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Abstract. A Lie algebra multiplier parallels the idea of group theory’s Schur

multiplier. This paper classifies the Lie algebra multipliers for all Lie algebras

in the lower central series of strictly upper triangular matrices. Multipliers are

central, so the classification is focused on computing their dimensions. The

calculations are lengthy because balancing various matrix positions plays an

important role in determining these dimensions. The result divides into six

cases and the dimensions are given as polynomials in the size of the matrices

and the position in the lower central series.
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1. Introduction

We begin with a few definitions from [2] that we need to discuss multipliers, just

as we did in [4]. Suppose L is a finite dimensional Lie algebra over a field with

characteristic not equal to two.

Definition 1.1. A pair of Lie algebras (C,M) is called a defining pair for L if

(1) L ∼= C/M

(2) M ⊂ Z(C) ∩ C1

where C1 = [C,C].

For a Lie algebra L, suppose dimL = n. In [1] we see that dimM and dimC have

upper bounds of 1
2n(n − 1) and 1

2n(n + 1) respectively. Therefore if L is finite

dimensional this implies C and M are finite dimensional also. Furthermore for M

maximal we attain dimM = 1
2n(n− 1)⇔ L is abelian.

This paper was part of the author’s dissertation, under the direction of Dr. Ernest L. Stitzinger

at North Carolina State University.
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Definition 1.2. If (C,M) is a defining pair for L, then a C of maximal dimension

is called a cover for L. Likewise an M of maximal dimension is called a multiplier.

The Lie algebra multiplier is analogous to group theory’s Schur multiplier. Please

see [3] for more information about the group theory. Notice that a multiplier

is central and hence abelian, so classifying it reduces to finding the dimension.

Additionally since the bracket on any two elements in M is always trivial this

allows us to easily establish an isomorphism between any two multipliers, therefore

we will use M(L) to denote the unique multiplier of L.

Let L be the Lie algebra of n× n strictly upper triangular matrices. It is shown

in [2] that dimM(L) = 2(n − 2) + (n−3)(n−2)
2 . Consider the lower central series

L ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Ln−2 ⊃ Ln−1 = 0, where L1 = [L,L], Lj+1 = [L,Lj ],

j = 1, 2, . . . , n − 2. Notice that Ln−2 6= 0. Defining the superscripts this way

causes Lk to be the Lie algebra of n × n strictly upper triangular matrices with

k diagonals of zeros above the main diagonal. We will determine dimM(Lk) for

k = 0, 1, 2, . . . , n− 2 with the convention that k = 0 corresponds to the multiplier

of the full Lie algebra, a result already obtained in [2]. For a fixed k ≥ 2 the result

divides into six cases and the dimensions of the multipliers M(Lk) are given as

polynomials in the size n of the matrices and the position k in the lower central

series of L:

(1) k + 2 ≤ n < 2k + 3

L is abelian, hence dimM(Lk) = 1
2 (dimLk)(dimLk − 1) =

1
8 (n− k − 1)(n− k)(n− k + 1)(n− k − 2)

