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Abstract. Let C (resp. A) be a coalgebra (resp. algebra) over a commutative

ring R and M (resp. N) a C-bicomodule (resp. an A-bimodule). We define a

dual notion of a generalized derivation from A to N in the sense of the paper

On categorical properties of generalized derivations, Sci. Math., 2(3) (1999),

345-352, by A. Nakajima, which we call a generalized coderivation from M

to C. We give some elementary properties of generalized coderivations and

discuss the relations of the set of generalized coderivations gCoder(M, C) be-

tween the set of generalized derivations gDer(C∗, M∗) for their dual algebra

C∗ and module M∗. Using these coderivations, we define a notion of a weakly

coseparable coalgebra which is a dual notion of a weakly separable algebra

defined in the paper of N. Hamaguchi and A. Nakajima, Weakly separable

polynomials (in preparation), and give related examples of coseparable coalge-

bras.
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1. Introduction

Let R be a commutative ring with identity, A an R-algebra and N an R-module.

An A-bimodule N means that N is a left and a right A-module such that a(nb) =

(an)b, r(an) = a(rn), (nb)r = (nr)b and rn = nr for any a, b ∈ A, n ∈ N , and

r ∈ R. An R-linear map d : A→ N is called a generalized derivation if there exists

an element n ∈ N (which depends on d) such that d(ab) = d(a)b+ ad(b) + anb. We

denote it by (d ; n). For any elements m, n ∈ N , an R-linear map dm,n : A → N

defined by dm,n(a) = ma + an is called a generalized inner derivation by m, n. It

is easy to see that a generalized inner derivation dm,n is a generalized derivation

(dm,n ; −m− n), (d ; 0) is a derivation and dm,−m is an inner derivation. A lot of

properties of derivations and generalized derivations were obtained till now.

For an R-coalgebra C, we define a dual notion of a generalized derivation in the

category of C-bicomodules. Let ∆ : C → C ⊗ C and ε : C → R be the coalgebra



38 ATSUSHI NAKAJIMA

structure maps of C and M an R-module. A C-bicomodule M means that M is a

right and a left C-comodule with comodule structure maps ρ+ : M →M ⊗ C and

ρ− : M → C ⊗M such that the following diagram commutes:

M
ρ+−−−−→ M ⊗ Cyρ− yρ−⊗1

C ⊗M 1⊗ρ+−−−−→ C ⊗M ⊗ C,

where 1 is the identity map. Then the relations of ρ+, ρ− and ∆ are as follows:

(ρ−⊗1)ρ+ = (1⊗ρ+)ρ−, (1⊗∆)ρ+ = (ρ+⊗1)ρ+, (∆⊗1)ρ− = (1⊗ρ−)ρ−. (1.1)

An R-linear map d : M → C is called a coderivation if ∆d = (d⊗1)ρ++(1⊗d)ρ−

and d is called an inner coderivation if there exists α ∈ M∗ = HomR(M,R) such

that d = (α ⊗ 1)ρ+ − (1 ⊗ α)ρ−. As similar as the case of a commutative ring, if

C is cocommutative and the C-bicomodule structure satisfies the relation tρ+ =

ρ− : M → C ⊗M , where t : M ⊗ C → C ⊗M is the twisted map, then an inner

coderivation is zero. Because, by (∆⊗ 1)tρ+ = (1⊗ t)(t⊗ 1)(1⊗∆)ρ+, we see

∆d = ∆{(α⊗ 1)ρ+ − (1⊗ α)ρ−}

= (α⊗ 1⊗ 1)(1⊗∆)ρ+ − (1⊗ 1⊗ α)(∆⊗ 1)tρ+ = 0.

We generalize these notions of coderivations as follows. d : M → C is called a

generalized coderivation if there exists an R-linear map ξ : M → R such that

∆d = (d⊗ 1)ρ+ + (1⊗ d)ρ− + (1⊗ ξ ⊗ 1)(ρ− ⊗ 1)ρ+, (1.2)

and d is called a generalized inner coderivation if there exist α, β ∈ M∗ such that

d = (α ⊗ 1)ρ+ + (1 ⊗ β)ρ−. We denote the above these coderivations by (d ; ξ)

and (d ; α, β), respectively. Then (d ; 0) is a coderivation and (d ; α,−α) is an

inner coderivation. The notions of a coderivation and an inner coderivation were

defined in [3] and [8]. Some homological properties of coderivations of coalgebras

were given in [3], [4] and [8].

In this paper, we give some elementary properties of generalized coderivations

and discuss relations to the set of generalized coderivations (resp. coderivations)

gCoder(M, C) (resp. Coder(M, C)) from M to C and the set of their duals

gDer(C∗, M∗) and Der(C∗, M∗).

