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Abstract. This article is concerned with the study of the sublattice gen (ρ)

of R-tors, where ρ is some arbitrary but fixed member of R-tors. We use the

concept of the ρ-A-module (M is a ρ-A-module, if M is ρ-torsion free and ρ

∨ξ ({M}) is an atom in gen (ρ)) and we define an equivalence relation in the

sublattice gen (ρ). The partition associated to this equivalence relation allows

us to get interesting information about this sublattice. As an application, we

obtain new characterizations of ρ-artinian rings, ρ-semiartinian rings (a ring

R is ρ-semiartinian if every non-zero ρ-torsion free R-module contains a τ -

cocritical submodule) and rings with ρ-atomic dimension (rings such that for

all σ ∈ gen (ρ) with σ 6= χ, there exists a σ-A-module).
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Introduction

Recently, A-modules, introduced in [5], have been used to obtain information

about a ring R and its category of modules. For example, in [4] the authors ob-

tain characterizations of rings with bijective Gabriel correspondence and in [6]

characterizations of left semiartinian rings and left artinian rings are given.

In [5] the authors studied the rings R with the property that, for a fixed ρ ∈ R-

tors, the lattice gen (σ) is atomic for all σ ≥ ρ. We shall say that a ring with this

property possesses ρ-atomic dimension.

The lattice considered in this article is the sublattice gen (ρ)={τ ∈R-tors | τ≥ρ}
of R-tors for an arbitrary but fixed member ρ of R-tors. We will use the concept

of relative pseudocomplement given by Golan in [8]. We use the concept of a

ρ-A-module to define an equivalence relation on the lattice gen (ρ). The form of

the classes of equivalence provides information about the ρ-atomic dimension of the

ring R. Indeed, we show that if every equivalence class has only one element, then

the ring R has ρ-atomic dimension equal to 1.

A well-known Theorem of Hopkins and Levitzki states that any left artinian

ring R with identity element is left noetherian. The relative version with respect
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to a hereditary torsion theory τ , was proved by Miller and Teply in [11]. Later,

Nastasescu proved in [12] that, if R is left τ -noetherian and left τ -semiartinian,

then R is left τ -artinian. Afterwards Bueso and Jara in [3] defined the concept of

a τ -semiartinian R-module and they proved that, if M is τ -artinian module, then

M is τ -semiartinian. In particular, they showed that if the ring R is left τ -artinian,

then R is left τ -semiartinian. In this paper we investigate the relation between left

τ -semiartinian rings and rings which have left τ -atomic dimension.

In Section 1 of this work, we examine some properties of the pseudocomplement

of τ relative to ρ and we give a characterization of the relative pseudocomplement

in terms of ρ-A-modules. With this tool in hand we define an equivalence relation

on gen(ρ) and we describe its equivalence classes. Proposition 1.12 provides charac-

terizations of rings having left atomic dimension equal to 1 in terms of equivalence

classes. If each non-singular ρ-A-module contains a non-zero projective submodule,

then Theorem 2.23 and Corollary 1.24 provide information about when there is a

lattice isomorphism between two equivalence classes in terms of the ρ-A-modules

M such that Z (M) 6= 0 (singular submodule of M) . In Section 2, we introduce for

τ ∈ R-tors, left τ -semiartinian rings see [3] and left τ -artinian rings. Proposition

2.9 provides a characterization of left τ -semiartinian rings in terms of hereditary

torsion theories. In Proposition 2.13, we prove that the following conditions are

equivalent: 1) R is a left τ -semiartinian ring 2) R has left τ -atomic dimension

equal to 1, 3) R has left τ -Gabriel dimension equal to 1.

Finally, when R is a left τ -noetherian ring, Theorem 2.16 provides a characteri-

zation of left τ -artinian rings in terms of the equivalence classes defined in Section

1, and of left τ -atomic dimension.

Let R be an associative ring with unity, R-Mod be the category of unitary left

R-modules and let R-tors be the frame of all hereditary torsion theories in R-Mod.

For a family of left R-modules {Mα}, let χ ({Mα}) be the only maximal element of

R-tors for which all the Mα are torsion free, and let ξ ({Mα}) denote the minimal

element of R-tors for which all the Mα are torsion. χ ({Mα}) is called the torsion

theory cogenerated by the family {Mα}, and ξ ({Mα}) is called the torsion theory

generated by the family {Mα}. In particular, the maximal element of R-tors is

denoted by χ and the minimal element of R-tors by ξ. If ρ is an element of R-tors,

gen(ρ) denotes the interval [ρ, χ].

Let τ ∈ R-tors, By Tτ , Fτ , tτ , Lτ , we denote respectively, the torsion class,

the torsion free class, the torsion functor and the linear filter associated to τ . A

submodule N of M is called τ -closed in M if M/N ∈ Fτ . An R-module M is τ -

decisive, if M ∈ Fτ and for all σ ≥ τ , M ∈ Fσ or M ∈ Tσ see [5, Definition 2.12]. If
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N is an essential submodule of M , we write N ⊆es M . For M ∈ R-Mod, let E (M)

denote the injective hull of M . We also use the τ -Gabriel dimension denoted by

τ -Gdim, of rings and modules. For basic results concerning this invariant we refer

the reader to [7, Chapter 51]. An R-module M is called a τ -A-module if M is τ -

torsion free and τ ∨ξ ({M}) is an atom in gen (τ). We say that M is an A-module

if M is a τ -A-module for some τ ∈ R-tors.

If τ ∈ R-tors, we define a transfinite chain of torsion theories as follows:

1. Let τ0 = τ .

2. If i is not a limit ordinal then

τi = τi−1 ∨ ξ ({M |M is τi−1A-module})

=
∨
{σ ∈ R-tors | σ is an atom of gen (τi−1)}

3. If i is a limit ordinal then τi = ∨{τj | j < i}

This chain is the called the atomic filtration of τ . A non-zero left R-module M

is said to have τ -atomic dimension equal to an ordinal h, if M is τh-torsion but

not τi-torsion for any i < h. If M is not τi-torsion for any i, then its τ -atomic

dimension is not defined. The τ -atomic dimension of M is denoted by τ -Adim

(M). The ξ-atomic dimension of M is simply called the atomic dimension of M .

The ring R is said to have left τ -atomic dimension equal to h, if it has τ -atomic

dimension h, as a left module over itself. For details about τ -atomic dimension

and A-modules see [5]. For all other concepts and terminology concerning torsion

theories and torsion theoretic dimensions, the reader is referred to [7, 8, 9, 13].

1. Sublattices of R-tors

In this section ρ will denote a fixed hereditary torsion theory and we suppose

that gen (ρ) is an atomic lattice. That is, we assume that for all τ ∈ gen (ρ) with

ρ 6= τ 6= χ there exists σ ∈ gen (ρ) such that σ is an atom in the lattice gen (ρ)

and σ ≤ τ . Note that this condition is equivalent to the condition that for all

τ ∈ gen (ρ) with ρ 6= τ , there exists M ∈ R-Mod such that M is a ρ-A-module and

M ∈ Tτ , see [5, Definition 2.3]. Also notice that when the ring R has left ρ-atomic

dimension, then the lattice gen (σ) is atomic, see [5 Theorem 3.3 (2)]. However,

there are rings that do not have left ρ-atomic dimension, but the lattice gen (ρ) is

atomic (see Example 1.25).

If τ, ρ ∈ R-tors, Golan defines in [8] the pseudocomplement of τ relative to ρ as

follows.
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Definition 1.1. Let τ and ρ be elements of R-tors. Then the pseudocomplement

of τ relative to ρ, denoted by τ⊥ρ , is defined as τ⊥ρ = ∨{σ ∈ R-tors | τ ∧ σ ≤ ρ}.

