SUBLATTICES OF R-TORS INDUCED BY A-MODULES

Jaime Castro Pérez and Gerardo Aguilar Sánchez

Received: 27 May 2011; Revised: 15 December 2011 Communicated by John Clark

ABSTRACT. This article is concerned with the study of the sublattice $gen(\rho)$ of *R*-tors, where ρ is some arbitrary but fixed member of *R*-tors. We use the concept of the ρ - \mathcal{A} -module (*M* is a ρ - \mathcal{A} -module, if *M* is ρ -torsion free and ρ $\vee \xi(\{M\})$ is an atom in $gen(\rho)$) and we define an equivalence relation in the sublattice $gen(\rho)$. The partition associated to this equivalence relation allows us to get interesting information about this sublattice. As an application, we obtain new characterizations of ρ -artinian rings, ρ -semiartinian rings (a ring *R* is ρ -semiartinian if every non-zero ρ -torsion free *R*-module contains a τ cocritical submodule) and rings with ρ -atomic dimension (rings such that for all $\sigma \in gen(\rho)$ with $\sigma \neq \chi$, there exists a σ - \mathcal{A} -module).

Mathematics Subject Classification (2010): 16D50, 16P50, 16P70 Keywords: torsion theories, lattices, A-modules, atomic dimension, Gabriel dimension, left τ -semiartinian rings, left τ -artinian rings

Introduction

Recently, \mathcal{A} -modules, introduced in [5], have been used to obtain information about a ring R and its category of modules. For example, in [4] the authors obtain characterizations of rings with bijective Gabriel correspondence and in [6] characterizations of left semiartinian rings and left artinian rings are given.

In [5] the authors studied the rings R with the property that, for a fixed $\rho \in R$ tors, the lattice $gen(\sigma)$ is atomic for all $\sigma \geq \rho$. We shall say that a ring with this property possesses ρ -atomic dimension.

The lattice considered in this article is the sublattice $gen(\rho) = \{\tau \in R\text{-}tors \mid \tau \ge \rho\}$ of *R*-tors for an arbitrary but fixed member ρ of *R*-tors. We will use the concept of relative pseudocomplement given by Golan in [8]. We use the concept of a ρ -A-module to define an equivalence relation on the lattice $gen(\rho)$. The form of the classes of equivalence provides information about the ρ -atomic dimension of the ring *R*. Indeed, we show that if every equivalence class has only one element, then the ring *R* has ρ -atomic dimension equal to 1.

A well-known Theorem of Hopkins and Levitzki states that any left artinian ring R with identity element is left noetherian. The relative version with respect to a hereditary torsion theory τ , was proved by Miller and Teply in [11]. Later, Nastasescu proved in [12] that, if R is left τ -noetherian and left τ -semiartinian, then R is left τ -artinian. Afterwards Bueso and Jara in [3] defined the concept of a τ -semiartinian R-module and they proved that, if M is τ -artinian module, then M is τ -semiartinian. In particular, they showed that if the ring R is left τ -artinian, then R is left τ -semiartinian. In this paper we investigate the relation between left τ -semiartinian rings and rings which have left τ -atomic dimension.

In Section 1 of this work, we examine some properties of the pseudocomplement of τ relative to ρ and we give a characterization of the relative pseudocomplement in terms of ρ - \mathcal{A} -modules. With this tool in hand we define an equivalence relation on $gen(\rho)$ and we describe its equivalence classes. Proposition 1.12 provides characterizations of rings having left atomic dimension equal to 1 in terms of equivalence classes. If each non-singular ρ - \mathcal{A} -module contains a non-zero projective submodule, then Theorem 2.23 and Corollary 1.24 provide information about when there is a lattice isomorphism between two equivalence classes in terms of the ρ - \mathcal{A} -modules M such that $Z(M) \neq 0$ (singular submodule of M). In Section 2, we introduce for $\tau \in R$ -tors, left τ -semiartinian rings see [3] and left τ -artinian rings. Proposition 2.9 provides a characterization of left τ -semiartinian rings in terms of hereditary torsion theories. In Proposition 2.13, we prove that the following conditions are equivalent: 1) R is a left τ -semiartinian ring 2) R has left τ -atomic dimension equal to 1, 3) R has left τ -Gabriel dimension equal to 1.

Finally, when R is a left τ -noetherian ring, Theorem 2.16 provides a characterization of left τ -artinian rings in terms of the equivalence classes defined in Section 1, and of left τ -atomic dimension.

Let R be an associative ring with unity, R-Mod be the category of unitary left R-modules and let R-tors be the frame of all hereditary torsion theories in R-Mod. For a family of left R-modules $\{M_{\alpha}\}$, let $\chi(\{M_{\alpha}\})$ be the only maximal element of R-tors for which all the M_{α} are torsion free, and let $\xi(\{M_{\alpha}\})$ denote the minimal element of R-tors for which all the M_{α} are torsion. $\chi(\{M_{\alpha}\})$ is called the torsion theory cogenerated by the family $\{M_{\alpha}\}$, and $\xi(\{M_{\alpha}\})$ is called the torsion theory generated by the family $\{M_{\alpha}\}$. In particular, the maximal element of R-tors is denoted by χ and the minimal element of R-tors by ξ . If ρ is an element of R-tors, $gen(\rho)$ denotes the interval $[\rho, \chi]$.

Let $\tau \in R$ -tors, By \mathbb{T}_{τ} , \mathbb{F}_{τ} , t_{τ} , \mathcal{L}_{τ} , we denote respectively, the torsion class, the torsion free class, the torsion functor and the linear filter associated to τ . A submodule N of M is called τ -closed in M if $M/N \in \mathbb{F}_{\tau}$. An R-module M is τ decisive, if $M \in \mathbb{F}_{\tau}$ and for all $\sigma \geq \tau$, $M \in \mathbb{F}_{\sigma}$ or $M \in \mathbb{T}_{\sigma}$ see [5, Definition 2.12]. If N is an essential submodule of M, we write $N \subseteq_{es} M$. For $M \in R$ -Mod, let E(M) denote the injective hull of M. We also use the τ -Gabriel dimension denoted by τ -Gdim, of rings and modules. For basic results concerning this invariant we refer the reader to [7, Chapter 51]. An R-module M is called a τ - \mathcal{A} -module if M is τ -torsion free and $\tau \lor \xi(\{M\})$ is an atom in $gen(\tau)$. We say that M is an \mathcal{A} -module if M is a τ - \mathcal{A} -module for some $\tau \in R$ -tors.

If $\tau \in R$ -tors, we define a transfinite chain of torsion theories as follows:

- 1. Let $\tau_0 = \tau$.
- 2. If i is not a limit ordinal then

$$\tau_{i} = \tau_{i-1} \lor \xi \left(\{ M \mid M \text{ is } \tau_{i-1} \mathcal{A}\text{-module} \} \right)$$
$$= \bigvee \{ \sigma \in R\text{-}tors \mid \sigma \text{ is an atom of } gen(\tau_{i-1}) \}$$

3. If i is a limit ordinal then $\tau_i = \lor \{\tau_j \mid j < i\}$

This chain is the called the atomic filtration of τ . A non-zero left *R*-module *M* is said to have τ -atomic dimension equal to an ordinal *h*, if *M* is τ_h -torsion but not τ_i -torsion for any i < h. If *M* is not τ_i -torsion for any *i*, then its τ -atomic dimension is not defined. The τ -atomic dimension of *M* is denoted by τ -*A*dim (*M*). The ξ -atomic dimension of *M* is simply called the atomic dimension of *M*. The ring *R* is said to have left τ -atomic dimension equal to *h*, if it has τ -atomic dimension *h*, as a left module over itself. For details about τ -atomic dimension and *A*-modules see [5]. For all other concepts and terminology concerning torsion theoretic dimensions, the reader is referred to [7, 8, 9, 13].

1. Sublattices of *R*-tors

In this section ρ will denote a fixed hereditary torsion theory and we suppose that $gen(\rho)$ is an atomic lattice. That is, we assume that for all $\tau \in gen(\rho)$ with $\rho \neq \tau \neq \chi$ there exists $\sigma \in gen(\rho)$ such that σ is an atom in the lattice $gen(\rho)$ and $\sigma \leq \tau$. Note that this condition is equivalent to the condition that for all $\tau \in gen(\rho)$ with $\rho \neq \tau$, there exists $M \in R$ -Mod such that M is a ρ - \mathcal{A} -module and $M \in \mathbb{T}_{\tau}$, see [5, Definition 2.3]. Also notice that when the ring R has left ρ -atomic dimension, then the lattice $gen(\sigma)$ is atomic, see [5 Theorem 3.3 (2)]. However, there are rings that do not have left ρ -atomic dimension, but the lattice $gen(\rho)$ is atomic (see Example 1.25).

If $\tau, \rho \in R$ -tors, Golan defines in [8] the pseudocomplement of τ relative to ρ as follows.

Definition 1.1. Let τ and ρ be elements of *R*-tors. Then the *pseudocomplement* of τ relative to ρ , denoted by $\tau^{\perp_{\rho}}$, is defined as $\tau^{\perp_{\rho}} = \lor \{\sigma \in R\text{-tors } | \tau \land \sigma \leq \rho\}$.

Note that if $\tau \in gen(\rho)$, the pseudocomplement of τ relative to ρ can be described as: $\tau^{\perp_{\rho}} = \lor \{ \sigma \in gen(\rho) \mid \sigma \land \tau = \rho \}.$

In the following proposition we collect some properties of relative pseudocomplements that are straightforward to verify.

Proposition 1.2. Let $\tau, \sigma \in gen(\rho)$. Then the following conditions hold.

1. $\tau \wedge \tau^{\perp_{\rho}} = \rho$ 2. $\tau \leq \tau^{\perp_{\rho}\perp_{\rho}}$ 3. $\tau^{\perp_{\rho}} = \tau^{\perp_{\rho}\perp_{\rho}\perp_{\rho}}$ 4. $\sigma \leq \tau \Rightarrow \tau^{\perp_{\rho}} \leq \sigma^{\perp_{\rho}}$ 5. $(\sigma \vee \tau)^{\perp_{\rho}} = \sigma^{\perp_{\rho}} \wedge \tau^{\perp_{\rho}}$

If $\rho \in R$ -tors we let \mathcal{A}_{ρ} denote $\{M \in R$ -Mod | M is a ρ - \mathcal{A} -module}.

In the next proposition we give a description of $\tau^{\perp_{\rho}}$ and $\tau^{\perp_{\rho}\perp_{\rho}}$ in terms of ρ - \mathcal{A} -modules.