(2) n = 2k + 3, . . . , 3k + 1

dimM(Lk) = −4− 3
2nk

3 + 2n− 13
4 k− 2nk− 4nk2 + 15

4 k3 + 27
8 k2 + 1

2n
2k2 +

n2k + 9
8k

4

(3) n = 3k + 2

dimM(Lk) = −4+2n− 27
4 k+ 5

4nk+ 5
4nk

2− 21
4 k3− 55

8 k2+ 1
4n

2k2+ 1
4n

2k− 9
8k

4

= 11
4 k + 27

8 k2 + 15
4 k3 + 9

8k
4

(4) n = 3k + 3, . . . , 4k + 1

dimM(Lk) = −1− 3
2nk

3 − 1
2n + 17

4 k − 5nk + 1
2n

2 − 4nk2 + 15
4 k3 + 63

8 k2 +
1
2n

2k2 + n2k + 9
8k

4

(5) n = 4k + 2

dimM(Lk) = −2 + 55
6 nk3 + 19

12n −
49
12k + 20

3 nk − 23
24n

2 + 16nk2 + 5
12n

3 −
275
12 k3 − 371

24 k2 − 7
2n

2k2 + 2
3n

3k − 4n2k − 229
24 k4 − 1

24n
4

= 17
4 k + 47

8 k2 + 35
4 k3 + 25

8 k4
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(6) n ≥ 4k + 3

dimM(Lk) = −1− 3
2nk

3 − 1
2n + 17

4 k − 5nk + 1
2n

2 − 4nk2 + 15
4 k3 + 63

8 k2 +
1
2n

2k2 + n2k + 9
8k

4

If k = 1, the second and fourth case have to be omitted, and if k = 0, only the first

(n < 3) and last case (n ≥ 3) apply.

2. Constructing M(Lk)

For some k ∈ {1, · · · , n − 2}, let (C,M) be a defining pair for Lk. Therefore

C/M ∼= Lk and M ⊂ Z(C) ∩C1. Let Eab denote the usual matrix units that form

a basis for Lk. Since k counts the diagonals of zeros, we have a+ (k+ 1) ≤ b. Each

basis element Eab also corresponds to a coset in C. For each of these Eab’s, choose

an element from C in the corresponding coset and denote it Fab. This F is called

a transversal element. We can now define a map u : Lk → C that takes each Eab

to its Fab and extend u linearly. We can now describe the bracket on C as

[Fst, Fab] =

Fsb + y(s, t, a, b) if t = a

y(s, t, a, b) if t 6= a

where y(s, t, a, b) ∈ M . We will often write y(s, t, a, b) more concisely as ystab. To

avoid double counting elements, we assume that either s < a or s = a and t < b.

This is consistent with the convention established in [2].

As in [4] first make a change in the choice of Frt following the model of [2]. Set

Grt =

Frt if t− r < 2(k + 1)

Frt + yr,t−(k+1),t−(k+1),t = [Fr,t−(k+1), Ft−(k+1),t] otherwise

Notice Frt and Grt only differ by a central element y, so the F ′s or G′s describe

the same multiplication in C. Similar to [4] we take advantage of this fact when

computing; that is, multiplying by F ′s or G′s gives the same result and we use

which ever is most convenient. After removing any dependencies among the y′s we

can conclude as in [2] that “These y′s are completely arbitrary. We can assume

them to be a set of linearly independent vectors and no contradiction arises. In

this case they would be a basis for a multiplier M .” Thus we proceed to find all

dependencies among the y′s, using the Jacobi identity as our tool. After doing this,

we have a basis for M(Lk) and it remains to count the number of elements in this

basis. To find these dependencies we consider two scenarios: elements produced

by [Grs, Gst] and elements produced by [Gst, Gab], where t 6= a. Let J(x, y, z) = 0

denote the Jacobi identity.
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3. [Grs, Gst] elements

Consider [Grs, Gst] = Frt + yrsst = Grt + ŷrsst, where ŷrsst = yrsst−
yr,t−(k+1),t−(k+1),t. When [Grs, Gst] = Grt there is no contribution to the mul-

tiplier. Hence we will count the occurrences of ŷ 6= 0, or equivalently yrsst 6=
yr,t−(k+1),t−(k+1),t. Notice that s−r, t−s ≥ k+1 give r+2k+2 ≤ t. For a general

k (and r fixed) we get every ŷ = 0 when t = r+2k+2 and t ≥ r+4k+3. For the k = 0

case this implies [Grs, Gst] = Grt is always true, which is consistent with [2]. If k > 0

then as t traverses the 2k values between r+2k+2 and r+4k+3, the number of non-

trivial y′s we attain are 1, 2, 3, . . . , k−3, k−2, k−1, k, k, k−1, k−2, k−3, . . . , 3, 2, 1

respectively. The theorem below shows all of this, and takes into account what hap-

pens as r changes to count all yrsst 6= yr,t−(k+1),t−(k+1),t elements.

