BLOCK TRANSITIVE 2 - (v, 17, 1) DESIGNS AND REE GROUPS

Shaojun Dai and Kun Zhao

Received: 27 April 2011; Revised: 15 March 2012 Communicated by Abdullah Harmancı

ABSTRACT. This article is a contribution to the study of the automorphism groups of 2 - (v, k, 1) designs. Let \mathcal{D} be 2 - (v, 17, 1) design, $G \leq Aut(\mathcal{D})$ be block transitive and point primitive. If G is unsolvable, then Soc(G), the socle of G, is not ${}^{2}G_{2}(q)$.

Mathematics Subject Classification (2010): 05B05, 20B25 Keywords: block transitive, design, Ree groups

1. Introduction

A 2 - (v, k, 1) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is a pair consisting of a finite set \mathcal{P} of v points and a collection \mathcal{B} of k-subsets of \mathcal{P} , called blocks, such that any 2-subsets of \mathcal{P} is contained in exactly one block. We will always assume that 2 < k < v.

Let $G \leq Aut(\mathcal{D})$ be a group of automorphisms of a 2 - (v, k, 1) design \mathcal{D} . Then G is said to be block transitive on \mathcal{D} if G is transitive on \mathcal{B} and is said to be point transitive(point primitive on \mathcal{D} if G is transitive (primitive) on \mathcal{P} . A flag of \mathcal{D} is a pair consisting of a point and a block through that point. Then G is flag transitive on \mathcal{D} if G is transitive on the set of flags.

The classification of block transitive 2 - (v, 3, 1) designs was completed about thirty years ago (see [2]). In [3], Camina and Siemons classified 2 - (v, 4, 1) designs with a block transitive, solvable group of automorphisms. Li classified 2 - (v, 4, 1)designs admitting a block transitive, unsolvable group of automorphisms (see [7]). Tong and Li [11] classified 2 - (v, 5, 1) designs with a block transitive, solvable group of automorphisms. Han and Li [4] classified 2 - (v, 5, 1) designs with a block transitive, unsolvable group of automorphisms. Liu [9] classified 2 - (v, k, 1) (where k = 6, 7, 8, 9, 10) designs with a block transitive, solvable group of automorphisms. In [5], Han and Ma classified 2 - (v, 11, 1) designs with a block transitive classical Simple groups of automorphisms.

Supported by the NNSFC (Grant No. 10871205) and the Research Fund of Tianjin Polytechnic University.

This article is a contribution to the study of the automorphism groups of 2 - (v, k, 1) designs. Let \mathcal{D} be 2 - (v, 17, 1) design, $G \leq Aut(\mathcal{D})$ be block transitive and point primitive. We prove that following theorem.

Main Theorem. Let \mathcal{D} be 2 - (v, 17, 1) design, $G \leq Aut(\mathcal{D})$ be block transitive and point primitive. If G is unsolvable, then $Soc(G) \not\cong {}^{2}G_{2}(q)$.

2. Preliminary Results

Let \mathcal{D} be a 2 - (v, k, 1) design defined on the point set \mathcal{P} and suppose that Gis an automorphism group of \mathcal{D} that acts transitively on blocks. For a 2 - (v, k, 1)design, as usual, b denotes the number of blocks and r denotes the number of blocks through a given point. If B is a block, G_B denotes the setwise stabilizer of B in Gand $G_{(B)}$ is the pointwise stabilizer of B in G. Also, G^B denotes the permutation group induced by the action of G_B on the points of B, and so $G^B \cong G_B/G_{(B)}$.

The Ree groups ${}^{2}G_{2}(q)$ form an infinite family of simple groups of Lie type, and were defined in [10] as subgroups of GL(7,q). Let GF(q) be finite finite field of qelements, where $q = 3^{2n+1}$ for some positive integer $n \ge 1$. Set $t = 3^{n+1}$ so that $t^{2} = 3q$. We give the following information about subgroups of ${}^{2}G_{2}(q)$. For each ldividing 2n + 1, ${}^{2}G_{2}(3^{l})$ denotes the subgroup of ${}^{2}G_{2}(q)$ consisting of all matrices in ${}^{2}G_{2}(q)$ with entries in subfield of 3^{l} . We use the symbols Q and K to note a Sylow 3-subgroup and a cyclic subgroup of order q - 1 of ${}^{2}G_{2}(q)$, respectively.

Lemma 2.1. ([6]) Let $T \leq {}^{2}G_{2}(q)$ and T be maximal in ${}^{2}G_{2}(q)$. Then either T is conjugate to $P_{6}(l) = {}^{2}G_{2}(3^{l})$ for some divisor l of 2n + 1, or T is conjugate to one of the subgroups P_{i} in Table 1.

