γ α−i

)
.

Let r = bxb and s = d−1b−1db. Then r, s ∈ G, the order of r is pqn, and the
order of s is p − 1. Also, sr = rβ

−2
s. Let H2 = 〈r, s | rpqn , sp−1, sr = rβ

−2
s〉.

Further, ri 6= sj for 0 ≤ i ≤ pqn − 1, 0 ≤ j ≤ p − 2 and the canonical form of H2

is {risj | 0 ≤ i ≤ pqn − 1, 0 ≤ j ≤ p − 2}, the order of H2 is pqn(p − 1). Also,

any element of H2 is of the form

(
βi 0
δ β−i

)
. Since β 6= αi, (1 ≤ i ≤ φ(qn)),

H1 ∩ H2 = {I2}, and therefore o(H1H2) =
o(H1)o(H2)
o(H1 ∩H2)

=
p2q2n(p− 1)2φ(qn)

2
.

Let H be the subgroup of G generated by x, y, r, and s. Since x, y, r, and s

are all of determinant 1, H ⊂ SL(2,Zpqn). Also, H1H2 ⊂ H and by Corollary
2.4, o(SL(2,Z5pn)) = p(p − 1)(p + 1)(q + 1)q2n−1φ(qn), the order of the subgroup

H generated by x, y, r and s is greater than equal to
p2q2n(p− 1)2φ(qn)

2
and
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is less than equal to p(p − 1)(p + 1)(q + 1)q2n−1φ(qn). Since for 3 < p < q,
p(p − 1) > 2(p + 1) and q > q+1

2 , we have pq(p − 1) > (p + 1)(q + 1). Thus, the
order of H is p(p− 1)(p+ 1)(q + 1)q2n−1φ(qn), and hence H = SL(2,Zpqn).

Let u = bc and v = d
p−1
2 . Then u ∈ G and the order of u is

(p− 1)φ(qn)
2

.

K = 〈u, v | u2φ(pn), v2, uv = vu〉. Thus, H ∩ K = {I2}, and hence o(HK) =
o(H)o(K)
o(H ∩K)

= p(p− 1)2(p+ 1)(q + 1)q2n−1(φ(qn))2. As HK ⊂ GL(2,Zpqn) and by

Proposition 2.1, the order of GL(2,Zpqn) is p(p − 1)2(p + 1)(q + 1)q2n−1(φ(qn))2,
HK = GL(2,Zpqn). Hence, GL(2,Zpqn) is generated by a, b, c and d. �

3. Presentations of Some Linear Groups

In this section, we use Lie regular units to give presentation of linear groups over
some finite rings.

Theorem 3.1. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 5
1 0

)
. Then

GL(2,Z9) = 〈a, b, c | a2, b2, c12, c2a = ac2, c2b = bc2, (ab)3, (bc)6,
(ac)12 = (ca)12, ((bc)3a)9, c4bca = ((bc)3a)4(cb)2〉.

Proof. Let G be the subgroup of GL(2,Z9) generated by a, b, c and having the
presentation

〈a, b, c | a2, b2, c12, c2a = ac2, c2b = bc2, (ab)3, (bc)6,
(ac)12 = (ca)12, ((bc)3a)9, c4bca = ((bc)3a)4(cb)2〉.

Let x = (bc)3a. and y = c−1b−1cb. Then x, y ∈ G. Using the relators in G we get
the order of x is 9, the order of y is 6 and yx = x4y. Let H1 = 〈x, y | x9, y6, yx =
x4y〉. H1 is a subgroup of G and the canonical form of H1 is {xiyj | 0 ≤ i ≤ 8, 0 ≤
j ≤ 5}. Since no power of x is same as any power of y, the order of H1 is 54 and

any element of H1 is of the form

(
5i 0
β 2i

)
.

Let r = bxb. Then r ∈ G. Also, since the order of x is 9 and r is a conjugate
of x, the order of r is 9. Let H2 = 〈r〉, the cyclic group generated by r. Then H2

is also a subgroup of G and the order of H2 is 9. Also, elements of H2 are of the

form

(
1 β

0 1

)
. Clearly, H1 ∩H2 = {I2}. Thus, o(H1H2) =

o(H1)o(H2)
o(H1 ∩H2)

= 486.