Theorem 3.1. As r, s, and t range over all values for which the bracket is defined,

the number of nonzero ŷ′s produced from [Grs, Gst] is

k∑
i=1

i · (n− (2k + 2 + i)) +

k∑
j=1

(k − j + 1) · (n− (3k + 2 + j)).

Proof. In general if s− r ≥ 2k + 2 then ∃c to define Frc and Fcs so that

J(Frc, Fcs, Fst) = 0 ⇒ yrsst = yrcct. Similarly if t − s ≥ 2k + 2 then ∃c such that

J(Frs, Fsc, Fct) = 0⇒ yrsst = yrcct.

Case 1: t = r + 2k + 2 + i where 1 ≤ i ≤ k

We do not need to consider i = 0 because t = r+2k+2⇒ s = r+k+1 = t−(k+1)

⇒ [Grs, Gst] = Grt. For any value of i from 1 to k, notice t−r = 2k+2+i ≤ 3k+2.

In order to define Gab there must be at least k integers between a and b. Given a

distance from r to t of at most 3k + 2 does not provide sufficient room to define

either of the Jacobi identities above. While a number c may still be defined to

produce other Jacobi identities, none of these will involve yrsst and hence none

of the ŷ′s may be eliminated. Thus for each value of i ∈ {1, . . . , k} and a fixed

r there will be i distinct values for s, giving i distinct y′s, namely yrsst where

s ∈ {r + k + 1, . . . , r + k + i}. Notice we have excluded the final case when s =

r + k + i + 1 = t− (k + 1), since [Grs, Gst] = Frt + yrsst = Grt.

Now for a fixed number i, it is necessary to count the y′s as r varies. Notice that

1 ≤ r < r+2k+2+ i = t ≤ n and so 1 ≤ r ≤ n− (2k+2+ i). Therefore each of the

n− (2k + 2 + i) values of r produce i distinct values for yrsst as s varies. In total

this produces

k∑
i=1

i · (n− (2k + 2 + i)) distinct values for yrsst as r, s and t vary.
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Case 2: t = r + 3k + 2 + j where j ≥ 1

Note: j = 0 would correspond to the maximum i from the previous case and

that s may now assume j values more than it did in this maximal i = k case since

we widened the gap from r to t. However we wish to show that this will decrement

the count of nonzero ŷ′s rather than continue to increment it.

It is now possible to define Grc, Gcd, and Gdt. For convenience we will allow c

to vary and force d to be d = c + (k + 1) for the remainder of this case. Please

observe that c is taking the place of s from case 1 and d indicates a new value of s

for case 2. Enforcing these relationships, we are interested to count the number of

c′s that will allow us to define Grc, Gcd, and Gdt. Notice we need c ≥ r+k+ 1 and

d ≤ t− (k + 1) which together imply c ≤ t− 2(k + 1) and since t = r + 3k + 2 + j

we get c ≤ r + k + j and hence c ∈ {r + k + 1, . . . , r + k + j}, so there are j choices

for c and d.

Notice that (1) J(Frc, Fcd, Fdt) = 0 ⇒ yrcct = yrddt, so d (a new s value

in yrsst not present in case 1) does not describe a new y. Furthermore, (2)

J(Frc, Fc,t−(k+1), Ft−(k+1),t) = 0 gives yrcct = yr,t−(k+1),t−(k+1),t and hence elimi-

nates the yrsst terms for the j − 1 values of c where these two Jacobi identities are

different (i.e. c 6= t− (2k + 2)). Since c describes an s found in case 1, we lose j− 1

of the k y′rssts found in the maxmimal case 1 setting.

Therefore for a fixed r there are k−j+1 values of y when 1 ≤ j ≤ k, and if j > k

(i.e. t ≥ r+ 4k+ 3), all the y′rssts are equal to each other and to yr,t−(k+1),t−(k+1),t

hence producing no non-trivial values for ŷrsst.

