
International Electronic Journal of Algebra

Volume 12 (2012) 1-11

WEAKLY DISCRETE KOSZUL MODULES, II

Yuan Pan

Received : 20 March 2011; Revised : 13 February 2012

Communicated by Abdullah Harmancı

Abstract. This paper is a continuous work of “Y. Pan, Weakly discrete

Koszul modules, submitted, (2011)” ([12]), where the so-called weakly dis-

crete Koszul module was first introduced. In this paper, the Ext module of

a weakly discrete Koszul module is studied. Further, as the application of

the approximation chain theorem obtained in [12], we will study the relations

of the minimal graded projective resolutions between a given weakly discrete

Koszul module and its quotients.
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1. Introduction

Throughout, k denotes a fixed field, N and Z denote the sets of natural numbers

and integers, respectively. All the positively graded k-algebra A =
⊕

i≥0 Ai in this

paper are assumed with the following properties:

• A0 = k× · · · × k, a finite product of k;
• Ai ·Aj = Ai+j for all 0 ≤ i, j < ∞;

• dimkAi < ∞ for all i ≥ 0.

Under the above assumptions, it is easy to see that the graded Jacobson radical of

A, which we denote by J , is
⊕

i≥1 Ai. For any finitely generated graded A-module

M , it possesses a graded projective resolution

· · · // Qn

dn // · · · // Q1

d1 // Q0

d0 // M // 0

such that ker di ⊆ JQi for all i ≥ 0, i.e., the resolution is “minimal”. Let Gr(A)

denote the category of graded A-modules and gr(A) the category of finitely gener-

ated graded A-modules, which is a full subcategory of Gr(A). Endowed with the

Yoneda product,
⊕

i≥0 Ext
i
A(A0, A0) is a bigraded algebra. Let M ∈ gr(A). Then
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⊕
i≥0 Ext

i
A(M,A0) is a bigraded

⊕
i≥0 Ext

i
A(A0, A0)-module. For simplicity, we

write

E(A) =
⊕
i≥0

ExtiA(A0, A0), E(M) =
⊕
i≥0

ExtiA(M,A0)

and call E(A) the Yoneda algebra of A, E(M) the Ext module of M respectively.

The Koszul algebra, introduced by Priddy in 1970 ([13]), is one of quadratic

algebras with a linear resolution. Such an algebra may be understood a positively

graded algebra that is “as close to semisimple as it can possible be” ([1]). Since

then, a lot of generalizations on Koszul algebras have been done, we refer to [2-14]

for the further details. In particular, the notion of discrete Koszul algebra/module

was introduced by Lü and Chen in [9], recently, which is another class of δ-Koszul

algebras/modules ([3]) and another extension of Koszul algebras/modules. In order

to study the discrete Koszul property of finitely generated graded modules over a

discrete Koszul algebra, the author of the present paper defined the notion of weakly

discrete Koszul modules in [12]. In fact, the original motivations for the present

paper and [12] are [5] and [6], where the authors studied the Koszul property of

finitely generated graded modules over a Koszul algebra and defined the notion of

weakly Koszul modules. Moreover, follow this clue, some other generalizations have

been done this years, such as [8-10] and [11], etc.

First, let’s recall some definitions.

Given integers d, p, q with d ≥ p ≥ 2 and p ≥ q + 2 ≥ p
2 + 1, we introduce a set

function δd,qp : N → N by

δd,qp (n) =



nd
p , if n ≡ 0(modp),
(n−1)d

p + 1, if n ≡ 1(modp),

· · · · · ·
(n−q)d

p + q, if n ≡ q(modp),
(n−q−1)d

p + t1, if n ≡ q + 1(modp),
(n−q−2)d

p + t2, if n ≡ q + 2(modp),

· · · · · ·
(n−p+1)d

p + tp−q−1, if n ≡ p−1(modp).

where q < t1 < t2 < · · · < tp−q−1 < d are positive integers.