Note that if τ ∈ gen (ρ), the pseudocomplement of τ relative to ρ can be described

as: τ⊥ρ = ∨{σ ∈ gen (ρ) | σ ∧ τ = ρ}.
In the following proposition we collect some properties of relative pseudocom-

plements that are straightforward to verify.

Proposition 1.2. Let τ, σ ∈ gen (ρ). Then the following conditions hold.

1. τ ∧ τ⊥ρ = ρ

2. τ ≤ τ⊥ρ⊥ρ

3. τ⊥ρ = τ⊥ρ⊥ρ⊥ρ

4. σ ≤ τ ⇒ τ⊥ρ ≤ σ⊥ρ

5. (σ ∨ τ)
⊥ρ = σ⊥ρ ∧ τ⊥ρ

If ρ ∈ R-tors we let Aρ denote {M ∈ R-Mod |M is a ρ-A-module}.

In the next proposition we give a description of τ⊥ρ and τ⊥ρ⊥ρ in terms of

ρ-A-modules.

Lemma 1.3. If τ ∈ gen (ρ), then τ⊥ρ = χ ({M ∈ Aρ |M ∈ Tτ})

Proof. We let τ∗ = χ ({M |M ∈ Aρ ∩ Tτ}).
It is clear that τ∗ =

∧
M∈Aρ∩Tτ

χ ({M}). We claim that τ ∧ τ∗ = ρ. In fact, for

each M ∈ Aρ ∩ Tτ , M is a ρ-A-module, thus χ (M) ≥ ρ, hence we have τ∗ ≥ ρ.

Therefore ρ ≤ τ∗ ∧ τ . If ρ < τ∗ ∧ τ , then there exists 0 6= M ∈ Tτ∗∧τ and M ∈ Fρ.
So we have that ρ < ρ ∨ ξ(M) ≤ τ∗ ∧ τ ≤ τ . Since gen (ρ) is an atomic lattice,

there exists a ρ-A-module N such that N ∈ Tρ∨ξ(M). Since N ∈ Fρ, we have

N /∈ Fξ(M). Thus Hom (M,E (N)) 6= 0. Hence there exist submodules K  L ⊆
M and a monomorphism L/K ↪→ N . As N is an ρ-A-module, by [5, Proposition

2.4, 3] L/K is a ρ-A-module. As M ∈ Tτ∗∧τ , we have M ∈ Tτ∗ . So L/K ∈ Tτ∗ .
Furthermore, we know that N ∈ Tρ∨ξ(M) and as ρ ∨ ξ(M) ≤ τ∗ ∧ τ ≤ τ , this gives

N ∈ Tτ . Therefore L/K ∈ Aρ ∩ Tτ , whence L/K ∈ Fτ∗ which is a contradiction.

Thus we have that ρ = τ ∧ τ∗. So τ∗ ≤ τ⊥ρ .
Now suppose that τ∗ < τ⊥ρ . Then there exists a module 0 6= L ∈ Tτ⊥ρ and

L ∈ Fτ∗ . Since L ∈ Fτ∗ , there exists N ∈ Aρ ∩ Tτ such that Hom (L,E (N)) 6= 0.

Hence there exist submodules K ( T ⊆ L and a monomorphism T/K ↪→ N . As

N ∈ Tτ , we have T/K ∈ Tτ . On the other hand, we know that L ∈ Tτ⊥ρ , so we

have that T/K ∈ Tτ⊥ρ . Therefore T/K ∈ Tτ ∩ Tτ⊥ρ = Tτ∧τ⊥ρ = Tρ. Since N

is an ρ-A-module, we have by [5, Proposition 2.4, 3] that T/K ∈ Fρ, which is a

contradiction. �
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Proposition 1.4. If τ ∈ gen (ρ), then τ⊥ρ⊥ρ = χ ({M ∈ Aρ |M ∈ Fτ}).

Proof. By Lemma 1.3 we know that τ⊥ρ⊥ρ = χ ({M ∈ Aρ |M ∈ Tτ⊥ρ }).
It is suffices to prove that χ ({M ∈ Aρ |M ∈ Fτ}) = χ ({M ∈ Aρ |M ∈ Tτ⊥ρ }).

Let M ∈ Aρ, and M ∈ Tτ⊥ρ . Since M is an ρ-A-module, by [5, Theorem 2.13]

we have that M is ρ-decisive, thus M ∈ Tτ or M ∈ Fτ . If M ∈ Tτ , then M ∈
Tτ ∩ Tτ⊥ρ = Tτ∧τ⊥ρ = Tρ a contradiction. Therefore M ∈ Fτ . So we have that

{M ∈ Aρ | M ∈ Tτ⊥ρ } ⊆ {M ∈ Aρ | M ∈ Fτ}. Thus χ ({M ∈ Aρ |M ∈ Fτ}) ≤
χ ({M ∈ Aρ |M ∈ Tτ⊥ρ }).

Now, let M ∈ Aρ and M ∈ Fτ . By [5, Theorem 2.13] we have that M is

ρ-decisive. So M ∈ Tτ⊥ρ or M ∈ Fτ⊥ρ . Suppose M ∈ Fτ⊥ρ . By Lemma 1.3

τ⊥ρ = χ ({N ∈ Aρ | N ∈ Tτ}), so there exists a module N ∈ Aρ ∩ Tτ such that

Hom (M,E (N)) 6= 0. Hence there exist K  L submodules of M and a monomor-

phism L/K ↪→ N . Since N is an ρ-A-module, then by [5, Proposition 2.4] L/K

is an ρ-A-module. Thus we have that χ (L/K) = χ (N) by [5, Corollary 2.17].

Since M is an ρ-A-module, by [5, Corollary 2.17] χ (L/K) = χ (L) = χ (M). So

we have that χ (M) = χ (N). Hence there exist N ′′  N ′submodules of N such

that N ′/N ′′ ↪→ M . As N ∈ Tτ , then N ′/N ′′ ∈ Tτ . On the other hand we

know that M ∈ Fτ , and so N ′/N ′′ ∈ Fτ which is a contradiction. Therefore

M ∈ Tτ⊥ρ . So we have proved that {M ∈ Aρ | N ∈ Fτ} ⊆ {M ∈ Aρ |M ∈ Tτ⊥ρ }.
Thus χ ({M ∈ Aρ |M ∈ Tτ⊥ρ }) ≤ χ ({M ∈ Aρ | N ∈ Fτ}). Therefore τ⊥ρ⊥ρ =

χ ({M ∈ Aρ |M ∈ Fτ}).
Notice that τ ≤ τ⊥ρ⊥ρ for all τ ∈ gen (ρ). Moreover if σ, τ ∈ gen (ρ) and σ ≤ τ ,

then σ⊥ρ⊥ρ ≤ τ⊥ρ⊥ρ . �

The following proposition shows how torsion theories of type τ⊥ρ⊥ρare related

by their torsion and torsion free ρ-A-modules.

Proposition 1.5. If σ, τ ∈ gen (ρ), then the following conditions are equivalent.

i) τ⊥ρ⊥ρ = σ⊥ρ⊥ρ

ii) Aρ ∩ Tτ = Aρ ∩ Tσ
iii) Aρ ∩ Fτ = Aρ ∩ Fσ

Proof. i) ⇒ ii) Let M ∈ Aρ ∩ Tτ . By [5, Theorem 2.13] we have that M is

ρ-decisive. Hence M ∈ Tσ or M ∈ Fσ. If M ∈ Fσ, then by Proposition 1.4,

M ∈ Fσ⊥ρ⊥ρ . By hypothesis we have that M ∈ Fτ⊥ρ⊥ρ . As τ ≤ τ⊥ρ⊥ρ , then

M ∈ Fτ a contradiction. Thus M ∈ Tσ. So Aρ ∩ Tτ ⊆ Aρ ∩ Tσ . Analogously we

have that Aρ ∩ Tσ ⊆ Aρ ∩ Tτ . Therefore Aρ ∩ Tτ = Aρ ∩ Tσ.

ii)⇒ iii) Let M ∈ Aρ∩Fτ . By [5, Theorem 2.13] we have that M is ρ-decisive.