Lemma 1.3. If $\tau \in gen(\rho)$, then $\tau^{\perp_{\rho}} = \chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{T}_{\tau}\})$

Proof. We let $\tau^* = \chi(\{M \mid M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}\}).$

It is clear that $\tau^* = \bigwedge_{M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}} \chi(\{M\})$. We claim that $\tau \wedge \tau^* = \rho$. In fact, for each $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$, M is a ρ - \mathcal{A} -module, thus $\chi(M) \geq \rho$, hence we have $\tau^* \geq \rho$. Therefore $\rho \leq \tau^* \wedge \tau$. If $\rho < \tau^* \wedge \tau$, then there exists $0 \neq M \in \mathbb{T}_{\tau^* \wedge \tau}$ and $M \in \mathbb{F}_{\rho}$. So we have that $\rho < \rho \lor \xi(M) \leq \tau^* \wedge \tau \leq \tau$. Since $gen(\rho)$ is an atomic lattice, there exists a ρ - \mathcal{A} -module N such that $N \in \mathbb{T}_{\rho \lor \xi(M)}$. Since $N \in \mathbb{F}_{\rho}$, we have $N \notin \mathbb{F}_{\xi(M)}$. Thus $Hom(M, E(N)) \neq 0$. Hence there exist submodules $K \subsetneq L \subseteq$ M and a monomorphism $L/K \hookrightarrow N$. As N is an ρ - \mathcal{A} -module, by [5, Proposition 2.4, 3] L/K is a ρ - \mathcal{A} -module. As $M \in \mathbb{T}_{\tau^* \wedge \tau}$, we have $M \in \mathbb{T}_{\tau^*}$. So $L/K \in \mathbb{T}_{\tau^*}$. Furthermore, we know that $N \in \mathbb{T}_{\rho \lor \xi(M)}$ and as $\rho \lor \xi(M) \leq \tau^* \wedge \tau \leq \tau$, this gives $N \in \mathbb{T}_{\tau}$. Therefore $L/K \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$, whence $L/K \in \mathbb{F}_{\tau^*}$ which is a contradiction. Thus we have that $\rho = \tau \land \tau^*$. So $\tau^* \leq \tau^{\perp_{\rho}}$.

Now suppose that $\tau^* < \tau^{\perp_{\rho}}$. Then there exists a module $0 \neq L \in \mathbb{T}_{\tau^{\perp_{\rho}}}$ and $L \in \mathbb{F}_{\tau^*}$. Since $L \in \mathbb{F}_{\tau^*}$, there exists $N \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$ such that $Hom(L, E(N)) \neq 0$. Hence there exist submodules $K \subsetneq T \subseteq L$ and a monomorphism $T/K \hookrightarrow N$. As $N \in \mathbb{T}_{\tau}$, we have $T/K \in \mathbb{T}_{\tau}$. On the other hand, we know that $L \in \mathbb{T}_{\tau^{\perp_{\rho}}}$, so we have that $T/K \in \mathbb{T}_{\tau^{\perp_{\rho}}}$. Therefore $T/K \in \mathbb{T}_{\tau} \cap \mathbb{T}_{\tau^{\perp_{\rho}}} = \mathbb{T}_{\tau \wedge \tau^{\perp_{\rho}}} = \mathbb{T}_{\rho}$. Since N is an ρ - \mathcal{A} -module, we have by [5, Proposition 2.4, 3] that $T/K \in \mathbb{F}_{\rho}$, which is a contradiction. **Proposition 1.4.** If $\tau \in gen(\rho)$, then $\tau^{\perp_{\rho}\perp_{\rho}} = \chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{F}_{\tau}\}).$

Proof. By Lemma 1.3 we know that $\tau^{\perp_{\rho}\perp_{\rho}} = \chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{T}_{\tau^{\perp_{\rho}}}\}).$

It is suffices to prove that $\chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{F}_{\tau}\}) = \chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{T}_{\tau^{\perp_{\rho}}}\})$. Let $M \in \mathcal{A}_{\rho}$, and $M \in \mathbb{T}_{\tau^{\perp_{\rho}}}$. Since M is an ρ - \mathcal{A} -module, by [5, Theorem 2.13] we have that M is ρ -decisive, thus $M \in \mathbb{T}_{\tau}$ or $M \in \mathbb{F}_{\tau}$. If $M \in \mathbb{T}_{\tau}$, then $M \in \mathbb{T}_{\tau} \cap \mathbb{T}_{\tau^{\perp_{\rho}}} = \mathbb{T}_{\tau \wedge \tau^{\perp_{\rho}}} = \mathbb{T}_{\rho}$ a contradiction. Therefore $M \in \mathbb{F}_{\tau}$. So we have that $\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{T}_{\tau^{\perp_{\rho}}}\} \subseteq \{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{F}_{\tau}\}$. Thus $\chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{F}_{\tau}\}) \leq \chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{T}_{\tau^{\perp_{\rho}}}\})$.

Now, let $M \in \mathcal{A}_{\rho}$ and $M \in \mathbb{F}_{\tau}$. By [5, Theorem 2.13] we have that M is ρ -decisive. So $M \in \mathbb{T}_{\tau^{\perp \rho}}$ or $M \in \mathbb{F}_{\tau^{\perp \rho}}$. Suppose $M \in \mathbb{F}_{\tau^{\perp \rho}}$. By Lemma 1.3 $\tau^{\perp_{\rho}} = \chi(\{N \in \mathcal{A}_{\rho} \mid N \in \mathbb{T}_{\tau}\})$, so there exists a module $N \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$ such that $Hom(M, E(N)) \neq 0$. Hence there exist $K \subsetneq L$ submodules of M and a monomorphism $L/K \hookrightarrow N$. Since N is an ρ - \mathcal{A} -module, then by [5, Proposition 2.4] L/K is an ρ - \mathcal{A} -module. Thus we have that $\chi(L/K) = \chi(N)$ by [5, Corollary 2.17]. Since M is an ρ - \mathcal{A} -module, by [5, Corollary 2.17] $\chi(L/K) = \chi(L) = \chi(M)$. So we have that $\chi(M) = \chi(N)$. Hence there exist $N'' \subsetneq N'$ submodules of N such that $N'/N'' \hookrightarrow M$. As $N \in \mathbb{T}_{\tau}$, then $N'/N'' \in \mathbb{T}_{\tau}$. On the other hand we know that $M \in \mathbb{F}_{\tau}$, and so $N'/N'' \in \mathbb{F}_{\tau}$ which is a contradiction. Therefore $M \in \mathbb{T}_{\tau^{\perp \rho}}$. So we have proved that $\{M \in \mathcal{A}_{\rho} \mid N \in \mathbb{F}_{\tau}\} \subseteq \{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{T}_{\tau^{\perp \rho}}\}$. Thus $\chi(\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{T}_{\tau^{\perp \rho}}\}) \leq \chi(\{M \in \mathcal{A}_{\rho} \mid N \in \mathbb{F}_{\tau}\})$. Therefore $\tau^{\perp_{\rho}\perp_{\rho}}$.

Notice that $\tau \leq \tau^{\perp_{\rho}\perp_{\rho}}$ for all $\tau \in gen(\rho)$. Moreover if $\sigma, \tau \in gen(\rho)$ and $\sigma \leq \tau$, then $\sigma^{\perp_{\rho}\perp_{\rho}} \leq \tau^{\perp_{\rho}\perp_{\rho}}$.

The following proposition shows how torsion theories of type $\tau^{\perp_{\rho}\perp_{\rho}}$ are related by their torsion and torsion free ρ - \mathcal{A} -modules.

Proposition 1.5. If $\sigma, \tau \in gen(\rho)$, then the following conditions are equivalent.

- i) $\tau^{\perp_{\rho}\perp_{\rho}} = \sigma^{\perp_{\rho}\perp_{\rho}}$
- ii) $\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau} = \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$
- iii) $\mathcal{A}_{\rho} \cap \mathbb{F}_{\tau} = \mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma}$

Proof. $i) \Rightarrow ii$) Let $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$. By [5, Theorem 2.13] we have that M is ρ -decisive. Hence $M \in \mathbb{T}_{\sigma}$ or $M \in \mathbb{F}_{\sigma}$. If $M \in \mathbb{F}_{\sigma}$, then by Proposition 1.4, $M \in \mathbb{F}_{\sigma^{\perp}\rho^{\perp}\rho}$. By hypothesis we have that $M \in \mathbb{F}_{\tau^{\perp}\rho^{\perp}\rho}$. As $\tau \leq \tau^{\perp_{\rho}\perp_{\rho}}$, then $M \in \mathbb{F}_{\tau}$ a contradiction. Thus $M \in \mathbb{T}_{\sigma}$. So $\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau} \subseteq \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$. Analogously we have that $\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma} \subseteq \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$. Therefore $\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau} = \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$.

 $ii) \Rightarrow iii)$ Let $M \in \mathcal{A}_{\rho} \cap \mathbb{F}_{\tau}$. By [5, Theorem 2.13] we have that M is ρ -decisive. So $M \in \mathbb{T}_{\sigma}$ or $M \in \mathbb{F}_{\sigma}$. If $M \in \mathbb{T}_{\sigma}$, then $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$. By hypothesis we have that $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$ a contradiction. Therefore $M \in \mathbb{F}_{\sigma}$. So we have $\mathcal{A}_{\rho} \cap \mathbb{F}_{\tau} \subseteq \mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma}$. Analogously we can see that $\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau} \subseteq \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$. Therefore $\mathcal{A}_{\rho} \cap \mathbb{F}_{\tau} = \mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma}$.

 $iii) \Rightarrow i)$ By Proposition 1.4, we know that $\tau^{\perp_{\rho}\perp_{\rho}} = \chi\left(\{M \mid M \in \mathcal{A}_{\rho} \cap \mathbb{F}_{\tau}\}\right)$ and $\sigma^{\perp_{\rho}\perp_{\rho}} = \chi\left(\{M \mid M \in \mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma}\}\right)$. Hence by iii) we have that $\tau^{\perp_{\rho}\perp_{\rho}} = \sigma^{\perp_{\rho}\perp_{\rho}}$. \Box

In the following definition we use Proposition 1.5 to define the relation " \equiv " on the lattice gen (ρ).

Definition 1.6. Let $\sigma, \tau \in gen(\rho)$. We put $\tau \equiv \sigma$ if and only if $\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau} = \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$.

It is easily seen that \equiv is an equivalence relation on the lattice gen (ρ) .

Note that by Proposition 1.5 we have that the following conditions are equivalent.

- i) $\tau \equiv \sigma$
- ii) $\tau^{\perp_{\rho}\perp_{\rho}} = \sigma^{\perp_{\rho}\perp_{\rho}}$
- iii) $\mathcal{A}_{\rho} \cap \mathbb{F}_{\tau} = \mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma}.$

If $\sigma \in gen(\rho)$, we let $\overline{\sigma}$ denote the equivalence class of σ under the relation \equiv , that is $\overline{\sigma} = \{\tau \in gen(\rho) \mid \tau \equiv \sigma\}$.