Throughout the following, R is a commutative ring with identity and we consider

all things in the category of R-modules. A is an R-algebra with the multiplication

map µ : A⊗A→ A. C is an R-coalgebra with structure maps ∆ : C → C ⊗C and
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ε : C → R, M is a C-bicomodule and M∗ = HomR(M, R). C∗ = HomR(C, R) is

an R-algebra with the convolution product ◦:

(f ◦ g) = (f ⊗ g)∆ ∈ C∗ (f, g ∈ C∗), (1.3)

and M∗ is a C∗-bimodule via

(m∗ ← f) =
∑

(m∗ ⊗ f)ρ+ and (g → m∗) =
∑

(g ⊗m∗)ρ− (1.4)

(m∗ ∈M∗). ⊗ = ⊗R and 1 means the identity map unless otherwise stated.

2. Preliminaries

In this section, we give some elementary relations of generalized coderivations

and generalized derivations. First, we have the following

Lemma 2.1. (1) If (d ; ξ) : M → C is a generalized coderivation, then (d∗ ; ξ) :

C∗ →M∗ is a generalized derivation.

(2) If (d ; α, β) : M → C is a generalized inner coderivation, then (d ; α, β) =

(d ; −α− β) and (d∗ ; α, β) : C∗ →M∗ is a generalized inner derivation.

Proof. Let f , g ∈ C∗ and m ∈M .

(1) Since C∗-bimodule structure of M∗ is given by (1.4), there holds

d∗(f ◦ g) = (f ⊗ g)∆d

= (fd⊗ g)ρ+ + (f ⊗ gd)ρ− + (f ⊗ ξ ⊗ g)(ρ− ⊗ 1)ρ+

= (d∗(f)← g) + (f → d∗(g)) + (f → ξ ← g).

Thus (d∗ ; ξ) is a generalized derivation.

(2) If (d ; α, β) is a generalized inner coderivation, then we have

(d⊗ 1)ρ+ + (1⊗ d)ρ− = ((α⊗ 1)ρ+ ⊗ 1)ρ+ + ((1⊗ β)ρ− ⊗ 1)ρ+

+ (1⊗ (α⊗ 1)ρ+)ρ− + (1⊗ (1⊗ β)ρ−)ρ−

and

∆d = (α⊗ 1⊗ 1)(1⊗∆)ρ+ + (1⊗ 1⊗ β)(∆⊗ 1)ρ−.

Therefore by (1.1), we see

∆d = (d⊗ 1)ρ+ + (1⊗ d)ρ− + {1⊗ (−α− β)⊗ 1}(ρ− ⊗ 1)ρ+,

and so (d ; α, β) = (d ; −α− β). Moreover, we also have

d∗(f) = f((α⊗ 1)ρ+ + (1⊗ β)ρ−) = (α⊗ f)ρ+ + (f ⊗ β)ρ− = (α← f) + (f → β),

and thus (d∗ ; α, β) is a generalized inner derivation. �
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Lemma 2.2. (1) If (d ; ξ) : M → C is a generalized coderivation, then εd+ ξ = 0.

If we set d1 = d + (ξ ⊗ 1)ρ+ (resp. d2 = d + (1 ⊗ ξ)ρ−), then d1 (resp. d2) is a

coderivation from M to C and d is a right d1-coderivation and a left d2-coderivation,

that is,

∆d = (d⊗ 1)ρ+ + (1⊗ d1)ρ− = (d2 ⊗ 1)ρ+ + (1⊗ d)ρ−.

(2) For any R-linear map ξ : M → R, ((ξ⊗1)ρ+ ; −ξ) is a generalized coderiva-

tion.

Proof. (1) If (d ; ξ) is a generalized coderivation, then by

d = (1⊗ ε)∆d = (d⊗ ε)ρ+ + (1⊗ εd)ρ− + (1⊗ ξ ⊗ ε)(ρ− ⊗ 1)ρ+

= d+ (1⊗ εd)ρ− + (1⊗ ξ)ρ−,

we have (1 ⊗ εd)ρ− + (1 ⊗ ξ)ρ− = 0. Therefore (ε ⊗ 1)((1 ⊗ εd)ρ− + (1 ⊗ ξ)ρ−)

= (1⊗ εd) + (1⊗ ξ) = 0, which means εd+ ξ = 0.

Next, we show that d1 = d + (ξ ⊗ 1)ρ+ is a coderivation. Since M is a C-

bicomodule, then by (1.1) and (1.2), we have

∆d1 − ((d1 ⊗ 1)ρ+ + (1⊗ d1)ρ−)

= ∆d+∆(ξ ⊗ 1)ρ+ − (d⊗ 1)ρ+ − (1⊗ d)ρ−

− (ξ ⊗ 1⊗ 1)(ρ+ ⊗ 1)ρ+ − (1⊗ ξ ⊗ 1)(1⊗ ρ+)ρ−

= ∆(ξ ⊗ 1)ρ+ − (ξ ⊗ 1⊗ 1)(1⊗∆)ρ+ = 0.

Thus d1 is a coderivation. Moreover, substituting d1 in the relation ∆d1 = (d1 ⊗
1)ρ+ + (1⊗ d1)ρ−, we have

∆d1 = ∆(d+ (ξ ⊗ 1)ρ+) = ∆d+∆(ξ ⊗ 1)ρ+

= {(d+ (ξ ⊗ 1)ρ+)⊗ 1}ρ+ + (1⊗ d1)ρ−

= (d⊗ 1)ρ+ + ((ξ ⊗ 1)ρ+ ⊗ 1)ρ+ + (1⊗ d1)ρ−.