So M ∈ Tσ or M ∈ Fσ. If M ∈ Tσ, then M ∈ Aρ∩Tσ. By hypothesis we have that
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M ∈ Aρ ∩ Tτ a contradiction. Therefore M ∈ Fσ. So we have Aρ ∩ Fτ ⊆ Aρ ∩ Fσ.

Analogously we can see that Aρ ∩ Tτ ⊆ Aρ ∩ Tσ. Therefore Aρ ∩ Fτ = Aρ ∩ Fσ.

iii)⇒ i) By Proposition 1.4, we know that τ⊥ρ⊥ρ = χ ({M |M ∈ Aρ ∩ Fτ}) and

σ⊥ρ⊥ρ = χ ({M |M ∈ Aρ ∩ Fσ}). Hence by iii) we have that τ⊥ρ⊥ρ = σ⊥ρ⊥ρ . �

In the following definition we use Proposition 1.5 to define the relation “≡” on

the lattice gen (ρ).

Definition 1.6. Let σ, τ ∈ gen (ρ). We put τ ≡ σ if and only if Aρ∩Tτ = Aρ∩Tσ.

It is easily seen that ≡ is an equivalence relation on the lattice gen (ρ).

Note that by Proposition 1.5 we have that the following conditions are equivalent.

i) τ ≡ σ
ii) τ⊥ρ⊥ρ = σ⊥ρ⊥ρ

iii) Aρ ∩ Fτ = Aρ ∩ Fσ.

If σ ∈ gen (ρ), we let σ denote the equivalence class of σ under the relation ≡,

that is σ = {τ ∈ gen (ρ) | τ ≡ σ}.

We let τAρ denote the hereditary torsion theory in gen (ρ) generated by the ρ-

A-modules, namely τAρ = ρ ∨ ξ (Aρ). For each σ ∈ gen (ρ), we also let σ⊥ρdenote

σ ∧ τAρ .
We claim that if σ ∈ gen (ρ), then ρ ∨ [σ ∧ ξ (Aρ)] = ρ ∨ ξ (Aρ ∩ Tσ). In fact,

if M ∈ Aρ ∩ Tσ, then M ∈ Tσ∧ξ(Aρ). Hence ξ (Aρ ∩ Tσ) ≤ σ ∧ ξ (Aρ). Thus

ρ ∨ ξ (Aρ ∩ Tσ) ≤ ρ ∨ [σ ∧ ξ (Aρ)]. Now, let M ∈ Tρ∨[σ∧ξ(Aρ)] and suppose that

M ∈ Fρ∨ξ(Aρ∩Tσ). Then M ∈ Fρ and M ∈ Fξ(Aρ∩Tσ). Since M ∈ Tρ∨[σ∧ξ(Aρ)],

we have M /∈ Fσ∧ξ(Aρ). Let 0 6= M ′ = tσ∧ξ(Aρ) (M). So M ′ ∈ Tσ and M ′ ∈
Tξ(Aρ). Thus there exists N ∈ Aρ such that Hom (N,E (M ′)) 6= 0. Hence there

exist submodules K  L of N and a monomorphism L/K ↪→ M ′. Inasmuch as

M ′ ∈ Fρ and N is an ρ-A-module, by [5, Proposition 2.4] we have that L/K is

a ρ-A-module. As M ′ ∈ Tσ, we have L/K ∈ Tσ∧ξ(Aρ). So L/K ∈ Tρ∨[σ∧ξ(Aρ)].

Since L/K ↪→ M ′ ⊆ M , M /∈ Fρ∨ξ(Aρ∩Tσ) which is an contradiction. Therefore

ρ ∨ [σ ∧ ξ (Aρ)] = ρ ∨ ξ (Aρ ∩ Tσ).

As σ⊥ρ = σ ∧ τAρ , we get σ⊥ρ = σ ∧ [ρ ∨ ξ (Aρ)] = ρ ∨ [σ ∧ ξ (Aρ)]. Thus we

have that σ⊥ρ = ρ ∨ ξ (Aρ ∩ Tσ).

Also note that if σ ∈ gen (ρ), then σ⊥ρ ≤ σ⊥ρ⊥ρ . In fact, if M ∈ Aρ ∩ Fσ, then

M ∈ Fσ∧τAρ . Hence M ∈ Fσ⊥ρ .

We use the partition induced by the equivalence relation ≡ in gen (ρ) to obtain

characterizations of left ρ-semiartinian rings. In order to do this we begin describing

the equivalence classes.
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Proposition 1.7. Let σ ∈ gen (ρ). Then σ =
[
σ⊥ρ , σ

⊥ρ⊥ρ
]
.

Proof. Let τ ∈ gen (ρ) ∧ σ. Thus τ⊥ρ⊥ρ = σ⊥ρ⊥ρ . Since τ ≤ τ⊥ρ⊥ρ , we have τ ≤
σ⊥ρ⊥ρ . As Aρ∩Tτ = Aρ∩Tσ, we have that ρ∨ξ (Aρ ∩ Tτ ) = ρ∨ξ (Aρ ∩ Tσ) = σ⊥ρ .

On the other hand, we know that τ ≥ ρ. So τ ≥ ρ ∨ ξ (Aρ ∩ Tτ ). Thus τ ≥ σ⊥ρ .

This shows that τ ∈
[
σ⊥ρ , σ

⊥ρ⊥ρ
]
.

Now, if τ ∈
[
σ⊥ρ , σ

⊥ρ⊥ρ
]
, then ρ ∨ ξ (Aρ ∩ Tσ) = σ⊥ρ ≤ τ ≤ σ⊥ρ⊥ρ . Hence

M ∈ Tτ for all M ∈ Aρ ∩Tσ. Thus Aρ ∩Tσ ⊆ Aρ ∩Tτ . Now let M ∈ Aρ ∩Tτ . As

M is a ρ-A-module, by [5, Theorem 2.13] we have that M is a ρ-decisive module. So

M ∈ Tσ or M ∈ Fσ. Suppose that M ∈ Fσ. Then by Proposition 1.4, M ∈ Fσ⊥ρ⊥ρ .

Since τ ≤ σ⊥ρ⊥ρ , we have M ∈ Fτ which is a contradiction. Thus M ∈ Tσ. Hence

Aρ ∩ Tσ = Aρ ∩ Tτ . Thus we have that τ ≡ σ. �

Note that in particular χ =
[
τAρ , χ

]
and ρ = {ρ}.

Proposition 1.8. Let σ, τ ∈ gen(ρ). If σ ≤ τ . Then σ⊥ρ = τ⊥ρ ∧ σ⊥ρ⊥ρ.

Proof. Since σ ≤ τ , then σ ∧ τAρ ≤ τ ∧ τAρ . Thus σ⊥ρ ≤ τ⊥ρ . On the other hand,

we know that σ⊥ρ ≤ σ⊥ρ⊥ρ . So σ⊥ρ ≤ τ⊥ρ ∧ σ⊥ρ⊥ρ .
Now suppose that there exists 0 6= K ∈ Tτ⊥ρ∧σ⊥ρ⊥ρ such that K ∈ Fσ⊥ρ . As

σ⊥ρ = ρ∨ξ (Aρ ∩ Tσ), then M ∈ Fρ. On the other hand we know that K ∈ Tτ⊥ρ =

Tρ∨ξ(Aρ∩Tτ ). Hence K /∈ Fξ(Aρ∩Tτ ) . Thus there exists M ∈ Aρ ∩ Tτ such that

Hom (M,E (K)) 6= 0. So there are submodules L′  L of M and a monomorphism

L/L′ ↪→ K. As K ∈ Fρ and M is an ρ-A-module, by [5, Proposition 2.4] L/L′ is a

ρ-A-module. Moreover, as M ∈ Tτ , we have L/L′ ∈ Tτ . We claim that L/L′ ∈ Tσ.