We let $\tau_{\mathcal{A}_{\rho}}$ denote the hereditary torsion theory in $gen(\rho)$ generated by the ρ - \mathcal{A} -modules, namely $\tau_{\mathcal{A}_{\rho}} = \rho \lor \xi(\mathcal{A}_{\rho})$. For each $\sigma \in gen(\rho)$, we also let $\sigma_{\perp_{\rho}}$ denote $\sigma \land \tau_{\mathcal{A}_{\rho}}$.

We claim that if $\sigma \in gen(\rho)$, then $\rho \vee [\sigma \land \xi(\mathcal{A}_{\rho})] = \rho \lor \xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})$. In fact, if $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$, then $M \in \mathbb{T}_{\sigma \land \xi(\mathcal{A}_{\rho})}$. Hence $\xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}) \leq \sigma \land \xi(\mathcal{A}_{\rho})$. Thus $\rho \lor \xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}) \leq \rho \lor [\sigma \land \xi(\mathcal{A}_{\rho})]$. Now, let $M \in \mathbb{T}_{\rho \lor [\sigma \land \xi(\mathcal{A}_{\rho})]}$ and suppose that $M \in \mathbb{F}_{\rho \lor \xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})}$. Then $M \in \mathbb{F}_{\rho}$ and $M \in \mathbb{F}_{\xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})}$. Since $M \in \mathbb{T}_{\rho \lor [\sigma \land \xi(\mathcal{A}_{\rho})]}$, we have $M \notin \mathbb{F}_{\sigma \land \xi(\mathcal{A}_{\rho})}$. Let $0 \neq M' = t_{\sigma \land \xi(\mathcal{A}_{\rho})}(M)$. So $M' \in \mathbb{T}_{\sigma}$ and $M' \in \mathbb{T}_{\xi(\mathcal{A}_{\rho})}$. Thus there exists $N \in \mathcal{A}_{\rho}$ such that $Hom(N, E(M')) \neq 0$. Hence there exist submodules $K \subsetneq L$ of N and a monomorphism $L/K \hookrightarrow M'$. Inasmuch as $M' \in \mathbb{F}_{\rho}$ and N is an ρ - \mathcal{A} -module, by [5, Proposition 2.4] we have that L/K is a ρ - \mathcal{A} -module. As $M' \in \mathbb{T}_{\sigma}$, we have $L/K \in \mathbb{T}_{\sigma \land \xi(\mathcal{A}_{\rho})}$. So $L/K \in \mathbb{T}_{\rho \lor [\sigma \land \xi(\mathcal{A}_{\rho})]}$. Since $L/K \hookrightarrow M' \subseteq M$, $M \notin \mathbb{F}_{\rho \lor \xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})}$ which is an contradiction. Therefore $\rho \lor [\sigma \land \xi(\mathcal{A}_{\rho})] = \rho \lor \xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})$.

As $\sigma_{\perp_{\rho}} = \sigma \wedge \tau_{\mathcal{A}_{\rho}}$, we get $\sigma_{\perp_{\rho}} = \sigma \wedge [\rho \lor \xi(\mathcal{A}_{\rho})] = \rho \lor [\sigma \land \xi(\mathcal{A}_{\rho})]$. Thus we have that $\sigma_{\perp_{\rho}} = \rho \lor \xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})$.

Also note that if $\sigma \in gen(\rho)$, then $\sigma_{\perp_{\rho}} \leq \sigma^{\perp_{\rho}\perp_{\rho}}$. In fact, if $M \in \mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma}$, then $M \in \mathbb{F}_{\sigma \wedge \tau_{\mathcal{A}_{\rho}}}$. Hence $M \in \mathbb{F}_{\sigma \perp_{\rho}}$.

We use the partition induced by the equivalence relation \equiv in gen (ρ) to obtain characterizations of left ρ -semiartinian rings. In order to do this we begin describing the equivalence classes.

Proposition 1.7. Let $\sigma \in gen(\rho)$. Then $\overline{\sigma} = [\sigma_{\perp_{\rho}}, \sigma^{\perp_{\rho}\perp_{\rho}}]$.

Proof. Let $\tau \in gen(\rho) \wedge \overline{\sigma}$. Thus $\tau^{\perp_{\rho}\perp_{\rho}} = \sigma^{\perp_{\rho}\perp_{\rho}}$. Since $\tau \leq \tau^{\perp_{\rho}\perp_{\rho}}$, we have $\tau \leq \sigma^{\perp_{\rho}\perp_{\rho}}$. As $\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau} = \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$, we have that $\rho \lor \xi (\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}) = \rho \lor \xi (\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}) = \sigma_{\perp_{\rho}}$. On the other hand, we know that $\tau \geq \rho$. So $\tau \geq \rho \lor \xi (\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau})$. Thus $\tau \geq \sigma_{\perp_{\rho}}$. This shows that $\tau \in [\sigma_{\perp_{\rho}}, \sigma^{\perp_{\rho}\perp_{\rho}}]$.

Now, if $\tau \in [\sigma_{\perp_{\rho}}, \sigma^{\perp_{\rho}\perp_{\rho}}]$, then $\rho \lor \xi (\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}) = \sigma_{\perp_{\rho}} \leq \tau \leq \sigma^{\perp_{\rho}\perp_{\rho}}$. Hence $M \in \mathbb{T}_{\tau}$ for all $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$. Thus $\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma} \subseteq \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$. Now let $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$. As M is a ρ - \mathcal{A} -module, by [5, Theorem 2.13] we have that M is a ρ -decisive module. So $M \in \mathbb{T}_{\sigma}$ or $M \in \mathbb{F}_{\sigma}$. Suppose that $M \in \mathbb{F}_{\sigma}$. Then by Proposition 1.4, $M \in \mathbb{F}_{\sigma^{\perp_{\rho}\perp_{\rho}}}$. Since $\tau \leq \sigma^{\perp_{\rho}\perp_{\rho}}$, we have $M \in \mathbb{F}_{\tau}$ which is a contradiction. Thus $M \in \mathbb{T}_{\sigma}$. Hence $\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma} = \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$. Thus we have that $\tau \equiv \sigma$.

Note that in particular $\overline{\chi} = [\tau_{\mathcal{A}_{\rho}}, \chi]$ and $\overline{\rho} = \{\rho\}$.

Proposition 1.8. Let $\sigma, \tau \in gen(\rho)$. If $\sigma \leq \tau$. Then $\sigma_{\perp_{\rho}} = \tau_{\perp_{\rho}} \wedge \sigma^{\perp_{\rho} \perp_{\rho}}$.

Proof. Since $\sigma \leq \tau$, then $\sigma \wedge \tau_{\mathcal{A}_{\rho}} \leq \tau \wedge \tau_{\mathcal{A}_{\rho}}$. Thus $\sigma_{\perp_{\rho}} \leq \tau_{\perp_{\rho}}$. On the other hand, we know that $\sigma_{\perp_{\rho}} \leq \sigma^{\perp_{\rho}\perp_{\rho}}$. So $\sigma_{\perp_{\rho}} \leq \tau_{\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}}$.

Now suppose that there exists $0 \neq K \in \mathbb{T}_{\tau_{\perp\rho} \wedge \sigma^{\perp_{\rho} \perp_{\rho}}}$ such that $K \in \mathbb{F}_{\sigma_{\perp_{\rho}}}$. As $\sigma_{\perp_{\rho}} = \rho \lor \xi \ (\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})$, then $M \in \mathbb{F}_{\rho}$. On the other hand we know that $K \in \mathbb{T}_{\tau_{\perp_{\rho}}} = \mathbb{T}_{\rho \lor \xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau})}$. Hence $K \notin \mathbb{F}_{\xi(\mathcal{A}_{\rho} \cap \mathbb{T}_{\tau})}$. Thus there exists $M \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\tau}$ such that $Hom \ (M, E \ (K)) \neq 0$. So there are submodules $L' \subsetneq L$ of M and a monomorphism $L/L' \hookrightarrow K$. As $K \in \mathbb{F}_{\rho}$ and M is an ρ - \mathcal{A} -module, by [5, Proposition 2.4] L/L' is a ρ - \mathcal{A} -module. Moreover, as $M \in \mathbb{T}_{\tau}$, we have $L/L' \in \mathbb{T}_{\tau}$. We claim that $L/L' \in \mathbb{T}_{\sigma}$. In fact, by [5, Theorem 2.13] we have that L/L' is a ρ -decisive module. Suppose that $L/L' \in \mathbb{F}_{\sigma}$. Then $L/L' \in \mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma}$. So by Proposition 1.4 we have that $L/L' \in \mathbb{F}_{\sigma^{\perp_{\rho} \perp_{\rho}}}$. But we know that $K \in \mathbb{T}_{\sigma^{\perp_{\rho} \perp_{\rho}}}$. So $L/L' \in \mathbb{T}_{\sigma^{\perp_{\rho} \perp_{\rho}}}$ which is a contradiction. Thus $L/L' \in \mathbb{T}_{\sigma}$. We have shown that $L/L' \in \mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma}$. Therefore $L/L' \in \mathbb{T}_{\sigma_{\perp_{\rho}}}$. Since $L/L' \hookrightarrow K$, we get $t_{\sigma_{\perp_{\rho}}}(K) \neq 0$, which is a contradiction. Hence $\sigma_{\perp_{\rho}} = \tau_{\perp_{\rho}} \land \sigma^{\perp_{\rho} \perp_{\rho}}$.

Corollary 1.9. For all $\sigma \in gen(\rho)$, $\sigma_{\perp_{\rho}} = \tau_{\mathcal{A}_{\rho}} \wedge \sigma^{\perp_{\rho} \perp_{\rho}}$.

Proof. As $\sigma \leq \chi$, by Proposition 1.8, we have that $\sigma_{\perp_{\rho}} = \chi_{\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}}$. Since $\chi_{\perp_{\rho}} = \chi \wedge \tau_{\mathcal{A}_{\rho}} = \tau_{\mathcal{A}_{\rho}}$, it follows that $\sigma_{\perp_{\rho}} = \tau_{\mathcal{A}_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}}$.