Definition 1.1. ([9]) Let A be a positively graded k-algebra and M =
⊕

i≥0 Mi ∈
gr(A). We call M a discrete Koszul module provided that M admits a minimal

graded projective resolution

· · · // Pn
// · · · // P1

// P0
// M // 0,
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such that each Pn is generated in degree δd,qp (n) for all n ≥ 0. In particular, the

positively graded algebra A will be called a discrete Koszul algebra if the trivial

A-module A0 is a discrete Koszul module.

Let Kδd,qp (A) denote the category of discrete Koszul modules.

Remark 1.2. We should note the following observations.

(1) The set {δd,qp (n)|n ∈ N} = {0, 1, 2, · · · , q−1, q, t1, t2, · · · , tp−q−1, d, d+1, d+

2, · · · , d+ q − 1, d+ q, d+ t1, d+ t2, · · · , d+ tp−q−1, · · · }.
(2) Put ti = q+ i, i = 1, 2, · · · , p− q− 1 and d = p. Then Kδd,qp (A) is identical

with the category of Koszul modules; Kδd,02 (A), (d ≥ 2), is identical with the

category of d-Koszul modules ([4]).

(3) Put ti = q + i, i = 1, 2, · · · , p − 1. Then Kδd,qp (A) is identical with the

category of piecewise-Koszul modules ([10]).

(4) In general, discrete Koszul modules are a class of δ-Koszul modules ([3],

[9]).

Definition 1.3. ([12]) Let A be a discrete Koszul algebra and M ∈ gr(A). Let

· · · // Qn

fn // · · · // Q1

f1 // Q0

f0 // M // 0

be a minimal graded projective resolution of M . Then M is called a weakly discrete

Koszul module if for all n, k ≥ 0, we have Jk ker fn = ker fn∩Jδd,qp (n+1)−δd,qp (n)+kQn.

Let WKδd,qp (A) denote the category of weakly discrete Koszul modules.

The following is the main result of [12].

Theorem 1.4. Let A be a discrete Koszul algebra and M ∈ gr(A). Let {Sd1
, Sd2

,

. . . , Sdm} denote the set of minimal homogeneous generating spaces of M and Sdi

consists of homogeneous elements of degree di. Consider the following natural fil-

tration of M : 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mm = M, where M1 = ⟨Sd1⟩,
M2 = ⟨Sd1 , Sd2⟩, . . ., Mm = ⟨Sd1 , Sd2 , . . . , Sdm⟩. Then M ∈ WKδd,qp (A) if and

only if all Mi/Mi−1[−di] ∈ Kδd,qp (A) for all 1 ≤ i ≤ m.

Motivated by Definitions 1.1 and 1.3, it is meaningful to study the relations

of the minimal graded projective resolutions between the weakly discrete Koszul

module M and these Mi/Mi−1[−di]. More precisely, we obtain the following.

Theorem 1.5. Let A be a discrete Koszul algebra, M ∈ WKδd,qp (A) and 0 =

M1 ⊂ M2 ⊂ · · · ⊂ Mm−1 ⊂ Mm = M its natural submodule filtration. Set

Ki := Mi/Mi−1 for i = 1, 2, . . . , m. Let P∗ → M → 0 and Pi
∗ → Ki → 0 be
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the minimal graded projective resolutions of M and Ki’s, respectively. Then for all

n ≥ 0, we have

Pn
∼=

m⊕
i=1

Pi
n.

Remark 1.6. In fact, we can restate Theorem 1.5 as follows:

Let A be a discrete Koszul algebra and M ∈ WKδd,qp (A). Let {Sd1 , Sd2 , · · · , Sdm}
be the set of minimal homogeneous generating spaces of of M where Sdi consists

of homogeneous elements of degree di. If Pi
∗ → ASdi → 0 is the minimal graded

projective resolution of ASdi , then

m⊕
i=1

Pi
∗ → (M =

m⊕
i=1

ASdi) → 0

is the minimal graded projective resolution of M .

It is well known that the Ext module plays an important role in studying

Koszulity. In the last section, the Ext module of a weakly discrete Koszul module

is investigated and we prove the following result.

Theorem 1.7. Let A be a discrete Koszul algebra and M be a weakly discrete

Koszul module. Using the notations of Theorem 1.4. Then E(M) is finitely gener-

ated in degree 0 as a graded E(A)-module.