In fact, by [5, Theorem 2.13] we have that L/L′ is a ρ-decisive module. Suppose

that L/L′ ∈ Fσ. Then L/L′ ∈ Aρ ∩ Fσ. So by Proposition 1.4 we have that

L/L′ ∈ Fσ⊥ρ⊥ρ . But we know that K ∈ Tσ⊥ρ⊥ρ . So L/L′ ∈ Tσ⊥ρ⊥ρ which is a

contradiction. Thus L/L′ ∈ Tσ. We have shown that L/L′ ∈ Aρ ∩ Tσ. Therefore

L/L′ ∈ Tσ⊥ρ . Since L/L′ ↪→ K, we get tσ⊥ρ (K) 6= 0, which is a contradiction.

Hence σ⊥ρ = τ⊥ρ ∧ σ⊥ρ⊥ρ . �

Corollary 1.9. For all σ ∈ gen(ρ), σ⊥ρ = τAρ ∧ σ⊥ρ⊥ρ .

Proof. As σ ≤ χ, by Proposition 1.8, we have that σ⊥ρ = χ⊥ρ ∧ σ⊥ρ⊥ρ . Since

χ⊥ρ = χ ∧ τAρ = τAρ , it follows that σ⊥ρ = τAρ ∧ σ⊥ρ⊥ρ . �

If σ, τ ∈ gen (ρ) and σ ≤ τ , we define the following functions on the equivalence

classes of σ and τ under the relation “≡”:

Ψτ
σ :
[
σ⊥ρ , σ⊥ρ⊥ρ

]
−→

[
τ⊥ρ , τ⊥ρ⊥ρ

]
Ψτ
σ (α) = α ∨ τ⊥ρ
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Γστ :
[
τ⊥ρ , τ⊥ρ⊥ρ

]
−→

[
σ⊥ρ , σ⊥ρ⊥ρ

]
Γστ (β) = β ∧ σ⊥ρ⊥ρ

Since σ ≤ τ , we have σ⊥ρ⊥ρ ≤ τ⊥ρ⊥ρ . Thus the map Ψτ
σ is well-defined. On

the other hand, by Proposition 1.8, we have that Γστ
(
τ⊥ρ
)

= τ⊥ρ ∧ σ⊥ρ⊥ρ = σ⊥ρ .

Hence Γστ is well-defined. Also note that Ψτ
σ and Γστ are lattice morphisms

Proposition 1.10. Let σ, τ ∈ gen (ρ) such that σ ≤ τ . Then Γστ ◦Ψτ
σ = Iσ

Proof. Let α ∈
[
σ⊥ρ , σ⊥ρ⊥ρ

]
. (Γστ ◦Ψτ

σ) (α) = Γστ
(
α ∨ τ⊥ρ

)
=
(
α ∨ τ⊥ρ

)
∧

σ⊥ρ⊥ρ =
(
α ∧ σ⊥ρ⊥ρ

)
∨
(
τ⊥ρ ∧ σ⊥ρ⊥ρ

)
. Since σ⊥ρ ≤ α ≤ σ⊥ρ⊥ρ , we have α ∧

σ⊥ρ⊥ρ = α. Moreover, by Proposition 1.8 we have that τ⊥ρ ∧ σ⊥ρ⊥ρ = σ⊥ρ .

Therefore Γστ ◦Ψτ
σ (α) = α ∨ σ⊥ρ = α. �

Inasmuch as Γστ ◦ Ψτ
σ = Iσ, Ψτ

σ is a lattice monomorphism and Γστ is a lattice

epimorphism.

Note that Γστ preserves arbitrary intersections. Since R-tors is a frame, Γστ

preserves arbitrary unions. Also note that Ψτ
σ preserves arbitrary joins.

Proposition 1.11. Let σ, τ , η ∈ gen (ρ) with σ ≤ τ ≤ η. Then:

i) Ψη
τ ◦Ψτ

σ = Ψη
σ

ii) Γστ ◦ Γτη = Γση

Proof. i) (Ψη
τ ◦Ψτ

σ) (α) = Ψη
τ

(
α ∨ τ⊥ρ

)
=
(
α ∨ τ⊥ρ

)
∨ η⊥ρ = α ∨

(
τ⊥ρ ∨ η⊥ρ

)
.

Since τ ≤ η, we have τ⊥ρ ≤ η⊥ρ . So α ∨
(
τ⊥ρ ∨ η⊥ρ

)
= α ∨ η⊥ρ = Ψη

σ (α).

ii)
(
Γστ ◦ Γτη

)
(β) = Γστ

(
β ∧ τ⊥ρ⊥ρ

)
=
(
β ∧ τ⊥ρ⊥ρ

)
∧σ⊥ρ⊥ρ = β∧

(
τ⊥ρ⊥ρ ∧ σ⊥ρ⊥ρ

)
.

Inasmuch as σ ≤ τ , we have σ⊥ρ⊥ρ ≤ τ⊥ρ⊥ρ . Thus β ∧
(
τ⊥ρ⊥ρ ∧ σ⊥ρ⊥ρ

)
=

β ∧ σ⊥ρ⊥ρ = Γση (β). �

We use the function Γστ to obtain characterizations of rings with left ρ-atomic

dimension equal to 1.

Proposition 1.12. Let R be a ring and let ρ ∈ R-tors. The following conditions

are equivalent.

i) χ = {χ}
ii) For all σ ≥ ρ, σ = {σ}.

iii) R has left ρ-atomic dimension equal to 1.

Proof. i) ⇒ ii) Let σ ≥ ρ, we know that Γσχ :
[
τAρ , χ

]
−→

[
σ⊥ρ , σ⊥ρ⊥ρ

]
is a

lattice epimorphism. By i) we have that χ = {χ}. Thus σ = {σ}.
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ii) ⇒ iii) As σ = {σ} for all σ ≥ ρ, we have σ = σ⊥ρ . On the other hand,

we know that σ⊥ρ = ρ ∨ ξ (Aρ ∩ Tσ). In particular, χ = χ⊥ρ = ρ ∨ ξ (Aρ ∩ Tχ) =

ρ ∨ ξ (Aρ). So by [5, Definition 3.1] ρ-A-dim(R) = 1.

iii)⇒ i) Given that R has left ρ-atomic dimension equal to 1, by [5, Definition

3.1] we have χ = ρ ∨ ξ (Aρ). Also we know that τAρ = ρ ∨ ξ (Aρ). Therefore

χ =
[
τAρ , χ

]
= {χ}. �

If ρ = ξ we obtain the following corollary.

Corollary 1.13. Let R be a ring. The following conditions are equivalent.

i) χ = {χ}
ii) For all σ ∈ R-tors, σ = {σ}

iii) R has left ξ-atomic dimension equal to 1.

Remark 1.14. R is a ring with left ξ-atomic dimension equal to 1 if and only if R

is a left semiartinian ring. In fact, it is clear that if R is a left semiartinian ring,

then A-dim(R) = 1. Now if A-dim(R) = 1, then by [5, Definition 3.1], we have

that χ = ξ∨ξ ({M |M is a ξ-A-module}) = ξ ({M |M is a ξ-A-module}). Now, if

0 6= N , then there exists a ξ-A-module M such that Hom (M,E (N)) 6= 0. Hence

there are submodules K  L of M and a non-zero monomorphism L/K ↪→ N .

So by [5, Proposition 2.4, 4.] L/K is a ξ-A-module. Thus N contains an ξ-A-

module. On the other hand we know that ξ-A-modules are ξ-atoms. Moreover, by

[5, Remark 2.2.], ξ-atoms are precisely the atoms of R-tors, meaning the hereditary

torsion theories of the form ξ ({S}) where S ∈ R-Mod is simple. Since N contains

an ξ-A-module, there exists a submodule N ′ of N and a simple R-module S such

that ξ ({S}) = ξ ({N ′}). Hence S ↪→ N ′. Thus R is a left semiartinian ring.