If $\sigma, \tau \in gen(\rho)$ and $\sigma \leq \tau$, we define the following functions on the equivalence classes of σ and τ under the relation " \equiv ":

$$\begin{split} \Psi_{\sigma}^{\tau} : \begin{bmatrix} \sigma_{\perp_{\rho}}, & \sigma^{\perp_{\rho}\perp_{\rho}} \end{bmatrix} &\longrightarrow \begin{bmatrix} \tau_{\perp_{\rho}}, & \tau^{\perp_{\rho}\perp_{\rho}} \end{bmatrix} \\ \Psi_{\sigma}^{\tau}(\alpha) &= \alpha \lor \tau_{\perp_{\rho}} \end{split}$$

$$\Gamma_{\tau}^{\sigma} : \left[\tau_{\perp_{\rho}}, \ \tau^{\perp_{\rho} \perp_{\rho}} \right] \longrightarrow \left[\sigma_{\perp_{\rho}}, \ \sigma^{\perp_{\rho} \perp_{\rho}} \right]$$
$$\Gamma_{\tau}^{\sigma} \left(\beta \right) = \beta \wedge \sigma^{\perp_{\rho} \perp_{\rho}}$$

Since $\sigma \leq \tau$, we have $\sigma^{\perp_{\rho}\perp_{\rho}} \leq \tau^{\perp_{\rho}\perp_{\rho}}$. Thus the map Ψ_{σ}^{τ} is well-defined. On the other hand, by Proposition 1.8, we have that $\Gamma_{\tau}^{\sigma}(\tau_{\perp_{\rho}}) = \tau_{\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}} = \sigma_{\perp_{\rho}}$. Hence Γ_{τ}^{σ} is well-defined. Also note that Ψ_{σ}^{τ} and Γ_{τ}^{σ} are lattice morphisms

Proposition 1.10. Let σ , $\tau \in gen(\rho)$ such that $\sigma \leq \tau$. Then $\Gamma_{\tau}^{\sigma} \circ \Psi_{\sigma}^{\tau} = I_{\overline{\sigma}}$

Proof. Let $\alpha \in [\sigma_{\perp_{\rho}}, \sigma^{\perp_{\rho}\perp_{\rho}}]$. $(\Gamma_{\tau}^{\sigma} \circ \Psi_{\sigma}^{\tau})(\alpha) = \Gamma_{\tau}^{\sigma}(\alpha \lor \tau_{\perp_{\rho}}) = (\alpha \lor \tau_{\perp_{\rho}}) \land \sigma^{\perp_{\rho}\perp_{\rho}} = (\alpha \land \sigma^{\perp_{\rho}\perp_{\rho}}) \lor (\tau_{\perp_{\rho}} \land \sigma^{\perp_{\rho}\perp_{\rho}})$. Since $\sigma_{\perp_{\rho}} \le \alpha \le \sigma^{\perp_{\rho}\perp_{\rho}}$, we have $\alpha \land \sigma^{\perp_{\rho}\perp_{\rho}} = \alpha$. Moreover, by Proposition 1.8 we have that $\tau_{\perp_{\rho}} \land \sigma^{\perp_{\rho}\perp_{\rho}} = \sigma_{\perp_{\rho}}$. Therefore $\Gamma_{\tau}^{\sigma} \circ \Psi_{\sigma}^{\tau}(\alpha) = \alpha \lor \sigma_{\perp_{\rho}} = \alpha$.

Inasmuch as $\Gamma_{\tau}^{\sigma} \circ \Psi_{\sigma}^{\tau} = I_{\overline{\sigma}}, \Psi_{\sigma}^{\tau}$ is a lattice monomorphism and Γ_{τ}^{σ} is a lattice epimorphism.

Note that Γ_{τ}^{σ} preserves arbitrary intersections. Since *R*-tors is a frame, Γ_{τ}^{σ} preserves arbitrary unions. Also note that Ψ_{σ}^{τ} preserves arbitrary joins.

Proposition 1.11. Let σ , τ , $\eta \in gen(\rho)$ with $\sigma \leq \tau \leq \eta$. Then:

i) $\Psi^{\eta}_{\tau} \circ \Psi^{\tau}_{\sigma} = \Psi^{\eta}_{\sigma}$ ii) $\Gamma^{\sigma}_{\tau} \circ \Gamma^{\tau}_{n} = \Gamma^{\sigma}_{n}$

Proof. i) $(\Psi^{\eta}_{\tau} \circ \Psi^{\tau}_{\sigma})(\alpha) = \Psi^{\eta}_{\tau} (\alpha \lor \tau_{\perp_{\rho}}) = (\alpha \lor \tau_{\perp_{\rho}}) \lor \eta_{\perp_{\rho}} = \alpha \lor (\tau_{\perp_{\rho}} \lor \eta_{\perp_{\rho}}).$ Since $\tau \le \eta$, we have $\tau_{\perp_{\rho}} \le \eta_{\perp_{\rho}}$. So $\alpha \lor (\tau_{\perp_{\rho}} \lor \eta_{\perp_{\rho}}) = \alpha \lor \eta_{\perp_{\rho}} = \Psi^{\eta}_{\sigma}(\alpha).$

ii) $(\Gamma^{\sigma}_{\tau} \circ \Gamma^{\tau}_{\eta})(\beta) = \Gamma^{\sigma}_{\tau} (\beta \wedge \tau^{\perp_{\rho} \perp_{\rho}}) = (\beta \wedge \tau^{\perp_{\rho} \perp_{\rho}}) \wedge \sigma^{\perp_{\rho} \perp_{\rho}} = \beta \wedge (\tau^{\perp_{\rho} \perp_{\rho}} \wedge \sigma^{\perp_{\rho} \perp_{\rho}}).$ Inasmuch as $\sigma \leq \tau$, we have $\sigma^{\perp_{\rho} \perp_{\rho}} \leq \tau^{\perp_{\rho} \perp_{\rho}}$. Thus $\beta \wedge (\tau^{\perp_{\rho} \perp_{\rho}} \wedge \sigma^{\perp_{\rho} \perp_{\rho}}) = \beta \wedge \sigma^{\perp_{\rho} \perp_{\rho}} = \Gamma^{\sigma}_{\eta}(\beta).$

We use the function Γ_{τ}^{σ} to obtain characterizations of rings with left ρ -atomic dimension equal to 1.

Proposition 1.12. Let R be a ring and let $\rho \in R$ -tors. The following conditions are equivalent.

- i) $\overline{\chi} = \{\chi\}$
- ii) For all $\sigma \ge \rho$, $\overline{\sigma} = \{\sigma\}$.
- iii) R has left ρ -atomic dimension equal to 1.

Proof. i) \Rightarrow ii) Let $\sigma \geq \rho$, we know that $\Gamma_{\chi}^{\sigma} : [\tau_{\mathcal{A}_{\rho}}, \chi] \longrightarrow [\sigma_{\perp_{\rho}}, \sigma^{\perp_{\rho}\perp_{\rho}}]$ is a lattice epimorphism. By i) we have that $\overline{\chi} = \{\chi\}$. Thus $\overline{\sigma} = \{\sigma\}$.

 $ii) \Rightarrow iii)$ As $\overline{\sigma} = \{\sigma\}$ for all $\sigma \ge \rho$, we have $\sigma = \sigma_{\perp_{\rho}}$. On the other hand, we know that $\sigma_{\perp_{\rho}} = \rho \lor \xi (\mathcal{A}_{\rho} \cap \mathbb{T}_{\sigma})$. In particular, $\chi = \chi_{\perp_{\rho}} = \rho \lor \xi (\mathcal{A}_{\rho} \cap \mathbb{T}_{\chi}) = \rho \lor \xi (\mathcal{A}_{\rho})$. So by [5, Definition 3.1] ρ - \mathcal{A} -dim(R) = 1.

 $iii) \Rightarrow i$) Given that R has left ρ -atomic dimension equal to 1, by [5, Definition 3.1] we have $\chi = \rho \lor \xi(\mathcal{A}_{\rho})$. Also we know that $\tau_{\mathcal{A}_{\rho}} = \rho \lor \xi(\mathcal{A}_{\rho})$. Therefore $\overline{\chi} = [\tau_{\mathcal{A}_{\rho}}, \chi] = \{\chi\}$.

If $\rho = \xi$ we obtain the following corollary.

Corollary 1.13. Let R be a ring. The following conditions are equivalent.

- i) $\overline{\chi} = \{\chi\}$
- ii) For all $\sigma \in R$ -tors, $\overline{\sigma} = \{\sigma\}$
- iii) R has left ξ -atomic dimension equal to 1.

Remark 1.14. *R* is a ring with left ξ -atomic dimension equal to 1 if and only if *R* is a left semiartinian ring. In fact, it is clear that if *R* is a left semiartinian ring, then \mathcal{A} -dim(*R*) = 1. Now if \mathcal{A} -dim(*R*) = 1, then by [5, Definition 3.1], we have that $\chi = \xi \lor \xi (\{M \mid M \text{ is a } \xi \text{-} \mathcal{A} \text{-module}\}) = \xi (\{M \mid M \text{ is a } \xi \text{-} \mathcal{A} \text{-module}\})$. Now, if $0 \neq N$, then there exists a ξ - \mathcal{A} -module *M* such that Hom (*M*, *E*(*N*)) \neq 0. Hence there are submodules $K \subsetneq L$ of *M* and a non-zero monomorphism $L/K \hookrightarrow N$. So by [5, Proposition 2.4, 4.] L/K is a ξ - \mathcal{A} -module. Thus *N* contains an ξ - \mathcal{A} -module. On the other hand we know that ξ - \mathcal{A} -modules are ξ -atoms. Moreover, by [5, Remark 2.2.], ξ -atoms are precisely the atoms of *R*-tors, meaning the hereditary torsion theories of the form $\xi (\{S\})$ where $S \in R$ -Mod is simple. Since *N* contains an ξ - \mathcal{A} -module, there exists a submodule *N'* of *N* and a simple *R*-module *S* such that $\xi (\{S\}) = \xi (\{N'\})$. Hence $S \hookrightarrow N'$. Thus *R* is a left semiartinian ring.

Corollary 1.12 generalizes [1, Proposition 6.].

We denote the singular submodule of M by Z(M).

Proposition 1.15. If M is a ρ -A-module with $Z(M) \neq 0$, then $Z(M) \subseteq_{es} M$.

Proof. Suppose that Z(M) is not essential in M. Then there exists a non-zero submodule N of M such that $Z(M) \cap N = 0$. So Z(N) = 0. Since M is a ρ - \mathcal{A} -module, by [5, Corollary 2.17] we have $\chi(N) = \chi(M) = \chi(Z(M))$. Therefore $Hom(Z(M), E(N)) \neq 0$ which is a contradiction.

Notice that equality in Proposition 1.15 in general is not true. To see this consider the following example:

Example 1.16. Let $R = \mathbb{Z}_4$ be the ring of integers modulo 4. Notice that \mathbb{Z}_4 -tors $= \{\xi, \chi\}$. Hence we have \mathbb{Z}_4 is an ξ - \mathcal{A} -module. But $Z(\mathbb{Z}_4) = 2\mathbb{Z}_4 \subsetneq \mathbb{Z}_4$.