Thus ∆d = (d⊗ 1)ρ+ + (1 +⊗d1)ρ−, which shows that d is a right d1-coderivation.

Similarly, d2 is a coderivation and d is a left d2-coderivation.

(2) Let g = (ξ ⊗ 1)ρ+. Then by (1.1), we have

(g ⊗ 1)ρ+ + (1⊗ g)ρ− + (1⊗ (−ξ)⊗ 1)(ρ− ⊗ 1)ρ+

= (ξ ⊗ 1⊗ 1)(ρ+ ⊗ 1)ρ+ + (1⊗ ξ ⊗ 1)(1⊗ ρ+)ρ− − (1⊗ ξ ⊗ 1)(ρ− ⊗ 1)ρ+

= (ξ ⊗ 1⊗ 1)(1⊗∆)ρ+ = ∆g.

Thus (g ; −ξ) is a generalized coderivation. �
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In [1], Brešar defined a generalized derivation as follows: an additive map δ :

A→ A is called a generalized derivation if there exists a derivation d : A→ A such

that δ(ab) = δ(a)b+ ad(b) for any a, b ∈ A. We call that δ is a right d-derivation.

If d is a right d1-coderivation, then by ∆d = (d⊗ 1)ρ+ + (1⊗ d1)ρ−, we see

d∗(f ◦ g) = (f ⊗ g)∆d = (f ⊗ g)((d⊗ 1)ρ+ + (1⊗ d1)ρ−)

= (fd⊗ g)ρ+ + (f ⊗ gd1)ρ−

= (d∗(f)← g) + (f → d∗1(g)),

and so d∗ is a right d∗1-derivation. Therefore the notion of a right d1-coderivation

and a left d2-coderivatoin in Lemma 2.2(1) correspond to the right d-derivation and

the left d-derivation in the sense of [1].

Lemma 2.3. Let M and N be C-bicomodules and g : M → N a C-bicomodule

map. If (f ; ξ) : N → C is a generalized coderivation, then (fg ; ξg) : M → C is

a generalized coderivation.

Proof. Let ρ+X : X → X ⊗C and ρ−X : X → C⊗X be the C-bicomodule structure

maps of X. Since g is a C-bicomodule map, we see ρ+Ng = (g ⊗ 1)ρ+M and ρ−Ng =

(1⊗ g)ρ−M . If (f ; ξ) is a generalized coderivation, then by (1.1), we have

(∆f)g = (f ⊗ 1)ρ+Ng + (1⊗ f)ρ−Ng + (1⊗ ξ ⊗ 1)(ρ−N ⊗ 1)ρ+Ng

= (fg ⊗ 1)ρ+M + (1⊗ fg)ρ−M + (1⊗ ξg ⊗ 1)(ρ−M ⊗ 1)ρ+M ,

and so (fg ; ξg) is a generalized coderivation. �

Two generalized coderivations (f ; ξ) and (g ; γ) from M to C are equal if

f = g and ξ = γ. Then it is easy to see that the set of all generalized coderivations

gCoder(M, C) has the following R-module structure:

(f ; ξ) + (g ; γ) = (f + g ; ξ + γ) and r(f ; ξ) = (rf ; rξ), (r ∈ R).

Then we have an R-module monomorphism ψM : Coder(M, C) 3 d 7→ (d ; 0) ∈
gCoder(M, C), where Coder(M, C) is the set of all coderivations from M to C.

We treat these R-modules in the following sections.

3. Elementary properties of generalized coderivations

In this section, we give some elementary properties of Coder(M, C) and gCoder(M, C).

First, we have the followings which are easily seen by Lemma 2.2.
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Theorem 3.1. Let M be a C-bicomodule. We set

ψM : Coder(M, C) 3 d 7→ (d ; 0) ∈ gCoder(M, C),

ψ′M : gCoder(M, C) 3 (d ; ξ) 7→ d+ (ξ ⊗ 1)ρ+ ∈ Coder(M, C),

ϕM : gCoder(M, C) 3 (d ; ξ) 7→ −ξ ∈M∗,

ϕ′M : M∗ 3 ξ 7→ ((ξ ⊗ 1)ρ+ ; −ξ) ∈ gCoder(M, C).

Then these four maps are well-defined such that ψ′MψM and ϕMϕ
′
M are identity

maps on Coder(M, C) and M∗,respectively. Thus the following sequence of R-

modules is split exact:

0 −→ Coder(M, C)
ψM−→ gCoder(M, C)

ϕM−→M∗ −→ 0.

Let f , g : C → C be coderivations. Then by

∆(fg) = (f ⊗ 1 + 1⊗ f)∆g = (fg ⊗ 1 + f ⊗ g + g ⊗ f + 1⊗ fg)∆,

[f, g] = fg− gf is also a coderivation of C and thus Coder(C, C) = Coder(C) has

a Lie algebra structure. We show that gCoder(C) = gCoder(C, C) has also a Lie

algebra structure.