Table 1: Group conjugate to T

Group	Structure	Remarks
P_1	Q:K	The normaliser of Q in ${}^{2}G(q)$
P_2	$(Z_2^2 \times D_{(q+1)/2}) : Z_3$	The normaliser of a fours-group
P_3	$Z_2 \times PSL(2,q)$	An involution centraliser
P_4	$Z_{q+t+1}: Z_6$	The normaliser of Z_{q+t+1}
P_5	$Z_{q-t+1}: Z_6$	The normaliser of Z_{q-t+1}

Lemma 2.2. ([8]) Let $T = {}^{2}G_{2}(q)$ be an exceptional simple group of Lie type over GF(q), and let G be a group with $T \trianglelefteq G \le Aut(T)$. Suppose that M is a maximal subgroup of G not containing T, then one of the following holds:

(1) $|M| < q^3 |G:T|;$

(2) $T \cap M$ is a parabolic subgroup of T.

Lemma 2.3. ([5]) Let G and $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a group and a design, and $G \leq Aut(\mathcal{D})$ be block transitive, point-primitive but not flag-transitive. Let Soc(G) = T. Then

$$|T| \le \frac{v}{\lambda} \cdot |T_{\alpha}|^2 \cdot |G:T|,$$

where $\alpha \in \mathcal{P}$, λ is the length of the longest suborbit of G on \mathcal{P} .

3. Proof of the Main Theorem

Proposition 3.1. Let \mathcal{D} be 2 - (v, 17, 1) design, G be block transitive, point primitive but not flag transitive, then $v = 272b_2 + 1$.

Proof. Let $b_1 = (b, v)$, $b_2 = (b, v - 1)$, $k_1 = (k, v)$, $k_2 = (k, v - 1)$. Obviously, $k = k_1k_2$. Since k = 17, we get $k_1 = 1$. Otherwise, $k \mid v$, by [8], G is flag transitive, a contradiction. Thus $v = k(k - 1)b_2 + 1 = 272b_2 + 1$.

Proposition 3.2. Let \mathcal{D} be 2 - (v, 17, 1) design, G be block transitive, point primitive but not flag transitive and |T| be even. If G be unsolvable, then $|T| \leq 137|T_{\alpha}|^{2}|G:T|$.

Proof. Let $B = \{1, 2, \dots, 17\} \in \mathcal{B}$. Since G is unsolvable, then the structure of G^B , the rank and subdegree of G do not occur:

Type of
$$G^B$$
 Rank of G Subdegree of G
 $\langle 1 \rangle$ 273 $1, \underbrace{b_2, \cdots, b_2}^{272}$

Otherwise, G^B is odd and G is also odd, a contradiction with |T| be even. Thus $\lambda \ge 2b_2$. By Lemma 2.3 and Proposition 3.1,

$$\frac{|T|}{|T_{\alpha}|^2} \le \frac{v}{\lambda} \cdot |G:T| \le \frac{272b_2 + 1}{2b_2} \cdot |G:T| \le 137|G:T|.$$

Now we may prove our main theorem.

Suppose that $Soc(G) = {}^{2}G_{2}(q) = T$, then ${}^{2}G_{2}(q) \leq G \leq Aut({}^{2}G_{2}(q))$. We have $G = T : \langle x \rangle$, where $x \in Out(T)$, the outer automorphisms group of T which may be generated by an automorphism of field. We may assume that x is an automorphism of field. Set $\circ(x) = m$, then $m \mid (2n + 1)$. Obviously, $|{}^{2}G_{2}(q)| = q^{3}(q^{3} + 1)(q - 1)$. By [1] and k = 17, G is not flag transitive. Since G is point primitive, G_{α} ($\alpha \in \mathcal{P}$) is the maximal subgroup of G, T is block transitive in \mathcal{D} . Hence $M = G_{\alpha}$ satisfies one of the two cases in Lemma 2.2. We will rule out these cases one by one.

Case (1) $|M| < q^3 |G:T|$.

By Proposition 3.2, we have an upper bound of |T|,

$$|T| < 137 |T_{\alpha}|^2 |G:T| < 137q^6 |G:T| = 137q^6 m.$$

We get

$$q - 1 < 137(2n + 1).$$

Let $2n + 1 = s \ge 3$, then $3^s < 138s$. Thus s = 3, 5.