2. Proof of Theorem 1.5

The following result is easy to check.

Lemma 2.1. Let A be a positively graded algebra with the graded Jacobson radical

J . Then

(1) for any M ∈ gr(A), we have A/J ⊗A M ∼= M/JM ;

(2) for any short exact sequence 0 // K // M // N // 0 in gr(A),

we have the exact sequence 0 // K ∩ JM // JM // JN // 0 . More-

over, JK = K ∩ JM if and only if the sequence

0 // JK // JM // JN // 0 is exact.

Lemma 2.2. ([8]) Let A be a positively graded algebra and

0 // K // M // N // 0

be an exact sequence in gr(A). Then JK = K ∩ JM if and only if we have the

following commutative diagram with exact rows and columns
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0

��

0

��

0

��
0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // P0

��

// Q0

��

// L0

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

where P0, Q0 and L0 are graded projective covers.

Lemma 2.3. Let A be a discrete Koszul algebra and M =
⊕

i≥0 Mi be a weakly

discrete Koszul module with M0 ̸= 0.

(1) Denote K := ⟨M0⟩ and N := M/K. Then the “Minimal Horseshoe

Lemma” holds for the natural exact sequence

0 // K // M // N // 0.

That is, for any given diagram

P∗

��

Q∗

��
0 // K

��

// M // N

��

// 0

0 0

with P∗ and Q∗ being minimal projective resolutions of K and N , respec-

tively. Then we can complete the above diagram into the following commu-

tative diagram with exact rows and columns

0 // P∗

��

// L∗

��

// Q∗

��

// 0

0 // K

��

// M

��

// N

��

// 0

0 0 0
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such that L∗ // M // 0 is also a minimal projective resolution and

for all n ≥ 0, Ln
∼= Pn ⊕Qn.

(2) Use the notions of Theorem 1.4. Then for all integers j ≥ 1, the “Minimal

Horseshoe Lemma” holds for

0 // Mj // Mj+1 // Mj+1/Mj
// 0.

Proof. (1) It is easy to see that JK = K ∩ JM . By Lemma 2.2, we have the

commutative diagram as Lemma 2.2 and the following commutative diagram with

exact rows

0

��

0

��

0

��
0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // Jδd,qp (1)−δd,qp (0)P0
// Jδd,qp (1)−δd,qp (0)L0

// Jδd,qp (1)−δd,qp (0)Q0
// 0,

where P0, Q0 and L0 are graded projective covers. Of course, L0 = P0⊕Q0 since the

exact sequence 0 // P0
// L0

// Q0
// 0 and Q0 is a graded pro-

jective module. Note that M and N are weakly discrete Koszul modules. Applying

the functor A/J ⊗A − to the above diagram, we get the following commutative

diagram

0

��

0

��
A/J ⊗A Ω1(K)

α��

β // A/J ⊗A Ω1(M)

��

// A/J ⊗A Ω1(N)

��

// 0

0 // A/J ⊗A Jδd,qp (1)−δd,qp (0)P0
// A/J ⊗A Jδd,qp (1)−δd,qp (0)L0

// A/J ⊗A Jδd,qp (1)−δd,qp (0)Q0
// 0.

Note thatK is a discrete Koszul module, which implies JΩ1(K) = Ω1(K)∩Jδd,qp (1)−δd,qp (0)+1P0.

Thus, α is a monomorphism, which implies that β is also a monomorphism. By Lemma 2.1,

we have JΩ1(K) = Ω1(K)∩JΩ1(M). Now replace 0 // K // M // N // 0

by

0 // Ω1(K) // Ω1(M) // Ω1(N) // 0,

and repeate the above argument, we are done.

(2) By (1), we have the following commutative diagram with exact rows and columns
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0 // P1
∗

��

// P2
∗

��

// Q2
∗

��

// 0

0 // M1

��

// M2

��

// M2/M1

��

// 0,

0 0 0

where P1
∗ , P2

∗ andQ2
∗ are the minimal graded projective resolutions. Clearly, for each i, the

terms P 1
i , P

2
i and Q2

i in the complexes P1
∗ , P2

∗ and Q2
∗ respectively satisfy P 2

i = P 1
i ⊕Q2

i .