Lemma 3.2. Let (f ; ξ), (g ; γ) : C → C be generalized coderivations. Then

([f, g] ; ξg − γf) : C → C is a generalized coderivation.

Proof. We see that

∆(fg − gf)

= (f ⊗ 1 + 1⊗ f)∆g + (1⊗ ξ ⊗ 1)(∆⊗ 1)∆g

− (g ⊗ 1 + 1⊗ g)∆f − (1⊗ γ ⊗ 1)(∆⊗ 1)∆f

= ([f, g]⊗ 1 + 1⊗ [f, g])∆

+ (f ⊗ 1⊗ 1 + 1⊗ 1⊗ f)(1⊗ γ ⊗ 1)(∆⊗ 1)∆+ (1⊗ ξ ⊗ 1)(∆⊗ 1)∆g

− (g ⊗ 1⊗ 1 + 1⊗ 1⊗ g)(1⊗ ξ ⊗ 1)(∆⊗ 1)∆− (1⊗ γ ⊗ 1)(∆⊗ 1)∆f.
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Since (g ; γ) is a generalized coderivation, we have

(1⊗ ξ ⊗ 1)(∆⊗ 1)∆g

= (1⊗ ξ ⊗ 1)(∆g ⊗ 1 +∆⊗ g)∆+ (1⊗ ξ ⊗ 1)(∆⊗ 1)(1⊗ γ ⊗ 1)(∆⊗ 1)∆

= (g ⊗ ξ ⊗ 1)(∆⊗ 1)∆+ (1⊗ ξg ⊗ 1)(∆⊗ 1)∆

+ (1⊗ γ ⊗ ξ ⊗ 1)(∆⊗ 1⊗ 1)(∆⊗ 1)∆+ (1⊗ ξ ⊗ g)(∆⊗ 1)∆

+ (1⊗ ξ ⊗ 1)(∆⊗ 1)(1⊗ γ ⊗ 1)(∆⊗ 1)∆

= (g ⊗ 1⊗ 1 + 1⊗ 1⊗ g)(1⊗ ξ ⊗ 1)(∆⊗ 1)∆

+ (1⊗ γ ⊗ ξ ⊗ 1)(∆⊗ 1⊗ 1)(∆⊗ 1)∆+ (1⊗ ξg ⊗ 1)(∆⊗ 1)∆

+ (1⊗ ξ ⊗ γ ⊗ 1)(∆⊗ 1⊗ 1)(∆⊗ 1)∆

and similarly

(1⊗ γ ⊗ 1)(∆⊗ 1)∆f

= (f ⊗ 1⊗ 1 + 1⊗ 1⊗ f)(1⊗ γ ⊗ 1)(∆⊗ 1)∆

+ (1⊗ ξ ⊗ γ ⊗ 1)(∆⊗ 1⊗ 1)(∆⊗ 1)∆+ (1⊗ γf ⊗ 1)(∆⊗ 1)∆

+ (1⊗ γ ⊗ ξ ⊗ 1)(∆⊗ 1⊗ 1)(∆⊗ 1)∆.

Using these three relations, we can get the following relation:

∆[f, g] = ([f, g]⊗ 1 + 1⊗ [f, g])∆+ (1⊗ (ξg − γf)⊗ 1)(∆⊗ 1)∆.

This shows that ([f, g] ; ξg − γf) is a generalized coderivation. �

For generalized coderivations (f ; ξ) and (g ; γ), we can define a bracket oper-

ation by Lemma 3.2:

[(f ; ξ), (g ; γ)] = ([f, g] ; ξg − γf).

By this bracket operation gCoder(C) has a Lie algebra structure. Since C∗ is an

R-algebra via convolution product ◦ given by (1.3), it is also Lie algebra by the

following operation:

{ξ, γ} = γ ◦ ξ − ξ ◦ γ = (γ ⊗ ξ − ξ ⊗ γ)∆, (ξ, γ ∈ C∗).

Then in the exact sequence

0 −→ Coder(C)
ψC−→ gCoder(C)

ϕC−→ C∗ −→ 0 (3.1)

given by Theorem 3.1, the map ψC is a Lie algebra map, but ϕC is not a Lie algebra

map in the above Lie algebra stuctures. But we have the following
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Theorem 3.3. For any R-coalgebra C,

gCoder(C) ∼= Coder(C)⊕ C∗

as Lie algebras.

Proof. In the exact sequence

0 −→ C∗
ϕ′C−→ gCoder(C)

ψ′C−→ Coder(C) −→ 0, (3.2)

we show that ϕ′C and ψ′C are Lie algebra maps. Firstly, we note that the following

four relations hold for any ξ, γ ∈ C∗ and f , g ∈ Hom(C, C):

(ξ ⊗ 1)∆(γ ⊗ 1)∆ = (γ ⊗ ξ ⊗ 1)(∆⊗ 1)∆,

ξ(γ ⊗ 1)∆ = (γ ⊗ ξ)∆,

f(γ ⊗ 1)∆ = (γ ⊗ f)∆,

(ξ ⊗ 1)∆g = (ξg ⊗ 1)∆+ (ξ ⊗ g)∆+ (ξ ⊗ γ ⊗ 1)(∆⊗ 1)∆.