Corollary 1.12 generalizes [1, Proposition 6.].

We denote the singular submodule of M by Z (M).

Proposition 1.15. If M is a ρ-A-module with Z (M) 6= 0, then Z (M) ⊆es M .

Proof. Suppose that Z (M) is not essential in M . Then there exists a non-zero

submodule N of M such that Z (M) ∩ N = 0. So Z (N) = 0. Since M is a ρ-

A-module, by [5, Corollary 2.17] we have χ (N) = χ (M) = χ (Z (M)). Therefore

Hom (Z (M) , E (N)) 6= 0 which is a contradiction. �

Notice that equality in Proposition 1.15 in general is not true. To see this

consider the following example:

Example 1.16. Let R = Z4 be the ring of integers modulo 4 . Notice that Z4-tors

= {ξ, χ}. Hence we have Z4 is an ξ-A-module. But Z (Z4) = 2Z4  Z4.
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We let τAρS denote ρ ∨ ξ ({M ∈ Aρ | Z (M) 6= 0}).

Proposition 1.17. For any hereditary torsion theory ρ, we have

τ
⊥ρ⊥ρ
AρS = χ ({M ∈ Aρ | Z (M) = 0}) .

Proof. From Proposition 1.4, we know that τ
⊥ρ⊥ρ
AρS = χ

({
M ∈ Aρ |M ∈ FτAρS

})
.

Let N be a ρ-A-module with Z (N) = 0. We claim that N ∈ FτAρS . In fact,

suppose N /∈ FτAρS . As N is a ρ-A-module, it follows from [5, Definition 2.3]

that N ∈ Fρ. Thus N /∈ Fξ({M∈Aρ|Z(M)6=0}). So there exists a module M ∈ Aρ
such that Z (M) 6= 0 and Hom (M,E (N)) 6= 0. Let f : M −→ E(N) be a

non-zero morphism and M ′ = f−1 (N). We consider the map restriction f|M ′ :

M ′ −→ N . Then f|M ′ is a non-zero morphism. On the other hand we know that

Z (M ′) = M ′ ∩ Z (M) 6= 0. From Proposition 1.15 we obtain Z (M ′) ⊆es M ′.
Now let K = kerf|M ′ . If Z (M ′) ⊆ K, then K ⊆es M ′. So M ′/K is a non-

zero singular module. If Z (M ′) * K, then there exists 0 6= x ∈ Z (M ′) with

x /∈ K. Hence 0 6= x + K ∈ Z (M ′/K). We conclude that Z (M ′/K) 6= 0. As

M ′/K ↪→ N , then Z (N) 6= 0 which is a contradiction. Therefore N ∈ FτAρS .

Hence χ ({M ∈ Aρ | Z (M) = 0}) ≥ τ⊥ρ⊥ρAρS .

Now let M ∈ Aρ, with M ∈ FτAρS . We claim Z (M) = 0. In fact, if Z (M) 6= 0,

then M ∈ TτAρS , a contradiction. Therefore χ ({M ∈ Aρ | Z (M) = 0}) ≤ τ
⊥ρ⊥ρ
AρS .

�

Remark 1.18. If R is a left semihereditary ring, then each non-zero R-module M

with Z (M) = 0 contains a non-zero projective submodule. In fact, let 0 6= M be

such that Z (M) = 0. We can assume without loss of generality that M is a cyclic

R-module. Thus let us take M = R/I. As M is a non-singular module, I is a

non-essential left ideal of R. Hence there exists 0 6= x ∈ R, such that Rx ∩ I = 0.

Thus Rx ∼=
I ⊕Rx
I

↪→ R

I
. Moreover Rx is a projective left ideal since R is left

semihereditary. This shows that M contains a non-zero projective submodule.

When each non-singular ρ-A-module contains a non-zero projective submodule,

we obtain interesting information about the lattice gen (ρ).

Proposition 1.19. Suppose that each non-singular ρ-A-module contains a non-

zero projective submodule. Then τ
⊥ρ⊥ρ
AρS ∨ τAρ = χ.

Proof. If N is a non-zero R-module such that N ∈ F
τ
⊥ρ⊥ρ
AρS ∨τAρ

, then N ∈ F
τ
⊥ρ⊥ρ
AρS

and N ∈ FτAρ . By Proposition 1.17 we have that N ∈ Fχ({M∈Aρ|Z(M)=0}). Hence

there exists a ρ-A-module M , with Z (M) = 0, and such that Hom (N,E (M)) 6= 0.

If f : N −→ E(M) is a non-zero morphism, then f (N) ∩M 6= 0. Thus by [5,
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Proposition 2.4] f (N) ∩ M is a ρ-A-module. As f (N) ∩ M is a non-singular

module, by hypothesis f (N)∩M contains a non-zero projective submodule M ′. If

N ′ = f−1 (M ′), then the restriction morphism f|N ′ : N ′ −→M ′ is an epimorphism.

Since M ′ is projective, f|N splits . Hence M ′ ↪→ N ′. As M ′ ⊆M , by [5, Proposition

2.4 ], M ′ is ρ-A-module. Thus N ′ /∈ FτAρ . On the other hand, we know that

N ′ ⊆ N , thus N /∈ FτAρ , which is a contradiction. �

Proposition 1.20. Suppose that each non-singular ρ-A-module contains a non-

zero projective submodule. If σ, τ ∈ gen (ρ) are such that τAρS ≤ σ ≤ τ ≤ χ, then

Γστ is a lattice isomorphism.

Proof. First we will prove that Γ
τAρS
χ is a lattice isomorphism.

By Proposition 1.7 we have that τAρS =
[
τAρS , τ

⊥ρ⊥ρ
AρS

]
and χ =

[
τAρ , χ

]
. Let

β ∈
[
τAρ , χ

]
. Then (

Ψχ
τAρ
◦ Γ

τAρ
χ

)
(β) = Ψχ

τAρ

(
β ∧ τ⊥ρ⊥ρAρS

)
=
(
β ∧ τ⊥ρ⊥ρAρS

)
∨ τAρ

= β ∧
(
τ
⊥ρ⊥ρ
AρS ∨ τAρ

)
.

By Proposition 1.19, we have that β∧
(
τ
⊥ρ⊥ρ
AρS ∨ τAρ

)
= β∧χ = β. We have shown

that Γ
τAρ
χ is a lattice monomorphism. As Γ

τAρ
χ is a lattice epimorphism, Γ

τAρ
χ is a

lattice isomorphism. Moreover, Ψχ
τAρ

is the inverse lattice morphism of Γ
τAρ
χ .

Now let σ, τ ∈ gen (ρ) such that τAρS ≤ σ ≤ τ ≤ χ. From Proposition 1.11, we

have that Γ
τAρ
τ ◦ Γτχ = Γ

τAρ
χ . Since Γ

τAρ
χ is a lattice isomorphism, Γτχ is a lattice

monomorphism. Hence Γτχ is a lattice isomorphism. Moreover, Ψχ
τ is the inverse

lattice morphism of Γτχ. Analogously we have that Γσχ is a lattice isomorphism.

Since Γτχ ◦ Ψχ
τ = Iτ , then Γστ = Γστ ◦

(
Γτχ ◦Ψχ

τ

)
=
(
Γστ ◦ Γτχ

)
◦ Ψχ

τ = Γσχ ◦ Ψχ
τ .