Let H be the subgroup of G generated by x, y, and r. Since x, y, and r are all of
determinant 1, H ⊂ SL(2,Z9). Also, H1H2 ⊂ H and by Corollary 2.4, the order
of SL(2,Z9) is 648, the order of the subgroup H is greater than equal to 486 and
less than equal to 648. Now, since 486 > 1

2o(SL(2,Z9)), the order of H is 648, and
hence H = SL(2,Z9).
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Now bc ∈ G, being of determinant 5, does not belong to H (= SL(2,Z9)). Let
K = 〈bc〉. Since the order of bc is 6, the order of K is 6. Also, K ∩ H = {I2}.

Therefore, o(HK) =
o(H)o(K)
o(H ∩K

= 3888. Since HK ⊂ G ≤ GL(2,Z9) and by

Proposition 2.1, o(GL(2,Z9)) = 3888, we get HK = G = GL(2,Z9). Hence, the
theorem follows. �

Theorem 3.2. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 3
1 0

)
. Then

GL(2,Z14) = 〈a, b, c | a2, b2, c12, c2a = ac2, c2b = bc2, (ab)3, (bc)6,
(ac)6, ((bc)3a)14, c4bca = ((bc)3a)11(cb)2〉.

Proof. Let a, b, c be as above and let G be the subgroup of GL(2,Z14) having the
presentation

〈a, b, c | a2, b2, c12, c2a = ac2, c2b = bc2, (ab)3, (bc)6, (ac)6,
((bc)3a)14, c4bca = ((bc)3a)11(cb)2〉.

Let x = (bc)3a and y = c−1b−1cb. Then x, y ∈ G. Using the relators in G,
it is clear that the order of x is 14, the order of y is 6, and yx = x11y. Let
H1 = 〈x, y | x14, y6, yx = x11y〉. Then H1 is a subgroup of G. Since xi 6= yj for
0 ≤ i ≤ 13, 0 ≤ j ≤ 5 and the canonical form of H1 is {xiyj | 0 ≤ i ≤ 13, 0 ≤ j ≤ 5},

we get that the order of H1 is 84. Since x =

(
1 0
1 1

)
and y =

(
3 0
0 5

)
, it can

be seen that elements of H1 are of the form

(
3i 0
β 5i

)
.

Let r = bxb. Then r ∈ G. Since the order of x is 14 and r is a conjugate of
x, the order of r is 14. Let H2 = 〈r〉, the cyclic subgroup of G generated by r.
Then the order of H2 is 14 and it can be shown that the elements of H2 are of the

form

(
1 β

0 1

)
. Clearly, H1 ∩H2 = {I2}. Thus, o(H1H2) =

o(H1)o(H2)
o(H1 ∩H2)

= 1176.

Let H be the subgroup of G generated by x, y, and r. Since x, y, and r are
all of determinant 1, H ⊂ SL(2,Z14). Also, H1H2 ⊂ H. Thus, the order of H
is greater than equal to 1176. Since, by Corollary 2.4, the order of SL(2,Z14) is
2016 and 1176 > 1

2 · o(SL(2,Z14)), it follows that the order of H is 2016. Hence,
H = SL(2,Z14).
Let w = bc ∈ G. Then w, being of determinant 3, does not belong to H. Let
K = 〈w〉, the cyclic group generated by w. Then K is a subgroup of G, and since

the order of w is 6, o(K) = 6. Since H ∩K = {I2}, o(HK) =
o(H)o(K)
o(H ∩K

= 12096.

Now HK ⊂ G ≤ GL(2,Z14) and by Proposition 2.1, o(GL(2,Z14)) = 12096. Thus,
HK = G = GL(2,Z14). Hence, the theorem follows . �
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Theorem 3.3. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 2
1 0

)
. Then

GL(2,Z15) = 〈a, b, c | a2, b2, c8, c2a = ac2, c2b = bc2, (ab)3, (bc)4, (ac)8,
b(ac)4 = (ac)4b, (cabac7a)30, (cb)2(cabac7a)2 = (cabac7a)8(cb)2,

(b(cabac7a)2)5ca = ca(b(cabac7a)2)5〉.

Proof. Let G be the subgroup of GL(2,Z15) generated by a, b, c and having the
presentation

〈a, b, c | a2, b2, c8, c2a = ac2, c2b = bc2, (ab)3, (bc)4, (ac)8,
b(ac)4 = (ac)4b, (cabac7a)30, (cb)2(cabac7a)2 = (cabac7a)8(cb)2,

(b(cabac7a)2)5ca = ca(b(cabac7a)2)5〉.