We let $\tau_{\mathcal{A}_{\rho}S}$ denote $\rho \lor \xi (\{M \in \mathcal{A}_{\rho} \mid Z(M) \neq 0\}).$

Proposition 1.17. For any hereditary torsion theory ρ , we have

$$\tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}} = \chi\left(\{M \in \mathcal{A}_{\rho} \mid Z\left(M\right) = 0\}\right)$$

Proof. From Proposition 1.4, we know that $\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}} = \chi\left(\left\{M \in \mathcal{A}_{\rho} \mid M \in \mathbb{F}_{\tau_{A_{\rho}S}}\right\}\right)$. Let N be a ρ - \mathcal{A} -module with Z(N) = 0. We claim that $N \in \mathbb{F}_{\tau_{A_{\rho}S}}$. In fact, suppose $N \notin \mathbb{F}_{\tau_{A_{\rho}S}}$. As N is a ρ - \mathcal{A} -module, it follows from [5, Definition 2.3] that $N \in \mathbb{F}_{\rho}$. Thus $N \notin \mathbb{F}_{\xi(\{M \in \mathcal{A}_{\rho} \mid Z(M) \neq 0\})}$. So there exists a module $M \in \mathcal{A}_{\rho}$ such that $Z(M) \neq 0$ and $Hom(M, E(N)) \neq 0$. Let $f: M \longrightarrow E(N)$ be a non-zero morphism and $M' = f^{-1}(N)$. We consider the map restriction $f_{\mid M'}: M' \longrightarrow N$. Then $f_{\mid M'}$ is a non-zero morphism. On the other hand we know that $Z(M') = M' \cap Z(M) \neq 0$. From Proposition 1.15 we obtain $Z(M') \subseteq_{es} M'$. Now let $K = \ker f_{\mid M'}$. If $Z(M') \subseteq K$, then $K \subseteq_{es} M'$. So M'/K is a non-zero singular module. If $Z(M') \nsubseteq K$, then there exists $0 \neq x \in Z(M')$ with $x \notin K$. Hence $0 \neq x + K \in Z(M'/K)$. We conclude that $Z(M'/K) \neq 0$. As $M'/K \hookrightarrow N$, then $Z(N) \neq 0$ which is a contradiction. Therefore $N \in \mathbb{F}_{\tau_{A\rho S}}$.

Now let $M \in \mathcal{A}_{\rho}$, with $M \in \mathbb{F}_{\tau_{\mathcal{A}_{\rho}S}}$. We claim Z(M) = 0. In fact, if $Z(M) \neq 0$, then $M \in \mathbb{T}_{\tau_{\mathcal{A}_{\rho}S}}$, a contradiction. Therefore $\chi(\{M \in \mathcal{A}_{\rho} \mid Z(M) = 0\}) \leq \tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}\perp_{\rho}}$.

Remark 1.18. If R is a left semihereditary ring, then each non-zero R-module M with Z(M) = 0 contains a non-zero projective submodule. In fact, let $0 \neq M$ be such that Z(M) = 0. We can assume without loss of generality that M is a cyclic R-module. Thus let us take M = R/I. As M is a non-singular module, I is a non-essential left ideal of R. Hence there exists $0 \neq x \in R$, such that $Rx \cap I = 0$. Thus $Rx \cong \frac{I \oplus Rx}{I} \hookrightarrow \frac{R}{I}$. Moreover Rx is a projective left ideal since R is left semihereditary. This shows that M contains a non-zero projective submodule.

When each non-singular ρ - \mathcal{A} -module contains a non-zero projective submodule, we obtain interesting information about the lattice $gen(\rho)$.

Proposition 1.19. Suppose that each non-singular ρ - \mathcal{A} -module contains a non-zero projective submodule. Then $\tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \lor \tau_{\mathcal{A}_{\rho}} = \chi$.

Proof. If N is a non-zero R-module such that $N \in \mathbb{F}_{\tau_{\mathcal{A}\rho}^{\perp,\rho} \vee \tau_{\mathcal{A}\rho}}$, then $N \in \mathbb{F}_{\tau_{\mathcal{A}\rho}^{\perp,\rho} \vee \tau_{\mathcal{A}\rho}}$, and $N \in \mathbb{F}_{\tau_{\mathcal{A}\rho}}$. By Proposition 1.17 we have that $N \in \mathbb{F}_{\chi(\{M \in \mathcal{A}_{\rho} | Z(M) = 0\})}$. Hence there exists a ρ - \mathcal{A} -module M, with Z(M) = 0, and such that $Hom(N, E(M)) \neq 0$. If $f: N \longrightarrow E(M)$ is a non-zero morphism, then $f(N) \cap M \neq 0$. Thus by [5,

26

Proposition 2.4] $f(N) \cap M$ is a ρ - \mathcal{A} -module. As $f(N) \cap M$ is a non-singular module, by hypothesis $f(N) \cap M$ contains a non-zero projective submodule M'. If $N' = f^{-1}(M')$, then the restriction morphism $f_{|N'}: N' \longrightarrow M'$ is an epimorphism. Since M' is projective, $f_{|N}$ splits. Hence $M' \hookrightarrow N'$. As $M' \subseteq M$, by [5, Proposition 2.4], M' is ρ - \mathcal{A} -module. Thus $N' \notin \mathbb{F}_{\tau_{\mathcal{A}_{\rho}}}$. On the other hand, we know that $N' \subseteq N$, thus $N \notin \mathbb{F}_{\tau_{\mathcal{A}_{\rho}}}$, which is a contradiction. \Box

Proposition 1.20. Suppose that each non-singular ρ - \mathcal{A} -module contains a nonzero projective submodule. If $\sigma, \tau \in gen(\rho)$ are such that $\tau_{\mathcal{A}_{\rho}S} \leq \sigma \leq \tau \leq \chi$, then Γ_{τ}^{σ} is a lattice isomorphism.

Proof. First we will prove that $\Gamma_{\chi}^{\tau_{\mathcal{A}_{\rho}S}}$ is a lattice isomorphism.

By Proposition 1.7 we have that $\overline{\tau_{\mathcal{A}_{\rho}S}} = \left[\tau_{\mathcal{A}_{\rho}S}, \tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}}\right]$ and $\overline{\chi} = [\tau_{\mathcal{A}_{\rho}}, \chi]$. Let $\beta \in [\tau_{\mathcal{A}_{\rho}}, \chi]$. Then

$$\begin{pmatrix} \Psi^{\chi}_{\tau_{\mathcal{A}_{\rho}}} \circ \Gamma^{\tau_{\mathcal{A}_{\rho}}}_{\chi} \end{pmatrix} (\beta) = \Psi^{\chi}_{\tau_{\mathcal{A}_{\rho}}} \left(\beta \wedge \tau^{\perp_{\rho} \perp_{\rho}}_{\mathcal{A}_{\rho} S} \right)$$
$$= \left(\beta \wedge \tau^{\perp_{\rho} \perp_{\rho}}_{\mathcal{A}_{\rho} S} \right) \vee \tau_{\mathcal{A}_{\rho}}$$
$$= \beta \wedge \left(\tau^{\perp_{\rho} \perp_{\rho}}_{\mathcal{A}_{\rho} S} \vee \tau_{\mathcal{A}_{\rho}} \right).$$

By Proposition 1.19, we have that $\beta \wedge \left(\tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \tau_{\mathcal{A}_{\rho}}\right) = \beta \wedge \chi = \beta$. We have shown that $\Gamma_{\chi}^{\tau_{\mathcal{A}_{\rho}}}$ is a lattice monomorphism. As $\Gamma_{\chi}^{\tau_{\mathcal{A}_{\rho}}}$ is a lattice epimorphism, $\Gamma_{\chi}^{\tau_{\mathcal{A}_{\rho}}}$ is a lattice isomorphism. Moreover, $\Psi_{\tau_{\mathcal{A}_{\rho}}}^{\chi}$ is the inverse lattice morphism of $\Gamma_{\chi}^{\tau_{\mathcal{A}_{\rho}}}$.

Now let $\sigma, \tau \in gen(\rho)$ such that $\tau_{\mathcal{A}_{\rho}S} \leq \sigma \leq \tau \leq \chi$. From Proposition 1.11, we have that $\Gamma_{\tau}^{\tau_{\mathcal{A}_{\rho}}} \circ \Gamma_{\chi}^{\tau} = \Gamma_{\chi}^{\tau_{\mathcal{A}_{\rho}}}$. Since $\Gamma_{\chi}^{\tau_{\mathcal{A}_{\rho}}}$ is a lattice isomorphism, Γ_{χ}^{τ} is a lattice monomorphism. Hence Γ_{χ}^{τ} is a lattice isomorphism. Moreover, Ψ_{τ}^{χ} is the inverse lattice morphism of Γ_{χ}^{τ} . Analogously we have that Γ_{χ}^{σ} is a lattice isomorphism.

Since $\Gamma^{\tau}_{\chi} \circ \Psi^{\chi}_{\tau} = I_{\tau}$, then $\Gamma^{\sigma}_{\tau} = \Gamma^{\sigma}_{\tau} \circ (\Gamma^{\tau}_{\chi} \circ \Psi^{\chi}_{\tau}) = (\Gamma^{\sigma}_{\tau} \circ \Gamma^{\tau}_{\chi}) \circ \Psi^{\chi}_{\tau} = \Gamma^{\sigma}_{\chi} \circ \Psi^{\chi}_{\tau}$. Hence Γ^{σ}_{τ} is a lattice isomorphism.

Corollary 1.21. Suppose that each non-singular ρ -A-module contains a non-zero projective submodule. Then the following conditions are equivalent.

- i) $\overline{\chi} = \{\chi\}$
- ii) $\overline{\sigma} = \{\sigma\}$ for each $\sigma \ge \rho$
- iii) R has left atomic ρ -dimension 1.
- iv) $\overline{\tau_{\mathcal{A}_{\rho}}} = \{\tau_{\mathcal{A}_{\rho}}\}$
- v) $\overline{\tau_{\mathcal{A}_{\rho}S}} = \{\tau_{\mathcal{A}_{\rho}S}\}$

Proof. This follows from Proposition 1.20 and Proposition 1.12.

Lemma 1.22. If τ , $\sigma \in gen(\rho)$, then $(\tau \wedge \sigma)^{\perp_{\rho} \perp_{\rho}} = \tau^{\perp_{\rho} \perp_{\rho}} \wedge \sigma^{\perp_{\rho} \perp_{\rho}}$.