Then we have

[ϕ′C(ξ), ϕ′C(γ)] = [((ξ ⊗ 1)∆ ; −ξ), ((γ ⊗ 1)∆ ; −γ)]

= ([(ξ ⊗ 1)∆, (γ ⊗ 1)∆] ; −ξ(γ ⊗ 1)∆+ γ(ξ ⊗ 1)∆)

= ({(γ ⊗ ξ − ξ ⊗ γ)⊗ 1}(∆⊗ 1)∆ ; (ξ ⊗ γ − γ ⊗ ξ)∆)

= ϕ′C({ξ, γ})

and so ϕ′C is a Lie algebra map. If (g ; γ) : C → C is a generalized coderivation,

then, we see

[ψ′C(f ; ξ), ψ′C(g ; γ)]

= [f + (ξ ⊗ 1)∆, g + (γ ⊗ 1)∆]

= [f, g] + f(γ ⊗ 1)∆+ (ξ ⊗ 1)∆g + (ξ ⊗ 1)∆(γ ⊗ 1)∆

− g(ξ ⊗ 1)∆− (γ ⊗ 1)∆f − (γ ⊗ 1)∆(ξ ⊗ 1)∆

= [f, g] + ((ξg − γf)⊗ 1)∆

= ψ′C([(f ; ξ), (g ; γ)]).

Thus ψ′C is also a Lie algebra map. Since ψC is a Lie algebra map such that ψ′CψC

is the identity on Coder(C), we have gCoder(C) ∼= Coder(C)⊕Ker ψ′C . Moreover,

by the exact sequence (3.2), we see Ker ψ′C
∼= C∗. This shows the theorem. �
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By Theorem 3.1, we have the functors Coder(−, C), gCoder(−, C) and HomR(−, R)

from the category of C-bicomodules to the category of R-modules and

gCoder(−, C) ∼= Coder(−, C)⊕HomR(−, R)

as functors.

Now let L be the cokernel of the map ∆ : C → C ⊗ C. Then the sequence of

C-bicomodules

0 −→ C
∆−→ C ⊗ C ω−→ L −→ 0

is exact. Define a map

λ : L 3 ω(c⊗ c′) 7→ cε(c′)− ε(c)c′ ∈ C.

Then λ is a coderivation and λ is a universal coderivation in the following sense:

For any C-bicomodules M , the map

Com(M,L) 3 σ 7→ λσ ∈ Coder(M,C)

is an R-module isomorphism, where Com(M,L) is the set of all C-bicomodule maps

from M to L (cf. [3, Proposition 13]). Using this isomorphism and Theorem 3.1,

the following is easily seen.

Corollary 3.4. For any C-bicomodule M , the map

Φ : Com(M,L)⊕M∗ 3 (σ, ξ) 7→ (λσ + (ξ ⊗ 1)ρ+ ; −ξ) ∈ gCoder(M,C)

is an R-module isomorphism.

4. A relation of gCoder(C) and gDer(C∗, M∗)

Since C∗ is an R-algebra by the convolution product ◦, M∗ is a C∗-bimodule by

(1.4) for any C-bicomodule M . Define two R-module maps

ψ∗M : Der(C∗, M∗) 3 α 7→ (α ; 0) ∈ gDer(C∗, M∗),

ϕ∗M : gDer(C∗, M∗) 3 (β ; m∗) 7→ m∗ ∈M∗.

Then we see that

0 −→ Der(C∗, M∗)
ψ∗M−→ gDer(C∗, M∗)

ϕ∗M−→M∗ −→ 0

is an exact sequence of R-modules (cf. [9, Theorem 2.4.]) By Lemma 2.1, we show

that a generalized coderivation (f ; ξ) : M → C induces a generalized derivation

(f∗ ; ξ) : C∗ →M∗ and therefore we have an R-linear map

θ : gCoder(C, M) 3 (f ; ξ) 7→ (f∗ ; ξ) ∈ gDer(C∗, M∗).
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In this section, we give the relations of an exact sequence of generalized coderiva-

tions in Theorem 3.1 and the above exact sequence of derivations. First we have

the following

Theorem 4.1. The following diagram of R-modules is commutative and each rows

are split exact:

0 −−−−→ Coder(M, C)
ψM−−−−→ gCoder(M, C)

ϕM−−−−→ M∗ −−−−→ 0yθ0 yθ y1

0 −−−−→ Der(C∗, M∗)
ψ∗M−−−−→ gDer(C∗, M∗)

ϕ∗M−−−−→ M∗ −−−−→ 0,

where θ0 is the restriction map of θ and 1 is the identity map on M∗. Moreover, if

R is a field, then θ0 is a monomorphism and thus θ is a monomorphism.