Let x = (cabac7a)2 and y = c−1b−1cb. Then x, y ∈ G. Also, using the relators
in G, it follows that the order of x is 15, the order of y is 4, and yx = x4y. Let
H1 = 〈x, y | x15, y4, yx = x4y〉. Then H1 is a subgroup of G. Since xi 6= yj for
0 ≤ i ≤ 14, 0 ≤ j ≤ 3, and the canonical form of elements of H1 is {xiyj | 0 ≤ i ≤

14, 0 ≤ j ≤ 3}, the order of H1 is 60. Since x =

(
1 0
1 1

)
and y =

(
2 0
0 8

)
, any

element of H1 is of the form

(
2i 0
β 8i

)
.

Let r = bxb and s = c4(ac)4. Clearly, r, s ∈ G. Since the order of x is 15 and r is
a conjugate of x, the order of r is 15. Since both c4 and (ac)4 are of order 2 and are
commuting, the order of s is 2. Also, as c4 and (ac)4 commute with a, b, c, it follows
that rs = sr. Let H2 = 〈r, s | r15, s2, rs = sr〉. Then H2 is an abelian subgroup of
G. Since ri 6= sj for 0 ≤ i ≤ 19, 0 ≤ j ≤ 3, it follows that the order of H2 is 30.

Moreover, any element of H2 is of the form

(
1 β

0 1

)
. Clearly, H1 ∩H2 = {I2}.

Thus, o(H1H2) =
o(H1)o(H2)
o(H1 ∩H2)

= 1800. Let H be the subgroup of G generated

by x, y and r. Since x, y, and r are all of determinant 1, H ⊂ SL(2,Z14). Also,
H1H2 ⊂ H. Thus, the order of H is greater than equal to 1800. Since, by Corollary
2.4, the order of SL(2,Z15) is 2880 and 1800 > 1

2 · o(SL(2,Z15)), it follows that the
order of H is 2880. Hence, H = SL(2,Z15).

Now, let w = bc and z = sb. Then w, z ∈ G. Since determinants of w and z are
being of determinant 2 and −1 respectively, w and z do not belong to H. Also, the
order of w is 4, the order of z is 2, and wz = zw. Let K = 〈w, z | w4, z2, wz = zw〉.
Then K is an abelian subgroup of G. Since the order of w is 4 and the order

of z is 2, o(K) = 8. Since H ∩ K = {I2}, o(HK) =
o(H)o(K)
o(H ∩K)

= 23040. As

HK ⊂ G ≤ GL(2,Z15) and by Proposition 2.1, o(GL(2,Z15)) = 23040, we get
HK = G = GL(2,Z15). Hence, the theorem follows. �
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Theorem 3.4. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 7
1 0

)
. Then

GL(2,Z22) = 〈a, b, c | a2, b2, c20, c2a = ac2, c2b = bc2, (ab)3, (bc)10,
(ac)6 = c10(ca)6, ((bc)5a)22, c4(bc)3a = ((bc)5a)9(cb)2〉.

Proof. Let G be the subgroup of GL(2,Z22) generated by a, b, c and having
presentation

〈a, b, c | a2, b2, c20, c2a = ac2, c2b = bc2, (ab)3, (bc)10,
(ac)6 = c10(ca)6, ((bc)5a)22, c4(bc)3a = ((bc)5a)9(cb)2〉.

Let x = (bc)5a and y = c−1b−1cb. Then x, y ∈ G. Using the relators in G,
it is clear that the order of x is 22, the order of y is 10, and yx = x9y. Let
H1 = 〈x, y | x22, y10, yx = x9y〉. Then H1 is a subgroup of G. Since xi 6= yj for
0 ≤ i ≤ 21, 0 ≤ j ≤ 9 and the canonical form of elements of H1 is {xiyj | 0 ≤ i ≤

21, 0 ≤ j ≤ 9}, it follows that the order of H1 is 220. Since x =

(
1 0
1 1

)
and

y =

(
7 0
0 19

)
, it follows that elements of H1 are of the form

(
7i 0
β 19i

)
.

Let r = bxb. Then r ∈ G. Since the order of x is 22 and r is a conjugate of
s, the order of r is 22. Let H2 = 〈r〉, the cyclic subgroup of G generated by r.
Then the order of H2 is 22. It can be seen that the elements of H2 are of the

form

(
1 β

0 1

)
. Clearly H1 ∩H2 = {I2}. Thus, o(H1H2) =

o(H1)o(H2)
o(H1 ∩H2)

= 4840.