Proof. It is clear that $(\tau \wedge \sigma)^{\perp_{\rho}\perp_{\rho}} \leq \tau^{\perp_{\rho}\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}}$. Suppose that $(\tau \wedge \sigma)^{\perp_{\rho}\perp_{\rho}} < \tau^{\perp_{\rho}\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}}$. Hence there exists a module M such that $M \in \mathbb{T}_{\tau^{\perp_{\rho}\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}}}$ and $M \in \mathbb{F}_{(\tau \wedge \sigma)^{\perp_{\rho}\perp_{\rho}}}$. By Proposition 1.4, we know that $(\tau \wedge \sigma)^{\perp_{\rho}\perp_{\rho}} = \chi(\mathcal{A}_{\rho} \cap \mathbb{F}_{\tau \wedge \sigma})$. Hence $M \in \mathbb{F}_{\chi(\mathcal{A}_{\rho} \cap \mathbb{F}_{\tau \wedge \sigma})}$. Thus there exists a module $N \in \mathcal{A}_{\rho} \cap \mathbb{F}_{\tau \wedge \sigma}$ such that $Hom(M, E(N)) \neq 0$. On the other hand, as N is a ρ - \mathcal{A} -module, by [5, Theorem 2.13] N is a ρ -decisive module. Either $N \in \mathbb{F}_{\sigma}$ or $N \in \mathbb{T}_{\sigma}$. If $N \in \mathbb{T}_{\sigma}$, then $N \in \mathbb{F}_{\tau}$. Therefore $N \in \mathbb{F}_{\chi(\mathcal{A}_{\rho} \cap \mathbb{F}_{\tau})} = \mathbb{F}_{\tau^{\perp_{\rho}\perp_{\rho}}}$. As we know that $M \in \mathbb{T}_{\tau^{\perp_{\rho}\perp_{\rho}}}$, we get Hom(M, E(N)) = 0, which is a contradiction. If $N \in \mathbb{F}_{\sigma}$, we have $N \in \mathbb{F}_{\chi(\mathcal{A}_{\rho} \cap \mathbb{F}_{\sigma})} = \mathbb{F}_{\sigma^{\perp_{\rho}\perp_{\rho}}}$. As $M \in \mathbb{T}_{\sigma^{\perp_{\rho}\perp_{\rho}}}$, we have Hom(M, E(N)) = 0, which is also a contradiction. Therefore $(\tau \wedge \sigma)^{\perp_{\rho}\perp_{\rho}} = \tau^{\perp_{\rho}\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}}$.

Theorem 1.23. If each non-singular ρ - \mathcal{A} -module contains a non-zero projective submodule, then for $\sigma \in gen(\rho)$, we have $\overline{\tau_{\mathcal{A}_{\sigma}S} \wedge \sigma} \cong \overline{\sigma}$.

Proof. We have that

$$\overline{\sigma} = \begin{bmatrix} \sigma_{\perp_{\rho}}, \ \sigma^{\perp_{\rho}\perp_{\rho}} \end{bmatrix} \text{ and } \overline{\tau_{\mathcal{A}_{\rho}S} \wedge \sigma} = \begin{bmatrix} \left(\tau_{\mathcal{A}_{\rho}S} \wedge \sigma \right)_{\perp_{\rho}}, \ \left(\tau_{\mathcal{A}_{\rho}S} \wedge \sigma \right)^{\perp_{\rho}\perp_{\rho}} \end{bmatrix}. \text{ If } \beta \in \begin{bmatrix} \sigma_{\perp_{\rho}}, \ \sigma^{\perp_{\rho}\perp_{\rho}} \end{bmatrix}, \text{ then} \\ \begin{pmatrix} \Psi^{\sigma}_{\tau_{\mathcal{A}_{\rho}S}} \circ \Gamma^{\tau_{\mathcal{A}_{\rho}S}}_{\sigma} \end{pmatrix} (\beta) = \Psi^{\sigma}_{\tau_{\mathcal{A}_{\rho}S}} \left(\beta \wedge \left(\tau_{\mathcal{A}_{\rho}S} \wedge \sigma \right)^{\perp_{\rho}\perp_{\rho}} \right) \\ = \begin{bmatrix} \beta \wedge \left(\tau_{\mathcal{A}_{\rho}S} \wedge \sigma \right)^{\perp_{\rho}\perp_{\rho}} \end{bmatrix} \vee \sigma_{\perp_{\rho}} \\ = \beta \wedge \left(\left(\tau_{\mathcal{A}_{\rho}S} \wedge \sigma \right)^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}} \right). \end{cases}$$

From Lemma 1.22, we obtain that

$$\begin{split} \beta \wedge \left[\left(\tau_{\mathcal{A}_{\rho}S} \wedge \sigma \right)^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}} \right] &= \beta \wedge \left[\left(\tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \wedge \sigma^{\perp_{\rho}\perp_{\rho}} \right) \vee \sigma_{\perp_{\rho}} \right] \\ &= \beta \wedge \left[\left(\tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}} \right) \wedge \sigma^{\perp_{\rho}\perp_{\rho}} \right] \\ &= \beta \wedge \left(\tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}} \right). \end{split}$$

We claim that $\beta \wedge \left(\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}}\right) = \beta$. In fact, it is clear that $\beta \wedge \left(\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}}\right) \leq \beta$. β . If $\beta \wedge \left(\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}}\right) < \beta$, then there exists $0 \neq M \in R$ - Mod such that $M \in \mathbb{T}_{\beta}$ and $M \in \mathbb{F}_{\beta \wedge \left(\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}}\right)}$. Since $M \in \mathbb{T}_{\beta}$, we have $M \in \mathbb{F}_{\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}}} \vee \sigma_{\perp_{\rho}}$. Thus $M \in \mathbb{F}_{\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}}}$ and $M \in \mathbb{F}_{\sigma_{\perp_{\rho}}}$. As $M \in \mathbb{F}_{\tau_{A_{\rho}S}^{\perp_{\rho}\perp_{\rho}}}$, by Proposition 1.17 there exists a non-singular ρ - \mathcal{A} -module N such that $Hom(M, E(N)) \neq 0$. If $f: M \longrightarrow E(N)$ is a non-zero morphism, then $f(M) \cap N \neq 0$. By [5, Proposition 2.4], we have that $f(M) \cap N$ is a ρ - \mathcal{A} -module. So $f(M) \cap N$ is non-singular. By hypothesis $f(M) \cap N$ contains a non-zero projective submodule P. Taking $M' = f^{-1}(P)$, the restriction morphism $f_{|M'}: M' \longrightarrow P$ is an epimorphism. As P is projective, $f_{|M'}$ splits, giving $P \hookrightarrow M'$. Moreover as $M' \subseteq M$, $P \in \mathbb{T}_{\beta}$. Since $P \subseteq f(M) \cap N$, by [5, Proposition 2.4] we have that P is a ρ - \mathcal{A} -module. Hence $P \in \mathbb{T}_{\tau_{\mathcal{A}_{\rho}}}$. On the other hand, as $\beta \in [\sigma_{\perp_{\rho}}, \sigma^{\perp_{\rho}\perp_{\rho}}]$, we have $\beta \equiv \sigma$. From Definition 1.6, we get $P \in \mathbb{T}_{\sigma}$. Therefore $P \in \mathbb{T}_{\tau_{\mathcal{A}_{\rho}} \wedge \sigma} = \mathbb{T}_{\sigma_{\perp_{\rho}}}$. As $M \in \mathbb{F}_{\sigma_{\perp_{\rho}}}$, it follows that $P \in \mathbb{F}_{\sigma_{\perp_{\rho}}}$ a contradiction. Therefore $\beta \wedge \left(\tau_{\mathcal{A}_{\rho}S}^{\perp_{\rho}\perp_{\rho}} \vee \sigma_{\perp_{\rho}}\right) = \beta$. Thus $\Psi_{\tau_{\mathcal{A}_{\rho}S}}^{\sigma} \circ \Gamma_{\sigma}^{\tau_{\mathcal{A}_{\rho}S}} = I_{\overline{\tau_{\mathcal{A}_{\rho}S} \wedge \sigma}}$. Therefore $\Gamma_{\sigma}^{\tau_{\mathcal{A}_{\rho}S}}$ is a lattice isomorphism.

Corollary 1.24. Suppose that each non-singular ρ - \mathcal{A} -module contains a non-zero projective submodule. Let σ , $\tau \in gen(\rho)$. If $\tau_{\mathcal{A}_{\rho}S} \wedge \sigma = \tau_{\mathcal{A}_{\rho}S} \wedge \tau$, then $\overline{\sigma} \cong \overline{\tau}$.

Proof. By Theorem 1.23, we have that
$$\overline{\sigma} \cong \overline{\tau_{\mathcal{A}_{\rho}S} \wedge \sigma} = \overline{\tau_{\mathcal{A}_{\rho}S} \wedge \tau} \cong \overline{\tau}$$
.

The following example shows a ring R without left ρ -atomic dimension, but with atomic lattice $gen(\rho)$.

Example 1.25. Professor Mark L. Teply gave us this example in a personal communication.

Let [0,1] and $\{0,1\}$ be the closed real interval and a set with two elements 0 < 1 respectively. Now, let $X = [0,1] \times \{0,1\}$. We define $(a,b) \leq (c,d)$ if a < c or a = c and $b \leq d$.

Then (X, \leq) satisfies the conditions of [10, Theorem 3.1]. Hence there exists a commutative Bezout domain R such that $Spec(R) \cong X$ (as partially ordered sets). The following facts are true.

- (1) R is a valuation domain
- (2) R has a unique maximal ideal M that corresponds to the element (1,1) of X.
- (3) If P a prime ideal of R with $0 \neq P \neq M$, then P is not finitely generated.
- (4) Let $P \in Spec(R)$. Then $\left(\bigcap_{n \in \mathbb{N}} P^n\right) \in Spec(R)$. If $P \neq P^2$, then $\left(\bigcap_{n \in \mathbb{N}} P^n\right)$ is the maximal prime ideal properly contained in P.
- (5) If P is a prime ideal associated with an element of the form (r, 0), then P is idempotent.

Let $P \in Spec(R)$. Let σ_P denote the element of R-tors such that

 $\mathcal{L}_{\sigma_P} = \{I \mid I \text{ is an ideal of } R \text{ and } P \subsetneq I\}. \text{ If } P = P^2, \text{ we denote by } \tau_P$ the element of R-tors such that $\mathcal{L}_{\tau_P} = \{I \mid I \text{ is an ideal of } R \text{ and } P \subseteq I\}.$

- (6) By [2, Theorem 3.3] we know that if $\tau \in R$ -tors then either
 - i) there exists $P \in Spec(R)$ such that $\tau = \sigma_P$, or
 - ii) there exists $P \in Spec(R)$ with $P = P^2$ and $\tau = \tau_P$
- (7) Let $P \in Spec(R)$. Then
 - i) R/P is a σ_P -cocritical module,

JAIME CASTRO PÉREZ AND GERARDO AGUILAR SÁNCHEZ

- ii) if $P = P^2$, then τ_P does not have cocritical modules. Hence R does not have τ_P Gabriel dimension.
- (8) Let P be the prime ideal associated with (r, 0). Then $gen(\tau_P)$ does not have atoms and hence R does not have τ_P -atomic dimension.