Proof. The commutativity of the diagram is easily seen by the definitions of each

maps, and the split exactness is obtained by Theorem 3.1. Assume that R is a field

and 0 6= f ∈ Coder(M,C) such that θ0(f) = 0. Then there exists m ∈ M such

that f(m) 6= 0. Since R is a field, C = Rf(m) ⊕ C1 for some R-subspace C1 of C

and so we have an R-linear map λ : C → R such that λ(f(m)) = 1 and λ(C1) = 0.

This contradicts to θ0(f)(λ)(m) = λf(m) = 0 for all λ ∈ C∗. Therefore θ1 is a

monomorphism and thus θ is a monomorphism by five lemma. �

Although C∗ is an algebra, but A∗ is not a coalgebra in general, and thus a

generalized derivation (d ; ξ) : A → M does not necessarily induce a generalized

coderivation from M∗ to A∗. If A is a finitely generated projective R-module, then

it is well known that A∗ has a coalgebra structure with the comultiplication

∆A∗ : A∗ 3 α 7→
n∑
i=1

αµ(−⊗ ai)⊗ fi ∈ (A⊗A)∗ ∼= A∗ ⊗A∗,

where {ai, fi} (i = 1, 2, · · · , n) is an R-projective coordinate system of A and the

map αµ(− ⊗ ai) : A → A is defined by αµ(− ⊗ ai)(a) = α(aai). Under these

notations, we prove the following

Lemma 4.2. Assume that A is finitely generated projective R-module and (f ; x) :

A → A is a generalized derivation. Then (f∗ ; x) : A∗ → A∗ is a generalized

coderivation. Especially, if f is a derivation, then f∗ is a coderivation.

Proof. Let a, b ∈ A and α ∈ A∗. Then by a =
∑n
i=1 fi(a)ai, we have

(∆A∗f
∗)(α)(a⊗ b) =

n∑
i=1

(αfµ(−⊗ ai)⊗ fi)(a⊗ b) =

n∑
i=1

α(f(aai))fi(b) = α(f(ab))

= α(f(a)b+ af(b) + axb).
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Moreover, by

(f∗ ⊗ 1 + 1⊗ f∗)∆A∗(α)(a⊗ b)

= ((f∗ ⊗ 1 + 1⊗ f∗)(
n∑
i=1

αµ(−⊗ ai)⊗ fi))(a⊗ b)

=

n∑
i=1

(αµ(−⊗ ai)(f(a))⊗ fi(b) + α(aai)fi(f(b)))

=

n∑
i=1

(α(f(a)aifi(b) + aaifi(f(b))) = α(f(a)b+ af(b))

and

(1⊗ x⊗ 1)(∆A∗ ⊗ 1)∆A∗(α)(a⊗ b)

= (1⊗ x⊗ 1)(∆A∗ ⊗ 1)(

n∑
i=1

αµ(−⊗ ai)⊗ fi)(a⊗ b)

= (1⊗ x⊗ 1){
n∑

i,j=1

(αµ(−⊗ ai))(µ(−⊗ aj)⊗ fj)⊗ fi}(a⊗ b)

=

n∑
i,j=1

α(aajai)fj(x)fi(b) = α(axb).

Combining these three relations, we see that (f∗ ; x) is a generalized coderivation

of A∗. �

By (3.1), Theorem 4.1 and Lemma 4.2, we have the following

Theorem 4.3. In the commutative diagram in Theorem 4.1, if C is finitely gen-

erated projective R-module, then the maps θ0 and θ are isomorphisms. Especially,

the following diagram of Lie algebras is commutative and each rows are split exact:

0 −−−−→ Coder(C)
ψC−−−−→ gCoder(C)

ϕC−−−−→ C∗ −−−−→ 0yθ0 yθ y1

0 −−−−→ Der(C∗)
ψ∗C−−−−→ gDer(C∗)

ϕ∗C−−−−→ C∗ −−−−→ 0.

Let gInnCoder(M, C) be the set of generalized inner coderivations from M to

C. Then gInnCoder(M, C) is an R-submodule of gCoder(M, C) and we have an

exact sequence of R-modules

0 −→ gInnCoder(M, C)
ιM−→ gCoder(M, C)

πM−→ PM −→ 0,
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where ιM is the inclusion map, PM = gCoder(M, C)/gInnCoder(M, C) is the

quotient R-module and πM is the natural projection. Then by Lemma 2.1(2),

θ−1 : gInnCoder(M, C) 3 (d ; α, β) 7→ (d∗ ; α, β) ∈ gInnDer(C∗, M∗) (4.1)

is an R-module homomorphism and so we have the following commutative diagram:

0 −−−−→ gInnCoder(M, C)
ιM−−−−→ gCoder(M, C)

πM−−−−→ PM −−−−→ 0yθ−1

yθ yp
0 −−−−→ gInnDer(C∗, M∗)

ιM∗−−−−→ gDer(C∗, M∗)
πM∗−−−−→ PM∗ −−−−→ 0,

where PM∗ = gDer(C∗, M∗)/gInnDer(C∗, M∗) and p is the natural map. In the

next section, we define a notion of weakly coseparable coalgebras which relates to

generalized inner coderivations.