Let H be the subgroup of G generated by x, y and r. Since x, y, and r are all
of determinant 1, H ⊂ SL(2,Z22). Also, H1H2 ⊂ H. Thus, the order of H is
greater than equal to 4840. Since, by Corollary 2.4, the order of SL(2,Z22) is
7920 and 4840 > 1

2 · o(SL(2,Z22)), it follows that the order of H is 7920. Hence,
H = SL(2,Z22).

Further, w = bc ∈ G, being of determinant 7, does not belong to H. Let
K = 〈w〉, the cyclic group generated by w. Then K is a subgroup of G and since

the order of w is 10, o(K) = 10. Since H∩K = {I2}, o(HK) =
o(H)o(K)
o(H ∩K)

= 79200.

As HK ⊂ G ≤ GL(2,Z22) and by Proposition 2.1, o(GL(2,Z22)) = 79200, we get
HK = G = GL(2,Z22). Hence, the theorem follows. �

Theorem 3.5. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 2
1 0

)
. Then

GL(2,Z25) = 〈a, b, c | a2, b2, c40, c2a = ac2, c2b = bc2, (ab)3, (bc)20,
(ac)4 = (ca)4, (ac)20, ((bc)10a)25, abacab = cb(c(bc)9ab)13,
(cb)2(bc)10a = ((bc)10a)19(cb)2〉.
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Proof. Let G be the subgroup of GL(2,Z25) generated by a, b, c having the
presentation

〈a, b, c | a2, b2, c40, c2a = ac2, c2b = bc2, (ab)3, (bc)20,
(ac)4 = (ca)4, (ac)20, ((bc)10a)25, abacab = cb(c(bc)9ab)13,
(cb)2(bc)10a = ((bc)10a)19(cb)2〉.

Let x = (bc)10a =

(
1 0
1 1

)
and y = c−1b−1cb =

(
2 0
0 13

)
. Then x, y ∈ G.

Also, using the relators in G, it is clear that the order of x is 25, the order of y is
20, and yx = x19y. Let H1 = 〈x, y | x25, y20, yx = x19y〉. Then H1 is a subgroup
of G. Since xi 6= yj for 0 ≤ i ≤ 24, 0 ≤ j ≤ 19 and the canonical form of H1 is

{xiyj | 0 ≤ i ≤ 24, 0 ≤ j ≤ 19}, the order of H1 is 500. Since x =

(
1 0
1 1

)
and

y =

(
2 0
0 13

)
, it follows that the elements of H1 are of the form

(
2i 0
β 13i

)
.

Let r = bxb. Then r ∈ G. Since the order of x is 25 and x is a conjugate
of b, the order of r is 25. Let H2 = 〈r〉, the cyclic subgroup of G generated by
r. Then the order of H2 is 25 and any arbitrary element of H2 is of the form(

1 β

0 1

)
. Clearly H1 ∩ H2 = {I2}. Thus, o(H1H2) =

o(H1)o(H2)
o(H1 ∩H2)

= 12500.

Let H be the subgroup of G generated by x, y and r. Since x, y, and r are all
of determinant 1, H ⊂ SL(2,Z25). Also, H1H2 ⊂ H. Thus, the order of H is
greater than equal to 12500. Since, by Corollary 2.4, the order of SL(2,Z25) is
15000 and 12500 > 1

2 ·o(SL(2,Z25)), it follows that the order of H is 15000. Hence,
H = SL(2,Z25).
Now w = bc ∈ G, being of determinant 2, does not belong to H. Let K = 〈w〉, the
cyclic group generated by w. Then K is a subgroup of G and since the order of w

is 20, o(K) = 20. Further, H ∩K = {I2}. Hence, o(HK) =
o(H)o(K)
o(H ∩K)

= 300000.