As X is a linearly ordered set, Spec(R) is a linear lattice. So by (6) the lattice R-tors is a linear lattice. If P is the prime ideal associated with (r,0), then P is idempotent and we have that $\sigma_P < \tau_P$. Since R/P is σ_P -cocritical, by [5, Corollary 2.6] we have that R/P is a σ_P -A-module. Therefore $\sigma_P \lor \xi(R/P)$ is an atom in the lattice gen (σ_P) . As this lattice is linear, R/P is a σ_P -A-module such that $R/P \in \mathbb{T}_{\tau}$ for all $\tau > \sigma_P$. This shows that gen (σ_P) is an atomic lattice. On the other hand, by (8) we know gen (τ_P) does not have atoms. Inasmuch as $\sigma_P < \tau_P$, by [5, Theorem 3.3] R does not have σ_P -atomic dimension.

2. τ -Semiartinian rings

Semiartinian rings relative to an hereditary torsion theory τ have been studied in [3]. The following definitions were given by Bueso and Jara in [3]. For convenience to the reader we include them here.

Definition 2.1. Let $\tau \in R$ -tors. An R-module M is called τ -simple if $M \notin \mathbb{T}_{\tau}$ and $t_{\tau}(M)$ is the unique proper τ -closed submodule of M.

Note that M is τ -simple if and only if $0 \neq M/t_{\tau}(M)$ is τ -cocritical. In particular, if $M \in \mathbb{F}_{\tau}$, then M is τ -simple if and only if M is τ -cocritical. Also note that every submodule and every homomorphic image of a τ -simple R-module is either τ -simple or τ -torsion. Golan in [7, Chapter 14] gives examples of τ -simple R-modules.

For each submodule N of M, we define the τ -closure of N in M by

$$Cl^{M}_{\tau}(N) = \{x \in M \mid (N:x) \in \mathcal{L}_{\tau}\}.$$

Definition 2.2. Let $\tau \in R$ -tors and let $M \in R$ -Mod. The τ -socle of M is defined as $Soc_{\tau}(M) = Cl_{\tau}^{M} (\sum \{K \mid K \text{ is a } \tau\text{-simple submodule of } M\})$ or as $Soc_{\tau}(M) = t_{\tau}(M)$ if M has no τ -simple submodules.

Definition 2.3. Let $\tau \in R$ -tors. An R-module M is said to be τ -semiartinian if every non-zero quotient module of M has non-zero τ -socle. The ring R is said to be *left* τ -semiartinian, if R is τ -semiartinian as a left module over itself, (see [3, Theorem 3.5]).

Note that a τ -simple *R*-module is not necessarily τ -torsion free. Therefore if *M* is a τ -simple module, in general it is false that *M* is a τ -*A*-module. However we have the following result.

30

Proposition 2.4. Let $\tau \in R$ -tors and $M \in R$ -Mod. If M is τ -simple, then $\tau \lor \xi(\{M\})$ is an atom over τ .

Proof. Since M is a τ -simple module, $M/t_{\tau}(M)$ is a τ -cocritical module. By [5, Corollary 2.6], we have that $M/t_{\tau}(M)$ is a τ - \mathcal{A} -module. Thus $\tau \lor \xi \left(\{M/t_{\tau}(M)\}\right)$ is a τ -atom. We claim $\tau \lor \xi \left(\{M/t_{\tau}(M)\}\right) = \tau \lor \xi \left(\{M\}\right)$. In fact, taking the exact sequence $0 \to t_{\tau}(M) \to M \to M/t_{\tau}(M) \to 0$, it is clear that $M \in \mathbb{T}_{\tau \lor \xi(\{M/t_{\tau}(M)\})}$. Thus $\tau \lor \xi \left(\{M/t_{\tau}(M)\}\right) = \tau \lor \xi \left(\{M\}\right)$. So $\tau \lor \xi \left(\{M\}\right)$ is an atom over τ . \Box

Corollary 2.5. Let $\tau \in R$ -tors. Then

 $\tau \lor \xi \left(\{ M \mid M \text{ is } \tau \text{-simple} \} \right) \le \tau \lor \xi \left(\{ M \mid M \text{ is } a \tau \text{-} \mathcal{A} \text{-} module} \} \right)$

Proof. From Proposition 2.4, we have that if M is τ -simple, then $\tau \lor \xi(\{M\})$ is an atom over τ . By [5, Proposition 2.4, 2.], there exists a τ - \mathcal{A} -module N such that $\tau \lor \xi(\{M\}) = \tau \lor \xi(\{N\})$. Therefore $\tau \lor \xi(\{M \mid M \text{ is } \tau\text{-simple}\}) \leq \tau \lor \xi(\{N \mid N \text{ is a } \tau\text{-}\mathcal{A}\text{-module}\})$.

It is false in general that a τ -A-module is a τ -simple module. We give a few specific examples of τ -A-modules that are not τ -simple.

Example 2.6. Let \mathbb{Z}_p denote the integers modulo p, where p is a prime number. If $\tau = \chi(\{\mathbb{Z}_{p^{\infty}}\})$, then $\tau \lor \xi(\{\mathbb{Z}_{p^{\infty}}\}) = \tau \lor \xi(\{\mathbb{Z}_p\})$. So $\mathbb{Z}_{p^{\infty}}$ is a τ - \mathcal{A} -module. On the other hand we know that, $\frac{\mathbb{Z}_{p^{\infty}}}{N} \cong \mathbb{Z}_{p^{\infty}}$ for every proper submodule N of $\mathbb{Z}_{p^{\infty}}$. Therefore $\mathbb{Z}_{p^{\infty}}$ is not a τ -simple module.

Example 2.7. Let F be a field and let R be the commutative F-algebra generated by $\{x_i\}$, with $i \in \mathbb{R}$, $0 \le i \le 1$ and $x_i x_j = \begin{cases} x_{i+j} & \text{if } i+j < 1 \\ 0 & \text{if } i+j \ge 1 \end{cases}$.

It follows immediately that $x_0 = 1$ and $x_1 = 0$. It is also clear that R is a local ring.

This ring has been studied in [14], where the lattice of ideals is completely described. It is proved that R-tors consists of three elements, namely ξ , $\xi(\{S\}) = \chi(\{R\})$ and χ , where S denotes the only simple R-module. Hence it is clear that R is a $\chi(\{R\})$ -A-module. On the other hand, from the description of the ideals, it is not difficult to see that $\chi(\{R\})$ does not have cocritical modules. As R is a $\chi(\{R\})$ -torsion free module and R is not a $\chi(\{R\})$ -cocritical module, R is not a $\chi(\{R\})$ -simple module. Moreover, since $\chi(\{R\})$ does not have cocritical modules, R does not contain any τ -simple submodules.

Note also that from the description of the ideals of this ring, we have that Z(R) is the unique maximal ideal of R, hence $Z(R) \subsetneq R$. Thus in this example we have that R is a $\chi(\{R\})$ - \mathcal{A} -module and $Z(R) \subsetneq R$.

Here is another example showing that equality in Proposition 1.15. is in general not true.

Example 2.8. Let F be a field and let R be the ring of 3×3 upper triangular matrices (a_{ij}) over F such that $a_{11} = a_{33}$. Then R has two maximal left ideals $M_1 = \{(a_{ij}) \mid a_{11} = a_{33} = 0\}$ and $M_2 = \{(a_{ij}) \mid a_{22} = 0\}$. The simple left R-modules $S_1 = R/M_1$ and $S_2 = R/M_2$ are not isomorphic.

 $Let \ \tau = \xi \left(\{S_2\}\right). \ If \ (e_{ij}) \ denotes \ the \ matrix \ with \ (i, \ j) th \ entry \ 1 \ and \ 0 \ elsewhere, we have \ Re_{33} = \left\{ \begin{pmatrix} a & 0 & c \\ 0 & 0 & e \\ 0 & 0 & a \end{pmatrix} \mid a, c, e \in F \right\}. \ Since \ Hom \ (S_2, Re_{33}) = 0,$ it follows that $Re_{33} \in \mathbb{F}_{\tau}.$ Moreover $Soc \ (Re_{33}) \cong S_1.$ $Re_{23} = \left\{ \begin{pmatrix} 0 & 0 & c \\ 0 & 0 & e \\ 0 & 0 & 0 \end{pmatrix} \mid c, e \in F \right\}. \ So \ (Re_{33}/Re_{23}) \cong S_1. \ Hence \ (Re_{33}/Re_{23}) \in S_1.$

 \mathbb{F}_{τ} . Therefore Re_{33} is not a τ -simple module.

On the other hand, we have that S_1 is a τ - \mathcal{A} -module and $\tau \lor \xi(\{Re_{33}\}) = \tau \lor \xi(\{S_1\})$, and so Re_{33} is a τ - \mathcal{A} -module. We observe that $\tau \lor \xi(\{Re_{33}\}) = \chi$.

It is well-known that a ring R is left semiartinian if and only if each hereditary torsion theory is generated by simple modules. In the following proposition we give a similar result for left τ -semiartinian rings.

Proposition 2.9. Let R be a ring and let $\tau \in R$ -tors. The following conditions are equivalent.

- i) R is a left τ -semiartinian ring
- ii) For every $\sigma \geq \tau$, $\sigma = \tau \lor \xi (\{M \mid M \text{ is } \tau \text{-simple with } M \in \mathbb{T}_{\sigma}\}).$

Proof. $i) \Rightarrow ii$) Let $\sigma \ge \tau$ and $\sigma' = \tau \lor \xi (\{M \mid M \text{ is } \tau \text{-simple with } M \in \mathbb{T}_{\sigma}\})$. It is clear that $\sigma' \le \sigma$. Suppose that $\sigma' < \sigma$. Then there exists a non-zero *R*-module *N* such that $N \in \mathbb{T}_{\sigma} \cap \mathbb{F}_{\sigma'}$. As *R* is τ -semiartinian, $Soc_{\tau}(N) \neq 0$. From definition 2.2 we have that $Soc_{\tau}(N) = Cl_{\tau}^{N} (\sum \{K \mid K \text{ is a } \tau \text{-simple submodule of } N\}) \neq 0$ or $Soc_{\tau}(N) = t_{\tau}(N) \neq 0$ if *N* has no τ -simple submodules. Suppose that *N* has no τ -simple submodules. Then $t_{\tau}(N) \neq 0$. Hence $t_{\sigma'}(N) \neq 0$. Thus $N \notin \mathbb{F}_{\sigma'}$ which is a contradiction. Therefore *N* has a τ -simple submodules. Let $0 \neq L$ be a τ -simple submodule of *N*. As $N \in \mathbb{T}_{\sigma}$, we have $L \in \mathbb{T}_{\sigma}$. By definition of σ' we get $L \in \mathbb{T}_{\sigma'}$ which is a contradiction. Thus $\sigma' = \sigma$.