Hence Γστ is a lattice isomorphism. �

Corollary 1.21. Suppose that each non-singular ρ-A-module contains a non-zero

projective submodule. Then the following conditions are equivalent.

i) χ = {χ}
ii) σ = {σ} for each σ ≥ ρ

iii) R has left atomic ρ-dimension 1.

iv) τAρ =
{
τAρ
}

v) τAρS =
{
τAρS

}
Proof. This follows from Proposition 1.20 and Proposition 1.12. �
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Lemma 1.22. If τ , σ ∈ gen (ρ), then (τ ∧ σ)
⊥ρ⊥ρ = τ⊥ρ⊥ρ ∧ σ⊥ρ⊥ρ .

Proof. It is clear that (τ ∧ σ)
⊥ρ⊥ρ ≤ τ⊥ρ⊥ρ ∧σ⊥ρ⊥ρ . Suppose that (τ ∧ σ)

⊥ρ⊥ρ <

τ⊥ρ⊥ρ ∧ σ⊥ρ⊥ρ . Hence there exists a module M such that M ∈ Tτ⊥ρ⊥ρ∧σ⊥ρ⊥ρ and

M ∈ F(τ∧σ)⊥ρ⊥ρ . By Proposition 1.4, we know that (τ ∧ σ)
⊥ρ⊥ρ = χ (Aρ ∩ Fτ∧σ).

Hence M ∈ Fχ(Aρ∩Fτ∧σ). Thus there exists a module N ∈ Aρ ∩ Fτ∧σ such that

Hom (M,E (N)) 6= 0. On the other hand, as N is a ρ-A-module, by [5, Theorem

2.13] N is a ρ-decisive module. Either N ∈ Fσ or N ∈ Tσ. If N ∈ Tσ, then

N ∈ Fτ . Therefore N ∈ Fχ(Aρ∩Fτ ) = Fτ⊥ρ⊥ρ . As we know that M ∈ Tτ⊥ρ⊥ρ ,

we get Hom (M,E (N)) = 0, which is a contradiction. If N ∈ Fσ, we have

N ∈ Fχ(Aρ∩Fσ) = Fσ⊥ρ⊥ρ . As M ∈ Tσ⊥ρ⊥ρ , we have Hom (M,E (N)) = 0, which

is also a contradiction. Therefore (τ ∧ σ)
⊥ρ⊥ρ = τ⊥ρ⊥ρ ∧ σ⊥ρ⊥ρ . �

Theorem 1.23. If each non-singular ρ-A-module contains a non-zero projective

submodule, then for σ ∈ gen (ρ), we have τAρS ∧ σ ∼= σ.

Proof. We have that

σ =
[
σ⊥ρ , σ⊥ρ⊥ρ

]
and τAρS ∧ σ =

[(
τAρS ∧ σ

)
⊥ρ

,
(
τAρS ∧ σ

)⊥ρ⊥ρ]
. If β ∈[

σ⊥ρ , σ⊥ρ⊥ρ
]
, then(

Ψσ
τAρS

◦ Γ
τAρS
σ

)
(β) = Ψσ

τAρS

(
β ∧

(
τAρS ∧ σ

)⊥ρ⊥ρ)
=
[
β ∧

(
τAρS ∧ σ

)⊥ρ⊥ρ] ∨ σ⊥ρ
= β ∧

((
τAρS ∧ σ

)⊥ρ⊥ρ ∨ σ⊥ρ) .
From Lemma 1.22, we obtain that

β ∧
[(
τAρS ∧ σ

)⊥ρ⊥ρ ∨ σ⊥ρ] = β ∧
[(
τ
⊥ρ⊥ρ
AρS ∧ σ⊥ρ⊥ρ

)
∨ σ⊥ρ

]
= β ∧

[(
τ
⊥ρ⊥ρ
AρS ∨ σ⊥ρ

)
∧ σ⊥ρ⊥ρ

]
= β ∧

(
τ
⊥ρ⊥ρ
AρS ∨ σ⊥ρ

)
.

We claim that β∧
(
τ
⊥ρ⊥ρ
AρS ∨ σ⊥ρ

)
= β. In fact, it is clear that β∧

(
τ
⊥ρ⊥ρ
AρS ∨ σ⊥ρ

)
≤

β. If β ∧
(
τ
⊥ρ⊥ρ
AρS ∨ σ⊥ρ

)
< β, then there exists 0 6= M ∈ R- Mod such that

M ∈ Tβ and M ∈ F
β∧

(
τ
⊥ρ⊥ρ
AρS ∨σ⊥ρ

). Since M ∈ Tβ , we have M ∈ F
τ
⊥ρ⊥ρ
AρS ∨σ⊥ρ

.

Thus M ∈ F
τ
⊥ρ⊥ρ
AρS

and M ∈ Fσ⊥ρ . As M ∈ F
τ
⊥ρ⊥ρ
AρS

, by Proposition 1.17 there exists

a non-singular ρ-A-module N such that Hom (M,E (N)) 6= 0. If f : M −→ E(N)

is a non-zero morphism, then f (M) ∩ N 6= 0. By [5, Proposition 2.4 ], we have

that f (M) ∩ N is a ρ-A-module. So f (M) ∩ N is non-singular. By hypothesis

f (M)∩N contains a non-zero projective submodule P . Taking M ′ = f−1 (P ), the

restriction morphism f|M ′ : M ′ −→ P is an epimorphism. As P is projective, f|M ′
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splits, giving P ↪→ M ′. Moreover as M ′ ⊆ M , P ∈ Tβ . Since P ⊆ f (M) ∩ N ,

by [5, Proposition 2.4 ] we have that P is a ρ-A-module. Hence P ∈ TτAρ . On

the other hand, as β ∈
[
σ⊥ρ , σ⊥ρ⊥ρ

]
, we have β ≡ σ. From Definition 1.6, we get

P ∈ Tσ. Therefore P ∈ TτAρ∧σ = Tσ⊥ρ . As M ∈ Fσ⊥ρ , it follows that P ∈ Fσ⊥ρ a

contradiction. Therefore β ∧
(
τ
⊥ρ⊥ρ
AρS ∨ σ⊥ρ

)
= β. Thus Ψσ

τAρS
◦ Γ

τAρS
σ = IτAρS∧σ.

Therefore Γ
τAρS
σ is a lattice isomorphism. �

Corollary 1.24. Suppose that each non-singular ρ-A-module contains a non-zero

projective submodule. Let σ, τ ∈ gen (ρ). If τAρS ∧ σ = τAρS ∧ τ , then σ ∼= τ .

Proof. By Theorem 1.23, we have that σ ∼= τAρS ∧ σ = τAρS ∧ τ ∼= τ . �

The following example shows a ring R without left ρ-atomic dimension, but with

atomic lattice gen (ρ) .

Example 1.25. Professor Mark L.Teply gave us this example in a personal com-

munication.

Let [0, 1] and {0, 1} be the closed real interval and a set with two elements 0 < 1

respectively. Now, let X = [0, 1] × {0, 1}. We define (a, b) ≤ (c, d) if a < c or a = c

and b ≤ d.

Then (X,≤) satisfies the conditions of [10, Theorem 3.1]. Hence there exists a

commutative Bezout domain R such that Spec (R) ∼= X (as partially ordered sets).

The following facts are true.

(1) R is a valuation domain

(2) R has a unique maximal ideal M that corresponds to the element (1, 1) of

X.

(3) If P a prime ideal of R with 0 6= P 6= M , then P is not finitely generated.

(4) Let P ∈ Spec (R). Then

(
∩
n∈N

Pn
)
∈ Spec (R). If P 6= P 2, then

(
∩
n∈N

Pn
)

is the maximal prime ideal properly contained in P .

(5) If P is a prime ideal associated with an element of the form (r, 0), then P

is idempotent.