Similarly, we also have the following commutative diagram with exact rows and columns

0 // Q2
∗

��

// Q

��

// Q3
∗

��

// 0

0 // M2/M1

��

// M3/M1

��

// M3/M2

��

// 0,

0 0 0

where Q2
∗, Q and Q3

∗ are the minimal graded projective resolutions.

Now consider the following commutative diagram

0 // P1
∗

��

// P3
∗

��

// Q

��

// 0

0 // M1

��

// M3

��

// M3/M1

��

// 0,

0 0 0

where P1
∗ , P3

∗ and Q are the minimal graded projective resolutions. If we further denote

the terms in complexes P3
∗ and Q3

∗ by P 3
i and Q3

i . Then it is clear that P 3
i = P 1

i ⊕Q2
i ⊕Q3

i .

For exact sequence 0 // M2
// M3

// M3/M2
// 0 , by ‘Horseshoe

Lemma’, we have the following commutative diagram

0 // P2
∗

��

// P∗

��

// Q3
∗

��

// 0

0 // M2

��

// M3

��

// M3/M2

��

// 0,

0 0 0
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with exact rows and columns, where P2
∗ and Q3

∗ are the minimal graded projective reso-

lutions. For each term Pi in P∗, it is clear that Pi = P 2
i ⊕ Q3

i = P 1
i ⊕ Q2

i ⊕ Q3
i , which

shows that P∗ is the minimal graded projective resolution of M3. Then we can get the

desired result by induction. �

Corollary 2.4. Let A be a discrete Koszul algebra and M =
⊕

i≥0 Mi be a weakly

discrete Koszul module. Use the notations of Theorem 1.4. Then JMj−1 = Mj−1∩
JMj for all 1 ≤ j ≤ m, where M0 = 0.

Proof. It is immediate from Lemmas 2.1, 2.2 and 2.3. �

Now we are ready to prove Theorem 1.5.

Proof. Consider the following exact sequence

0 // M1
// M // M/M1

// 0.

By Lemma 2.3 (1), we have the following commutative diagram with exact rows

and columns

0 // P1
∗

��

// P∗

��

// L1
∗

��

// 0

0 // M1

��

// M

��

// M/M1

��

// 0,

0 0 0

where P1
∗ , P∗ and L1

∗ are the minimal graded projective resolutions of M1, M

and M/M1, respectively. Clearly, P∗ = P1
∗ ⊕ L1

∗. Put W = M/M1. Then

⟨Wd2⟩ = M2/M1 = K2. Consider the following exact sequence

0 // K2
// W // W/K2

// 0.

By Lemma 2.3 (1) again, we have the following commutative diagram with exact

rows and columns

0 // P2
∗

��

// L1
∗

��

// L2
∗

��

// 0

0 // K2

��

// W

��

// W/K2

��

// 0,

0 0 0
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where P2
∗ , L1

∗ and L2
∗ are the minimal graded projective resolution of K2, W and

W/K2, respectively. Clearly, L1
∗ = P2

∗ ⊕ L2
∗. Repeate the above argument and by

induction, we finally get the following commutative diagram with exact rows and

columns

0 // P l−1
∗

��

// Lm−1
∗

��

// Pm
∗

��

// 0

0 // Km−1

��

// X

��

// Km

��

// 0.

0 0 0

Therefore, we have Pn
∼=

⊕m
i=1 Pi

n for all n ≥ 0. �

3. Proof of Theorem 1.7

Lemma 3.1. Let A be a discrete Koszul algebra and M ∈ gr(A). Then M is a

discrete Koszul module over A if and only if E(M) = ⟨Ext0A(M,A0)⟩ as a graded

E(A)-module.

Proof. It is immediate from [4, Proposition 3.5]. �

Corollary 3.2. Let A be a discrete Koszul algebra and M ∈ gr(A). Use the

notations of Theorem 1.4. Then M is a weakly discrete Koszul module if and only

if E(Mi/Mi−1) is generated in degree 0 as a graded E(A)-module for all 1 ≤ i ≤ m.