 $ii) \Rightarrow i)$ Let $0 \neq N \in \mathbb{F}_{\tau}$ and let $\sigma = \tau \lor (\{N\})$. By hypothesis we have that $\sigma = \tau \lor \xi (\{M \mid M \text{ is a } \tau \text{-simple with } M \in \mathbb{T}_{\sigma}\})$. Since $N \in \mathbb{T}_{\sigma}$ and $N \in \mathbb{F}_{\tau}$, we

have $N \notin \mathbb{F}_{\xi\{(M|M \text{ is } \tau \text{-simple with } M \in \mathbb{T}_{\sigma})\}}$. Hence there is a τ -simple module M with $M \in \mathbb{T}_{\sigma}$, such that $Hom(M, E(N)) \neq 0$. Hence there are submodules $K \subsetneq L$ of M and a monomorphism $L/K \hookrightarrow N$. Since $L \subseteq M$, it follows that by [7, Chapter 14] we have L is τ -simple or $L \in \mathbb{T}_{\tau}$. If $L \in \mathbb{T}_{\tau}$, then $L/K \in \mathbb{T}_{\tau}$, which is a contradiction. Hence L is τ -simple. Again by [7, Chapter 14] $L/K \in \mathbb{T}_{\tau}$ or L/K is τ -simple. So we have that L/K is τ -simple. Moreover, as $L/K \in \mathbb{F}_{\tau}$, L/K is a τ -cocritical module. Therefore N contains a τ -cocritical submodule. Hence by [3, Theorem 3.5] R is a left τ -semiartinian ring.

The following proposition determines the left τ -atomic dimension of left τ -semiartinian rings.

Proposition 2.10. Let R be a ring and let $\tau \in R$ -tors. If R is a left τ -semiartinian ring, then R has left τ -atomic dimension 1.

Proof. Since *R* is a left τ -semiartinian ring, by Proposition 2.9 we have that $\chi = \tau \lor \xi (\{M \mid M \text{ is } \tau \text{-simple }\})$. From Proposition 2.4. we know that if *M* is τ -simple then $\tau \lor (\{M\})$ is an atom over τ . Thus we have $\chi = \tau \lor \xi (\{M \mid M \text{ is a } \tau \text{-simple module}\}) \le \tau \lor \xi (\{M \mid M \text{ is a } \tau \text{-A-module}\})$. Now, by [5, Definition 3.1], *R* has left τ -atomic dimension 1.

The converse of this result is false as shown by the following example.

Example 2.11. Let R be the ring of Example 2.7 and $\tau = \chi(\{R\})$. We know that R is a τ -A-module as a left module over itself and $\tau \lor \xi(\{R\}) = \chi$. Hence by [5, Definition 3.1] τ -A-dim(R) = 1. On the other hand we know that $\chi(\{R\})$ does not have cocritical modules. So by [3, Theorem 3.5] R is not a left τ -semiartinian ring.

Remark 2.12. By [5, Theorem 4.4], R has left τ -Gabriel dimension if and only if R has left τ -atomic dimension and every non-zero τ -torsion free R-module M contains a cocritical submodule. Moreover by [5, Corollary 4.5], if τ -Gdim(R) = 1 then τ -Adim(R) = 1.

Proposition 2.13. Let $\tau \in R$ -tors and suppose that for all $0 \neq M \in \mathbb{F}_{\tau}$, M contains a cocritical submodule. Then the following conditions are equivalent.

- i) R is left τ -semiartinian ring.
- ii) τ - $\mathcal{A}dim(R) = 1$.
- iii) τ -Gdim(R) = 1.

Proof. i) \Rightarrow ii) follows from Proposition 2.10.

 $ii) \Rightarrow iii)$ As τ -Adim(R) = 1 and every non zero τ -torsion free R-module M contains a cocritical submodule, by [5, Theorem 4.4 and Corollary 4.5] we have that τ -Gdim(R) = 1.

 $iii) \Rightarrow i)$ Since τ -Gdim(R) = 1, we have $\tau \lor \xi (\{N \mid N \text{ is a } \tau\text{-cocritical module}\}) = \chi$. If $0 \neq M \in \mathbb{F}_{\tau}$, then $M \notin \mathbb{F}_{\xi(\{N \mid N \text{ is } \tau\text{-cocritical module}\})}$. Thus there exists a τ -cocritical *R*-module *N*, such that $Hom(N, E(M)) \neq 0$. Since $M \in \mathbb{F}_{\tau}$, there exists a non-zero submodule *L* of *N* and a monomorphism $L \hookrightarrow M$. Hence *M* contains a τ -cocritical submodule. Thus, by [3, Theorem 3.5] we have that *R* is a left τ -semiartinian ring. \Box

Corollary 2.14. Let $\tau \in R$ -tors. Suppose that $gen(\tau)$ is an atomic lattice and that, for every $0 \neq M \in \mathbb{F}_{\tau}$, M contains a cocritical submodule. The following conditions are equivalent.

i) $\overline{\chi} = \{\chi\}.$

34

- ii) For all $\sigma \geq \tau$, $\overline{\sigma} = \{\sigma\}$.
- iii) τ - $\mathcal{A}dim(R) = 1$.
- iv) τ -Gdim(R) = 1.
- v) R is a left τ -semiartinian ring.

Proof. This follows from Proposition 1.12 and Proposition 2.13.

Note that if $\tau = \xi$, then $gen(\tau) = R$ -tors is an atomic lattice. Therefore Corollary 2.14 is a generalization of the result in [1, Proposition 6].

Notice that if R is a left τ -noetherian ring, then R has left τ -Gabriel dimension. In fact, let $\sigma \geq \tau$ with $\sigma \neq \chi$ and let I be a left σ -closed ideal of R. Then I is left τ -closed in R. Since R is τ -noetherian, there are maximal left σ -closed ideals. Therefore there are σ -cocritical modules. Thus R has left τ -Gabriel dimension. Note also that if R has left τ -Gabriel dimension , then $gen(\tau)$ is an atomic lattice.

In [11, Theorem 1.4] Teply and Miller proved that if R is a left τ -artinian ring, then R is a left τ -noetherian ring. Bueso and Jara show in [3, Proposition 3.13] that if R is a left τ -artinian ring, then R is a left τ -semiartinian ring. By Proposition 2.13 we know that R is a τ -semiartinian ring if and only if τ - $A\dim(R) = 1$. Thus the following theorem can be seen as the converse of the theorem of Teply and Miller. **Theorem 2.15.** Let R be a left τ -noetherian ring. The following conditions are equivalent.

- i) $\overline{\chi} = \{\chi\}.$
- ii) For all $\sigma \geq \tau$, $\overline{\sigma} = \{\sigma\}$.
- iii) τ - $\mathcal{A}dim(R) = 1$.
- iv) τ -Gdim(R) = 1.
- v) R is a left τ -artinian ring.

Proof. Since R is a left τ -noetherian ring, every non-zero τ -torsion free R-module M contains a cocritical submodule. Moreover, R has left τ -Gabriel dimension. By [5, Theorem 4.4], R has left τ -atomic dimension. Therefore $gen(\tau)$ is an atomic lattice. Hence by Corollary 2.14. i), ii), ii), iii, iv) are equivalent.

 $iv) \Rightarrow v)$ As τ -Gdim(R) = 1 and as R is a left τ -noetherian ring, by Corollary 2.14 R is a left τ -semiartinian ring. Thus by [3, Theorem 3.16], we have that R is a left τ -artinian ring.

 $v \Rightarrow i$) Since R is a left τ -artinian ring, by [3, Proposition 3.13], R is a left τ -semiartinian ring. As R is a left τ -noetherian ring, by Corollary 2.14 we have that $\overline{\chi} = \{\chi\}$.

Corollary 2.16. Let R be a left Noetherian ring. The following conditions are equivalent.

- i) $\overline{\chi} = \{\chi\}.$
- ii) For all $\sigma \in R$ -tors, $\overline{\sigma} = \{\sigma\}$.
- iii) $\mathcal{A}dim(R) = 1.$
- iv) Gdim(R) = 1.
- v) R is a left artinian ring.

References

- G. Aguilar and F. Raggi, Sublattices of R-tors induced by the skeleton, Comm. Algebra, 21(4) (1993), 1347-1358.
- [2] E. Barbut and W. Brandal, *Localizations of torsion theories*, Pacific J. Math., 107(1) (1983)27-37.
- J. Bueso and P. Jara, Semiartinian modules relative to a torsion theory, Comm. Algebra, 13(3) (1985), 631-644.
- [4] J. Castro, J. Ríos, and M. Teply, Torsion theoretic dimensions and relative Gabriel correspondence, J. Pure Appl. Algebra, 178 (1) (2003), 101-114.
- [5] J. Castro, F. Raggi, J. Ríos and J. Van den Berg, On the atomic dimension in module categories, Comm. Algebra, 33 (2005), 4679-4692.

- [6] J. Castro, F. Raggi, and J. Ríos, Decisive dimension and other related torsion theoretic dimensions, J. Pure Appl. Algebra, 209 (2007), 139-149
- [7] J. Golan, Torsion Theories, Longman Scientific & Technical, Harlow, 1986.
- [8] J. Golan, On the Cantor-Bendixon-Simmons filtration of a torsion theory, Comm. Algebra, 16(4) (1988), 681-688.
- [9] J. Golan and H. Simmons, Derivatives, Nuclei and Dimensions on the Frame of Torsion Theories, Longman Scientific and Technical, Harlow, 1988.
- [10] W.J. Lewis, The spectrum of a ring as a partially ordered set, J. Algebra, 25 (1973), 419-434.
- [11] R. Miller and M. Teply, The descending chain condition relative to a torsion theory, Pacific J. Math, 83 (1979), 207-219.
- [12] C. Nastasescu, Modules injectifs de type fini par rapport a une topologie additive, Comm. Algebra, 9 (1981), 67-79
- [13] B. Stenström, Rings of Quotients, Die Grundlehren der Math. Wiss. in Eizeld, Vol 217, Springer, Berlin, 1975.
- [14] A.M. Viola-Prioli and J. E. Viola-Prioli, Rings whose kernel functors are linearly ordered, Pacific J. Math., 132(1) (1988), 21-34.

Jaime Castro Pérez

Departamento de Matemáticas Instituto Tecnológico y de Estudios Superiores de Monterrey Calle del Puente 222, Tlalpan 14380 México, D.F. México e-mail: jcastrop@itesm.mx

Gerardo Aguilar Sánchez

Departamento de Física y Matemáticas División de Ingeniería y Arquitectura Tecnológico de Monterrey Campus Ciudad de México México e-mail: gerardo.aguilar@itesm.mx