Since HK ⊂ G ≤ GL(2,Z25) and by Proposition 2.1, o(GL(2,Z25)) = 300000, we
get HK = G = GL(2,Z25). Hence, the theorem follows. �

Theorem 3.6. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 7
1 0

)
. Then

GL(2,Z26) = 〈a, b, c | a2, b2, c24, c2a = ac2, c2b = bc2, (ab)3, (bc)12, (ac)168,
(ac)42 = (ca)42, ((bc)6a)26, abacab = cb(c(bc)5ab)12,
(cb)2(bc)6a = ((bc)6a)17(cb)2〉.
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Proof. Let G be the subgroup of GL(2,Z26) generated by a, b, c having presen-
tation as:

〈a, b, c | a2, b2, c24, c2a = ac2, c2b = bc2, (ab)3, (bc)12, (ac)168,
(ac)42 = (ca)42, ((bc)6a)26, abacab = cb(c(bc)5ab)12,
(cb)2(bc)6a = ((bc)6a)17(cb)2〉.

Let x = (bc)6a and y = c−1b−1cb. Then x, y ∈ G. Using the relators in G

it follows that the order of x is 26, the order of y is 12, and yx = x17y. Let
H1 = 〈x, y | x26, y12, yx = x17y〉. Then H1 is a subgroup of G. Since xi 6= yj for
0 ≤ i ≤ 25, 0 ≤ j ≤ 11 and the canonical form of H1 is {xiyj | 0 ≤ i ≤ 25, 0 ≤ j ≤

11}, we get that the order of H1 is 312. Since x =

(
1 0
1 1

)
and y =

(
7 0
0 15

)
,

it follows that any element of H1 is of the form

(
7i 0
β 15i

)
.

Let r = bxb. Then r ∈ G. Since the order of x is 26 and r is a conjugate
of x, the order of r is 26. Let H2 = 〈r〉, the cyclic subgroup of G generated by
r. Then the order of H2 is 26 and any arbitrary element of H2 is of the form(

1 β

0 1

)
. Clearly, H1 ∩ H2 = {I2}. Thus, o(H1H2) =

o(H1)o(H2)
o(H1 ∩H2)

= 8112.

Let H be the subgroup of G generated by x, y and r. Since x, y, and r are all
of determinant 1, H ⊂ SL(2,Z26). Also, H1H2 ⊂ H. Thus, the order of H is
greater than equal to 8112. Since by Corollary 2.4, the order of SL(2,Z26) is 13104
and 8112 > 1

2 · o(SL(2,Z26)), it follows that the order of H is 13104. Hence,
H = SL(2,Z26).
Now w = bc ∈ G, being of determinant 7, does not belong to H. Let K = 〈w〉,
the cyclic group generated by w. Then K is a subgroup of G and since the order

of w is 12, o(K) = 12. Since H ∩K = {I2}, o(HK) =
o(H)o(K)
o(H ∩K)

= 157248. Since

HK ⊂ G ≤ GL(2,Z26) and by Proposition 2.1, o(GL(2,Z26)) = 157248, we get
HK = G = GL(2,Z26). Hence, the theorem follows. �

Theorem 3.7. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 2
1 0

)
. Then

GL(2,Z27) = 〈a, b, c | a2, b2, c36, c2a = ac2, c2b = bc2, (ab)3, (bc)18, (ac)72,
(ac)4 = (ca)4, ((bc)9a)27, abacab = cb(c(bc)8ab)14,
(cb)2(bc)9a = ((bc)9a)7(cb)2〉.
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Proof. Let G be the subgroup of GL(2,Z27) generated by a, b, c having the
presentation

〈a, b, c | a2, b2, c36, c2a = ac2, c2b = bc2, (ab)3, (bc)18, (ac)72,
(ac)4 = (ca)4, ((bc)9a)27, abacab = cb(c(bc)8ab)14,
(cb)2(bc)9a = ((bc)9a)7(cb)2〉.

Let x = (bc)9a and y = c−1b−1cb. Then x, y ∈ G. Also, using the relators in
G, it is clear that the order of x is 27, the order of y is 18, and yx = x7y. Let
H1 = 〈x, y | x27, y18, yx = x7y〉. Then H1 is a subgroup of G. Since xi 6= yj for
0 ≤ i ≤ 26, 0 ≤ j ≤ 17 and the canonical form of H1 is {xiyj | 0 ≤ i ≤ 26, 0 ≤ j ≤

17}, the order of H1 is 486. Since x =

(
1 0
1 1

)
and y =

(
2 0
0 14

)
, it follows

that any element of H1 is of the form

(
2i 0
β 14i

)
.