5. Weakly coseparable coalgebras.

A coalgebra C is called coseparable if there exists a C-bicomodule map π :

C ⊗ C → C such that π∆ = 1. It was defined in [6], and several properties

of coseparable coalgebras were given in [3], [4], [6], [7] and [8]. A coseparable

coalgebra is a dual notion of a separable algebra, and it is known that an algebra A

is separable if and only if any derivation in Der(A, N) is inner for every A-bimodule

N (cf. [2, pp.75-76]). The corresponding result for coalgebras was also proved in

[3, Theorem 3] and [8, Theorem 1.2], that is, C is coseparable if and only if any

coderivation in Coder(M, C) is inner for every C-bicomodule M . Recently, the

notion of separable algebras is generalized as follows. A is called weakly separable

if any derivation in Der(A) is inner, and characterize weakly separable polynomials

in R[X] (cf. [5]). From these point of view, we define that C is weakly coseparable

if any coderivation in Coder(C) is inner.

In this section, we treat weakly coseparable coalgebras and give such an example.

First, we have the following

Lemma 5.1. Consider the following commutative diagram

0 −−−−→ InnCoder(M, C)
ι′M−−−−→ Coder(M, C)yψM 0

yψM

0 −−−−→ gInnCoder(M, C)
ιM−−−−→ gCoder(M, C),

where ι′M is the canonical inclusion and ψM 0 is the restriction of ψM . Then ι′M

is an isomorphism if and only if ιM is an isomorphism. Therefore, a coalgebra
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C is weakly coseparable if and only if any generalized coderivation in Coder(C) is

generalized inner.

Proof. Assume that InnCoder(M, C) = Coder(M, C). If (d ; α) : M → C is a

generalized coderivation, then by Lemma 2.2(1), d1 = d+(α⊗1)ρ+ is a coderivation,

and so there exists β ∈ M∗ such that d1 = (β ⊗ 1)ρ+ − (1 ⊗ β)ρ−. Therefore,

d = {(β − α)⊗ 1)}ρ+ − (1⊗ β)ρ− is a generalized inner coderivation. Conversely,

assume that gInnCoder(M, C) = gCoder(M, C). If d : M → C is a coderivation,

then d is generalized inner by assumption, and so d = (α ⊗ 1)ρ+ + (1 ⊗ β)ρ− for

some α, β ∈ M∗ . Substituting d in the relation ∆d = (d ⊗ 1)ρ+ + (1 ⊗ d)ρ−, we

see

0 = ((d⊗ 1)ρ+ + (1⊗ d)ρ−)−∆d

= (((α⊗ 1)ρ+ + (1⊗ β)ρ−)⊗ 1)ρ+ + (1⊗ ((α⊗ 1)ρ+ + (1⊗ β)ρ−))ρ−

−∆((α⊗ 1)ρ+ + (1⊗ β)ρ−)

= (1⊗ β ⊗ 1)(ρ− ⊗ 1)ρ+ + (1⊗ α⊗ 1)(1⊗ ρ+)ρ−.

Using (ε ⊗ 1 ⊗ ε)((ρ− ⊗ 1)ρ+) = (ε ⊗ 1 ⊗ ε)((1 ⊗ ρ+)ρ−) = 1, we have α = −β,

which shows that d is an inner coderivation. �

Note that for an algebra A, there holds InnDer(A,N) = Der(A,N) if and only

if gInnDer(A,N) = gDer(A,N).

Theorem 5.2. Assume that C is finitely generated projective R-module. Then C

is coseparable if and only if C∗ is separable. Especially, C is weakly coseparable if

and only if C∗ is weakly coseparable.

Proof. Assume that C is a finitely generated projective R-module. Then by The-

orem 4.3, θ−1 : gInnCoder(M, C)→ gInnDer(C∗, M∗) and θ : gCoder(M, C)→
gDer(C∗, M∗) are isomorphisms. By Lemma 5.1, InnCoder(C) = Coder(C) if and

only if gInnCoder(C) = gCoder(C). Thus in the commutative diagram

gInnCoder(M, C)
ιM−−−−→ gCoder(M, C)yθ−1

yθ
gInnDer(C∗, M∗)

ιM∗−−−−→ gDer(C∗, M∗),

ιM is an isomorphism if and only if ιM∗ is an isomorphim. �

Finally, we give a simple example of a weakly coseparable coalgebra.

Example 5.3. Let R[X] be a free R-module with free basis {1, X, · · · , Xk, · · · }.
We denote the dual basis of R[X] by {x0, x1, · · · , xk, · · · }.
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(1) Let C1 = R[X] and define a coalgebra structure maps ∆1 : C1 → C1 ⊗ C1

and ε1 : C1 → R as follows:

∆1(Xn) = (X ⊗X)n, ε1(Xn) = 1 for all n = 0, 1, 2, · · ·

Assume that

(f1 ; ξ) : C1 3 X 7→ f1(X) =

m∑
i=0

aiX
i ∈ C1 = R[X]

is a generalized coderivation. Then by ∆1f1(X) = ((f1 ⊗ 1 + 1⊗ f1))∆1 + (1⊗ ξ ⊗
1)(∆1 ⊗ 1)∆1(X), we see f1(X) = a1X and ξ(X) = −a1. By induction, we can

easily prove that any generalized coderivation of C1 is the following form

f1(Xn) = anX
n and ξ(Xn) = −an.