Proof. By Theorem 1.4 and Lemma 3.1, we are done. �

Now we can prove Theorem 1.7.

Proof. First we claim that E(M) is generated in degree 0 as a graded E(A)-module.

Indeed, consider the following exact sequence

0 // M1
// M2

// M2/M1
// 0.

For all i ≥ 1, we have the following exact sequences

0 // Ωi(M1) // Ωi(M2) // Ωi(M2/M1) // 0,

which imply the following exact sequences for all i ≥ 1,

0 // E(M2/M1) // E(M2) // E(M1) // 0.
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By Theorem 1.4 and Lemma 3.1, we have E(M1) and E(M2/M1) are generated

in degree 0 as a graded E(A)-module, which forces E(M2) is generated in degree 0

as a graded E(A)-module.

Next, we prove that E(M) is finitely generated as a graded E(A)-module. It

is obvious that E(M) is finitely generated as a graded E(A)-module for a discrete

Koszul algebra A and a discrete Koszul module M over A. Thus, E(M2) is finitely

generated as a graded E(A)-module since the exact sequence

0 // E(M2/M1) // E(M2) // E(M1) // 0

and the fact that the category of finitely generated modules is closed under exten-

sions. Thus, we finish the proof by induction. �

Remark 3.3. Different to discrete Koszul modules, the converse of Theorem 1.7

is not true. The following is a counterexample.

Example 3.4. Let Γ be the following quiver

•1
u1 // •2

u4

��

u2 // •3
u3 // •4.

•5

and A = kΓ/(u1u4). Then A is a discrete Koszul algebra, where δd,qp (i) = i for

all i ≥ 0. Let e1, · · · , e5 be the idempotents of A corresponding to the vertices.

Let V = kv0 ⊕ kv1 be a graded vector space with basis v0 and v1. Assume that the

degree of v0 is 0 and that of v1 is 1. Define a left A0-module action on V as follows:

e4 · v0 = v0 and ei · v0 = 0 for i ̸= 4; e5 · v1 = v1 and ei · v1 = 0 for i ̸= 5. Let

M =
A⊗A0

V

⟨u2 ⊗A0 u3 ⊗A0 v0 − u4 ⊗A0 v1⟩
.

It is not hard to check E(M) = ⟨E0(M)⟩ as a graded E(A)-module. Let V0 = ⟨v0⟩
and V1 = ⟨v1⟩. Then V = V0 ⊕ V1 as a left A0-module. But

⟨M0⟩ ∼=
A⊗A0 V0

⟨u1u2u3 ⊗A0 v0⟩
.

Clearly, ⟨M0⟩ is not a discrete Koszul module. By Theorem 1.4, M is impossible

to be a weakly discrete Koszul module.

Acknowledgment. The author would like to thank the referees and to editor for

their valuable remarks and suggestions on an earlier version of the paper.



WEAKLY DISCRETE KOSZUL MODULES, II 11

References

[1] A. Beilinson, V. Ginszburg and W. Soergel, Koszul duality patterns in repre-

sentation theory, J. Amer. Math. Soc., 9 (1996), 473-525.

[2] N. Bian, Y. Ye and P. Zhang, Generalized d-Koszul modules, Math. Res. Lett.,

18(2) (2011), 191-200.

[3] E.L. Green and E.N. Marcos, δ-Koszul algebras, Comm. Algebra, 33 (2005),

1753-1764.

[4] E. L. Green, E. N. Marcos, R. Mart́ınez-Villa and Pu Zhang, D-Koszul alge-

bras, J. Pure Appl. Algebra, 193 (2004), 141-162.

[5] E. L. Green and R. Mart́ınez-Villa, Koszul and Yoneda algebras, Representa-

tion theory of algebras (Cocoyoc, 1994), CMS Conference Proceedings, Amer-

ican Mathematical Society, Providence, RI, 18 (1996), 247-297.

[6] R. Mart́ınez-Villa and D. Zacharia, Approximations with modules having linear

resolutions, J. Algebra, 266 (2003), 671-697.
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