Let r = bxb. Then r ∈ G. Since the order of x is 27 and r is a conjugate of x, the
order of r is 27. Let H2 = 〈r〉. Then the order of H2 is 25 and any element of H2 is

of the form

(
1 β

0 1

)
. Clearly H1 ∩H2 = {I2}. Thus, o(H1H2) =

o(H1)o(H2)
o(H1 ∩H2)

=

13122. Let H be the subgroup of G generated by x, y and r. Since x, y, and r

are all of determinant 1, H ⊂ SL(2,Z27). Also, H1H2 ⊂ H. Thus, the order of H
is greater than equal to 13122. Since by Corollary 2.4, the order of SL(2,Z27) is
17496 and 13122 > 1

2 ·o(SL(2,Z27)), it follows that the order of H is 17496. Hence,
H = SL(2,Z27).
Now w = bc ∈ G, being of determinant 2, does not belong to H. Let K = 〈w〉,
the cyclic group generated by w. Then K is a subgroup of G and since the order

of w is 18, o(K) = 18. Since H ∩K = {I2}, o(HK) =
o(H)o(K)
o(H ∩K)

= 314928. As

HK ⊂ G ≤ GL(2,Z27) and by Proposition 2.1, o(GL(2,Z27)) = 314928, we get
HK = G = GL(2,Z27). Hence, the theorem follows. �

Theorem 3.8. Let a =

(
1 0
−1 −1

)
, b =

(
0 1
1 0

)
and c =

(
0 3
1 0

)
. Then

GL(2,Z34) = 〈a, b, c | a2, b2, c32, c2a = ac2, c2b = bc2, (ab)3, (bc)16, (ac)96,
(ac)6 = (ca)6, ((bc)8a)34, abacab = cb(c(bc)7ab)12,

(cb)2(bc)8a = ((bc)8a)19(cb)2〉.

Proof. Let G be the subgroup of GL(2,Z34) generated by a, b, c having presen-
tation as:

〈a, b, c | a2, b2, c32, c2a = ac2, c2b = bc2, (ab)3, (bc)16, (ac)96,
(ac)6 = (ca)6, ((bc)8a)34, abacab = cb(c(bc)7ab)12,

(cb)2(bc)8a = ((bc)8a)19(cb)2〉.
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Let x = (bc)8a and y = c−1b−1cb. Then x, y ∈ G. Also, it follows from the
relators in G that the order of x is 34, the order of y is 16, and yx = x19y. Let
H1 = 〈x, y | x34, y16, yx = x19y〉. Then H1 is a subgroup of G. Since xi 6= yj for
0 ≤ i ≤ 33, 0 ≤ j ≤ 15 and the canonical form of H1 is {xiyj | 0 ≤ i ≤ 33, 0 ≤ j ≤

15}, we get that the order of H1 is 544. Since x =

(
1 0
1 1

)
and y =

(
3 0
0 23

)
,

any element of H1 is of the form

(
3i 0
β 23i

)
.

Let r = bxb. Then r ∈ G. Since the order of x is 34 and r is a conjugate of x,
the order of r is 34. Let H2 = 〈r〉, the cyclic subgroup of G generated by r. Then
the order of H2 is 34 and it can be seen that the elements of H2 are of the form(

1 β

0 1

)
. Clearly, H1 ∩ H2 = {I2}. Thus, o(H1H2) =

o(H1)o(H2)
o(H1 ∩H2)

= 18496.

Let H be the subgroup of G generated by x, y and r. Since x, y, and r are all
of determinant 1, H ⊂ SL(2,Z34). Also, H1H2 ⊂ H. Thus, the order of H is
greater than equal to 18496. Since by Corollary 2.4, the order of SL(2,Z34) is
29376 and 18496 > 1

2 ·o(SL(2,Z34)), it follows that the order of H is 29376. Hence,
H = SL(2,Z34).
Now w = bc ∈ G, being of determinant 3, does not belong to H. Let K = 〈w〉,
the cyclic group generated by w. Then K is a subgroup of G and since the order

of w is 16, o(K) = 16. Further, H ∩ K = {I2}, o(HK) =
o(H)o(K)
o(H ∩K)

= 470016.

Since HK ⊂ G ≤ GL(2,Z34) and by Proposition 2.1, o(GL(2,Z34)) = 470016, we
get HK = G = GL(2,Z34). Hence, the theorem follows. �

We may remark that none of the relators in the presentation given here is re-
dundant. However, the relators may not be defining and there may be another
presentation with less number of relators. We also would like to remark that al-
though the proofs are theoretical and self contained, we have used the MAGMA
software for verification purposes.
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