If s = 3, then $|{}^{2}G_{2}(3^{3})| = 3^{9} \cdot 2^{3} \cdot 7 \cdot 13 \cdot 19 \cdot 37$. Since $v = 272b_{2} + 1$ is odd, then $2^{3} | |T_{\alpha}|$. Clearly T_{α} is contained in some maximal subgroups of T. By Lemma 2.1, $T_{\alpha} \cong {}^{2}G_{2}(3), (Z_{2}^{2} \times D_{(q+1)/2}) : Z_{3} \text{ or } Z_{2} \times PSL(2,q)$, where $q = 3^{3}$. (i) $T_{\alpha} \cong {}^{2}G_{2}(3)$. We have

$$v - 1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{3^9 \cdot 2^3 \cdot 7 \cdot 13 \cdot 19 \cdot 37}{3^3 \cdot 2^3 \cdot 7} - 1 = 6662330.$$

By Proposition 3.1, $156b_2 = 6662330$, a contradiction.

(*ii*) $T_{\alpha} \cong (Z_2^2 \times D_{(q+1)/2}) : Z_3$. We have

$$v - 1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{3^9 \cdot 2^3 \cdot 7 \cdot 13 \cdot 19 \cdot 37}{3 \cdot 2^3 \cdot 7} - 1 = 59960978.$$

By Proposition 3.1, $156b_2 = 59960978$, a contradiction.

(*iii*) $T_{\alpha} \cong Z_2 \times PSL(2,q)$. We have

$$v - 1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{3^9 \cdot 2^3 \cdot 7 \cdot 13 \cdot 19 \cdot 37}{3^3 \cdot 2^3 \cdot 7 \cdot 13} - 1 = 512486.$$

By Proposition 3.1, $156b_2 = 512486$, a contradiction.

If s = 5, then $|{}^{2}G_{2}(3^{5})| = 3^{15} \cdot (3^{15} + 1)) \cdot (3^{5} - 1)$. Since $v = 272b_{2} + 1$ is odd, then $2^{3} ||T_{\alpha}|$. Clearly T_{α} is contained in some maximal subgroups of T. By Lemma 2.1,

$$T_{\alpha} \cong {}^{2}G_{2}(3), (Z_{2}^{2} \times D_{(q+1)/2}) : Z_{3} \text{ or } Z_{2} \times PSL(2,q),$$

where $q = 3^5$. It is not difficult to exclude them by Proposition 3.1.

Case (2) $T \cap M$ is a parabolic subgroup of T.

By Lemma 2.1, the parabolic subgroup of ${}^{2}G_{2}(q)$ is conjugate to QK. Then the order of parabolic subgroup is $q^{3}(q-1)$ and $v = q^{3} + 1$. By Proposition 3.1, we have $q^{3} = v - 1 = 272b_{2}$ and so $272 \mid q^{3}$, a contradiction.

This completes the proof the Main Theorem.

SHAOJUN DAI AND KUN ZHAO

References

- F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleidman, M. W. Liebeck and J. Saxl, *Linear spaces with flag transitive automorphism groups*, Geom. Dedicata, 36 (1990), 89-94.
- P. C. Calpham, Steiner system with block transitive automorphism groups, Discrete Math., 14 (1976), 121-131.
- [3] A. Camina and J. Siemons, Block-transitive automorphism groups of 2-(v, k, 1) design, J. Comb. Theory A, 51 (1989), 268-276.
- [4] G. G. Han and H. L. Li, Unsolvable block transitive automorphism groups of 2-(v,5,1) designs, J. Comb. Theory A, 114 (2007),77-96.
- [5] G. G. Han and C. G. Ma, Block transitive 2 (v, 11, 1) design and classical simple groups, Adv Math., 39 (3)(2010), 319-330.
- [6] P. B. Kleidman, The maximal subgroups of the Chevally groups ²G₂(q) with q odd, the Ree groups ²G₂(q), and their automorphism groups, J. Algebra, 117 (1988), 30-71.
- [7] H. Li, On block-transitive 2 (v, 4, 1) designs, J. Combin. Theory Ser. A, 69 (1995), 115-124.
- [8] M. Liebeck and J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. Lond. Math. Soc., 55 (1987), 299-330.
- [9] W. J. Liu, Block transitive 2 (v, k, 1) designs, Ph.D. Thesis, Zhejiang University, 1998.
- [10] R. Ree, A family of simple groups associated with the simple Lie algebra of type (G₂), Amer. J. Math., 83 (1961), 432-462.
- [11] W. Tong and H. L. Li, Solvable block transitive automorphism groups of 2 (v, 5, 1) designs, Discrete Math., 260 (2003), 267-273.

Shaojun Dai

Department of Mathematics Tianjin Polytechnic University No. 399 Binshuixi Road, Xiqing District 300387 Tianjin, P.R.China e-mail: daishaojun@tjpu.edu.cn

Kun Zhao

School of Science, Jiamusi University 154007 Jiamusi, Heilongjiang, P.R.China e-mail: zhaokun197808@126.com