Let P ∈ Spec (R). Let σP denote the element of R-tors such that

LσP = {I | I is an ideal of R and P  I}. If P = P 2, we denote by τP

the element of R-tors such that LτP = {I | I is an ideal of R and P ⊆ I}.
(6) By [2, Theorem 3.3 ] we know that if τ ∈ R-tors then either

i) there exists P ∈ Spec (R) such that τ = σP , or

ii) there exists P ∈ Spec (R) with P = P 2 and τ = τP

(7) Let P ∈ Spec (R). Then

i) R/P is a σP -cocritical module,
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ii) if P = P 2, then τP does not have cocritical modules. Hence R does

not have τP - Gabriel dimension.

(8) Let P be the prime ideal associated with (r, 0). Then gen (τP ) does not have

atoms and hence R does not have τP -atomic dimension.

As X is a linearly ordered set, Spec (R) is a linear lattice. So by (6) the lattice

R-tors is a linear lattice. If P is the prime ideal associated with (r, 0), then P is

idempotent and we have that σP < τP . Since R/P is σP -cocritical, by [5, Corollary

2.6 ] we have that R/P is a σP -A-module. Therefore σP ∨ ξ (R/P ) is an atom

in the lattice gen (σP ). As this lattice is linear, R/P is a σP -A-module such that

R/P ∈ Tτ for all τ > σP . This shows that gen (σP ) is an atomic lattice. On the

other hand, by (8) we know gen (τP ) does not have atoms. Inasmuch as σP < τP ,

by [5, Theorem 3.3] R does not have σP -atomic dimension.

2. τ-Semiartinian rings

Semiartinian rings relative to an hereditary torsion theory τ have been studied in

[3]. The following definitions were given by Bueso and Jara in [3]. For convenience

to the reader we include them here.

Definition 2.1. Let τ ∈ R-tors. An R-module M is called τ -simple if M /∈ Tτ
and tτ (M) is the unique proper τ -closed submodule of M .

Note that M is τ -simple if and only if 0 6= M/tτ (M) is τ -cocritical. In particular,

if M ∈ Fτ , then M is τ -simple if and only if M is τ -cocritical. Also note that every

submodule and every homomorphic image of a τ -simple R-module is either τ -simple

or τ -torsion. Golan in [7, Chapter 14] gives examples of τ -simple R-modules.

For each submodule N of M , we define the τ -closure of N in M by

ClMτ (N) = {x ∈M | (N : x) ∈ Lτ} .

Definition 2.2. Let τ ∈ R-tors and let M ∈ R-Mod. The τ -socle of M is defined

as Socτ (M) = ClMτ (
∑
{K | K is a τ -simple submodule of M}) or as Socτ (M) =

tτ (M) if M has no τ -simple submodules.

Definition 2.3. Let τ ∈ R-tors. An R-module M is said to be τ -semiartinian if

every non-zero quotient module of M has non-zero τ -socle. The ring R is said to

be left τ -semiartinian, if R is τ -semiartinian as a left module over itself, (see [3,

Theorem 3.5]).

Note that a τ -simple R-module is not necessarily τ -torsion free. Therefore if M

is a τ -simple module, in general it is false that M is a τ -A-module. However we

have the following result.
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Proposition 2.4. Let τ ∈ R-tors and M ∈ R-Mod. If M is τ -simple, then

τ ∨ ξ ({M}) is an atom over τ .

Proof. Since M is a τ -simple module, M/tτ (M) is a τ -cocritical module. By [5,

Corollary 2.6], we have that M/tτ (M) is a τ -A-module. Thus τ ∨ ξ ({M/tτ (M)})
is a τ -atom. We claim τ ∨ ξ ({M/tτ (M)}) = τ ∨ ξ ({M}). In fact, taking the exact

sequence 0→ tτ (M)→M →M/tτ (M)→ 0, it is clear that M ∈ Tτ∨ξ({M/tτ (M)}).

Thus τ ∨ ξ ({M/tτ (M)}) = τ ∨ ξ ({M}). So τ ∨ ξ ({M}) is an atom over τ . �

Corollary 2.5. Let τ ∈ R-tors. Then

τ ∨ ξ ({M |M is τ -simple}) ≤ τ ∨ ξ ({M |M is a τ -A-module})

Proof. From Proposition 2.4, we have that if M is τ -simple, then τ ∨ ξ ({M})
is an atom over τ . By [5, Proposition 2.4, 2. ], there exists a τ -A-module N

such that τ ∨ ξ ({M}) = τ ∨ ξ ({N}). Therefore τ ∨ ξ ({M |M is τ -simple}) ≤
τ ∨ ξ ({N | N is a τ -A-module}). �

It is false in general that a τ -A-module is a τ -simple module. We give a few

specific examples of τ -A-modules that are not τ -simple.

Example 2.6. Let Zp denote the integers modulo p, where p is a prime number.

If τ = χ ({Zp∞}), then τ ∨ ξ ({Zp∞}) = τ ∨ ξ ({Zp}). So Zp∞ is a τ -A-module. On

the other hand we know that,
Zp∞
N
∼= Zp∞ for every proper submodule N of Zp∞ .

Therefore Zp∞ is not a τ -simple module.

Example 2.7. Let F be a field and let R be the commutative F -algebra generated

by {xi}, with i ∈ R, 0 ≤ i ≤ 1 and xixj =

{
xi+j if i+ j < 1

0 if i+ j ≥ 1
.

It follows immediately that x0 = 1 and x1 = 0. It is also clear that R is a local

ring.

This ring has been studied in [14], where the lattice of ideals is completely de-

scribed. It is proved that R-tors consists of three elements, namely ξ, ξ ({S})
= χ ({R}) and χ, where S denotes the only simple R-module. Hence it is clear that

R is a χ ({R})-A-module. On the other hand, from the description of the ideals,

it is not difficult to see that χ ({R}) does not have cocritical modules. As R is a

χ ({R})-torsion free module and R is not a χ ({R})-cocritical module, R is not a

χ ({R})-simple module. Moreover, since χ ({R}) does not have cocritical modules,

R does not contain any τ -simple submodules.

Note also that from the description of the ideals of this ring, we have that Z (R)

is the unique maximal ideal of R, hence Z (R)  R. Thus in this example we have

that R is a χ ({R})-A-module and Z (R)  R.
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Here is another example showing that equality in Proposition 1.15. is in general

not true.

Example 2.8. Let F be a field and let R be the ring of 3 × 3 upper triangu-

lar matrices (aij) over F such that a11 = a33. Then R has two maximal left

ideals M1 = {(aij) | a11 = a33 = 0} and M2 = {(aij) | a22 = 0}. The simple left

R-modules S1 = R/M1 and S2 = R/M2 are not isomorphic.

Let τ = ξ ({S2}). If (eij) denotes the matrix with (i, j)th entry 1 and 0 else-

where, we have Re33 =


 a 0 c

0 0 e

0 0 a

 | a, c, e ∈ F
. Since Hom (S2, Re33) = 0,

it follows that Re33 ∈ Fτ . Moreover Soc (Re33) ∼= S1.

Re23 =


 0 0 c

0 0 e

0 0 0

 | c, e ∈ F
. So (Re33/Re23) ∼= S1. Hence (Re33/Re23) ∈

Fτ . Therefore Re33 is not a τ -simple module.

On the other hand, we have that S1 is a τ -A-module and τ ∨ ξ ({Re33}) =

τ ∨ ξ ({S1}), and so Re33 is a τ -A-module. We observe that τ ∨ ξ ({Re33}) = χ.

It is well-known that a ring R is left semiartinian if and only if each hereditary

torsion theory is generated by simple modules. In the following proposition we

give a similar result for left τ -semiartinian rings.

Proposition 2.9. Let R be a ring and let τ ∈ R-tors. The following conditions

are equivalent.

i) R is a left τ -semiartinian ring

ii) For every σ ≥ τ , σ = τ ∨ ξ ({M |M is τ -simple with M ∈ Tσ}).