Therefore any generalized coderivation is generalized inner and thus C1 is weakly

coseparable.

Next, we show that if 2 is not a zero divisor in R, the dual algebra C∗1 is

also coseparable. Since C1 is cocommutative, C∗1 is commutative and so it is

enough to show that Der(C∗1 ) = 0. In the dual basis {x0, x1, · · · , xk, · · · } of

{1, X, · · · , Xk, · · · }, the convolution product ◦ in C∗1 is given by

(xi ◦ xj)(Xn) = (xi ⊗ xj)(Xn ⊗Xn) = δinδjn,

where δij is the Kronecker’s δ. Then the set of dual basis {x0, x1, · · · , xk, · · · }
is the system of orthogonal idempotents in C∗1 . Assume that

d : C∗1 3 xk 7→
m∑
j=0

aijxj ∈ C∗1 = R[X]∗

is a derivation. Since d is a derivation, we have

d(xixk) = d(xi)xk + xid(xk) =

m∑
j=0

aijxjxk + xi

m∑
j=0

akjxj

= aikxk + akixi.

Thus if i 6= k, then aikxk + akixi = 0 and so aik = aki = 0 for all i 6= k. Moreover,

by d(x2i ) = d(xi) =
∑m
j=0 aijxj = 2aiixi, we have aii = 0. Thus d(xi) = 0 for all i,

which show that C∗1 is a weakly separable algebra.

(2) Let C2 = R[X] and define a coalgebra structure maps ∆2 : C2 → C2 ⊗ C2

and ε2 : C2 → R as follows:

∆2(Xn) = (X ⊗ 1 + 1⊗X)n, ε2(1) = 1, ε2(Xn) = 0 for all n = 1, 2, · · · .
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Define an R-linear map f2 : C2 → C2 as follows:

f2(1) = 0, f2(X) = a1X, f2(X2) = a2X + 2a1X
2, · · · ,

f2(Xn) = anX +

(
n

1

)
an−1X

2 + · · ·+
(
n

i

)
an−iX

i+1 + · · ·+ a1

(
n

n− 1

)
Xn,

(ai ∈ R). Then we can check that f2 is a coderivation. Therefore there are many

coderivations in Coder(C2). Take a1 = 1. If f2 is an inner coderivation, then there

exists a non-zero R-linear map α : C2 → R such that f2 = (α ⊗ 1 − 1 ⊗ α)∆2

and so we have f2(X) = X = (α ⊗ 1 − 1 ⊗ α)∆2(X) = 0, a contradiction. Thus

there exists a coderivation which is not inner. This shows that the coalgebra C2 is

not weakly coseparable. In this case, the dual algebra C∗2 is not weakly separable.

Because, noting the relation

∆(Xn) =

n∑
i=0

(
n

i

)
Xn−i ⊗Xi,

we see xi ◦ xj =
(
i+j
i

)
xi+j. Define an R-linear map

d : C∗2 3 xn 7→ nxn ∈ C∗2 , for all n = 1, 2, · · · .

Then we can check that d is a non-zero derivation. Since C∗2 is commutative algebra,

d is not inner. Therefore C∗2 is not weakly separable.

In our paper [5], we only treat a weakly separable polynomial f(X), that is,

R[X]/(f(X)) is a finitely generated projective R-module. The above example shows

that there exists a non-finitely generated weakly coseparable algebra and a weakly

separable algebra.
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[1] M. Brešar, On the distance of the composition of two derivations to the gener-

alized derivations, Glasgow Math. J., 33(1) (1991), 89-93.

[2] F. DeMeyer and E. Ingraham, Separable algebras over commutative rings,

Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York 181 (1971).

[3] Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33 (1981), 31-50.

[4] F. Guzman, Cointegrations, Relative Cohomology for Comodules, and Cosep-

arable Corings, J. Algebra, 126 (1989), 211-224.

[5] N. Hamaguchi and A. Nakajima, Weakly separable polynomials, in preparation.

[6] R. G. Larson, Coseparable Hopf algebras, J. Pure Appl. Algebra, 3 (1973),

261-267.



52 ATSUSHI NAKAJIMA

[7] A. Nakajima, Cosemisimple coalgebras and coseparable coalgebras over coalge-

bras, Math. J. Okayama Univ., 21 (1979), 125-140.

[8] A. Nakajima, Coseparable coalgebras and coextensions of coderivations, Math.

J. Okayama Univ., 22 (1980), 145-149.

[9] A. Nakajima, On categorical properties of generalized derivations, Sci. Math.,

2(3) (1999), 345-352.

[10] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

Atsushi Nakajima

327-1, Nakaku, Nakai,

Okayama 703-8205, Japan

e-mail: a2017bj.naka@hi2.enjoy.ne.jp