Proof. i)⇒ ii) Let σ ≥ τ and σ′ = τ ∨ ξ ({M |M is τ -simple with M ∈ Tσ}). It

is clear that σ′ ≤ σ. Suppose that σ′ < σ. Then there exists a non-zero R-module

N such that N ∈ Tσ ∩ Fσ′ . As R is τ -semiartinian, Socτ (N) 6= 0. From definition

2.2 we have that Socτ (N) = ClNτ (
∑
{K | K is a τ -simple submodule of N}) 6= 0

or Socτ (N) = tτ (N) 6= 0 if N has no τ -simple submodules. Suppose that N has

no τ -simple submodules. Then tτ (N) 6= 0. Hence tσ′ (N) 6= 0. Thus N /∈ Fσ′
which is a contradiction. Therefore N has a τ -simple submodules. Let 0 6= L be a

τ -simple submodule of N . As N ∈ Tσ, we have L ∈ Tσ. By definition of σ′ we get

L ∈ Tσ′ which is a contradiction. Thus σ′ = σ.

ii) ⇒ i) Let 0 6= N ∈ Fτ and let σ = τ ∨ ({N}). By hypothesis we have that

σ = τ ∨ ξ ({M |M is a τ -simple with M ∈ Tσ}). Since N ∈ Tσ and N ∈ Fτ , we
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have N /∈ Fξ{(M |M is τ -simple with M∈Tσ)}. Hence there is a τ -simple module M with

M ∈ Tσ, such that Hom (M,E (N)) 6= 0. Hence there are submodules K  L of

M and a monomorphism L/K ↪→ N . Since L ⊆ M , it follows that by [7, Chapter

14] we have L is τ -simple or L ∈ Tτ . If L ∈ Tτ , then L/K ∈ Tτ , which is a

contradiction. Hence L is τ -simple. Again by [7, Chapter 14] L/K ∈ Tτ or L/K

is τ -simple. So we have that L/K is τ -simple. Moreover, as L/K ∈ Fτ , L/K is a

τ -cocritical module . Therefore N contains a τ -cocritical submodule. Hence by [3,

Theorem 3.5 ] R is a left τ -semiartinian ring. �

The following proposition determines the left τ -atomic dimension of left τ -

semiartinian rings.

Proposition 2.10. Let R be a ring and let τ ∈ R-tors. If R is a left τ -semiartinian

ring, then R has left τ -atomic dimension 1.

Proof. Since R is a left τ -semiartinian ring, by Proposition 2.9 we have that χ =

τ ∨ξ ({M |M is τ -simple }). From Proposition 2.4. we know that if M is τ -simple

then τ ∨ ({M}) is an atom over τ . Thus we have χ = τ ∨ ξ({M | M is a τ -simple

module}) ≤ τ ∨ ξ ({ M |M is a τ -A-module}). Now, by [5, Definition 3.1] , R has

left τ -atomic dimension 1. �

The converse of this result is false as shown by the following example.

Example 2.11. Let R be the ring of Example 2.7 and τ = χ ({R}). We know that

R is a τ -A-module as a left module over itself and τ ∨ ξ ({R}) = χ. Hence by [5,

Definition 3.1] τ -A-dim(R) = 1. On the other hand we know that χ ({R}) does not

have cocritical modules. So by [3, Theorem 3.5] R is not a left τ -semiartinian ring.

Remark 2.12. By [5, Theorem 4.4], R has left τ -Gabriel dimension if and only

if R has left τ -atomic dimension and every non-zero τ -torsion free R-module M

contains a cocritical submodule. Moreover by [5, Corollary 4.5], if τ -Gdim(R) = 1

then τ -Adim(R) = 1.

Proposition 2.13. Let τ ∈ R-tors and suppose that for all 0 6= M ∈ Fτ , M

contains a cocritical submodule. Then the following conditions are equivalent.

i) R is left τ -semiartinian ring.

ii) τ -Adim(R) = 1.

iii) τ -Gdim(R) = 1.
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Proof. i)⇒ ii) follows from Proposition 2.10.

ii) ⇒ iii) As τ -Adim(R) = 1 and every non zero τ -torsion free R-module M

contains a cocritical submodule, by [5, Theorem 4.4 and Corollary 4.5] we have that

τ -Gdim(R) = 1.

iii)⇒ i) Since τ -Gdim(R) = 1, we have τ∨ξ ({N | N is a τ -cocritical module}) =

χ. If 0 6= M ∈ Fτ , then M /∈ Fξ({N |N is τ -cocritical module}). Thus there exists a τ -

cocritical R-module N , such that Hom (N,E (M)) 6= 0. Since M ∈ Fτ , there exists

a non-zero submodule L of N and a monomorphism L ↪→ M . Hence M contains

a τ -cocritical submodule. Thus, by [3, Theorem 3.5 ] we have that R is a left

τ -semiartinian ring. �

Corollary 2.14. Let τ ∈ R-tors. Suppose that gen (τ) is an atomic lattice and

that, for every 0 6= M ∈ Fτ , M contains a cocritical submodule. The following

conditions are equivalent.

i) χ = {χ}.
ii) For all σ ≥ τ , σ = {σ}.

iii) τ -Adim(R) = 1.

iv) τ -Gdim(R) = 1.

v) R is a left τ -semiartinian ring.

Proof. This follows from Proposition 1.12 and Proposition 2.13.

Note that if τ = ξ, then gen (τ) = R-tors is an atomic lattice. Therefore

Corollary 2.14 is a generalization of the result in [1, Proposition 6].

Notice that if R is a left τ -noetherian ring, then R has left τ -Gabriel dimension.

In fact, let σ ≥ τ with σ 6= χ and let I be a left σ-closed ideal of R. Then

I is left τ -closed in R. Since R is τ -noetherian, there are maximal left σ-closed

ideals. Therefore there are σ-cocritical modules . Thus R has left τ -Gabriel

dimension. Note also that if R has left τ -Gabriel dimension , then gen (τ) is an

atomic lattice. �

In [11, Theorem 1.4] Teply and Miller proved that if R is a left τ -artinian ring,

then R is a left τ -noetherian ring. Bueso and Jara show in [3, Proposition 3.13] that

if R is a left τ -artinian ring, then R is a left τ -semiartinian ring. By Proposition

2.13 we know that R is a τ -semiartinian ring if and only if τ -Adim(R) = 1. Thus

the following theorem can be seen as the converse of the theorem of Teply and

Miller.
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Theorem 2.15. Let R be a left τ -noetherian ring. The following conditions are

equivalent.

i) χ = {χ}.
ii) For all σ ≥ τ , σ = {σ}.

iii) τ -Adim(R) = 1.

iv) τ -Gdim(R) = 1.

v) R is a left τ -artinian ring.

Proof. Since R is a left τ -noetherian ring, every non-zero τ -torsion free R-module

M contains a cocritical submodule. Moreover, R has left τ -Gabriel dimension. By

[5, Theorem 4.4 ], R has left τ -atomic dimension. Therefore gen (τ) is an atomic

lattice. Hence by Corollary 2.14. i), ii), iii), iv) are equivalent.

iv) ⇒ v) As τ -Gdim(R) = 1 and as R is a left τ -noetherian ring, by Corollary

2.14 R is a left τ -semiartinian ring. Thus by [3, Theorem 3.16], we have that R is

a left τ -artinian ring.

v) ⇒ i) Since R is a left τ -artinian ring, by [3, Proposition 3.13], R is a left

τ -semiartinian ring. As R is a left τ -noetherian ring, by Corollary 2.14 we have

that χ = {χ}. �

Corollary 2.16. Let R be a left Noetherian ring. The following conditions are

equivalent.

i) χ = {χ}.
ii) For all σ ∈ R-tors, σ = {σ}.

iii) Adim(R) = 1.

iv) Gdim(R) = 1.

v) R is a left artinian ring.
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México

e-mail: jcastrop@itesm.mx

Gerardo Aguilar Sánchez

Departamento de F́ısica y Matemáticas
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