For a fixed number j ∈ {1, . . . , k}, it is necessary to see how many y′s can be

produced as r varies. Since 1 ≤ r < r + 3k + 2 + j = t ≤ n it follows that

r ∈ {1, . . . , n − (3k + 2 + j)}. So each of the n − (3k + 2 + j) values of r produce

k − j + 1 distinct values of yrsst as s fluctuates when j ≤ k and zero otherwise. In

total case 2 produces

k∑
j=1

(k − j + 1) · (n− (3k + 2 + j)) distinct values for yrsst as

r and j vary. So together there are
k∑

i=1

i·(n− (2k + 2 + i))+

k∑
j=1

(k−j+1)·(n−(3k+2+j)) different yrsst values. �

Notice both sums involve a term of the form n − x. Since x denotes a distance

between subscripts of the G′s and hence a distance between matrix positions in the

original n×n matrices, whenever n−x ≤ 0 occurs it should be replaced with a zero

since the necessary matrix units were not available to produce the corresponding

multiplier elements.
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4. [Gst, Gab], t 6= a elements

Consider the second case where [Gst, Gab] = ystab since t 6= a. Notice that s 6= b

as a result of the assumption that s < a or s = a and t < b. Hence [Gst, Gab] = ystab

where ystab ∈ M(Lk), since no F is produced by the bracket. For convenience we

will work with the F ′s rather than the G′s. We will establish all the relationships

between the values of the subscripts s, t, a, and b where ystab = 0, otherwise we

assume ystab 6= 0 to get M(Lk) of maximal dimension.

4.1. Eliminating ystab trivial.

Theorem 4.1. If b ≥ a + 2k + 3 or t ≥ s + 2k + 3, then ystab = 0.

Proof. Suppose b ≥ a + 2k + 3. If t 6= a + k + 1 then let c = a + k + 1, otherwise

choose c = a+ k+ 2. This gives c 6= s, t, a, b, the last three by construction and the

first by s ≤ a < c⇒ c 6= s. Therefore J(Fst, Fac, Fcb) = 0⇒ ystab = 0.

Similarly suppose t ≥ s + 2k + 3, if a = s + k + 1 let c = s + k + 2 otherwise

let c = s + k + 1. By construction c 6= s, t, a. If s = a then c < t < b gives c 6= b.

When s < a then a + k + 1 ≤ b gives b ≥ s + k + 2. If the inequality is strict then

c 6= b. If b = s + k + 2 then a = s + 1 so c = s + k + 1 6= b Therefore in all cases

c 6= b. Having c 6= s, t, a, b gives J(Fsc, Fct, Fab) = 0⇒ ystab = 0. �

Theorem 4.2. If b = a+ 2k + 2, then ystab = 0 ⇔ t 6= a+ k + 1 or s < a (s 6= a).

Similarly if t = s + 2k + 2 then ystab = 0 ⇔ a 6= s + k + 1 or b 6= t.

Proof. (⇐) Suppose b = a + 2k + 2. If t 6= a + k + 1 then let c = a + k + 1, and

furthermore s ≤ a < c ⇒ c 6= s. Therefore c 6= s, t, a, b and J(Fst, Fac, Fcb) = 0 ⇒
ystab = 0. On the other hand if t = a+k+1 and s < a then let c = t−1. In this case

J(Fst, Ftb, Fat) = 0 ⇒ ystab = −ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0 so

ystab = 0.

(⇒) Suppose b = a + 2k + 2, t = a + k + 1, and s = a. There is no value of c

such that Fac and Fcb are both defined while c 6= t. As such, there are no Jacobi

identities available to zero out ystab, thus ystab 6= 0.

(⇐) Suppose t = s+2k+2. If a 6= s+k+1 then let c = s+k+1, so c 6= s, t, a. Notice

when s = a that s < c < t < b ⇒ c 6= b. If s < a then c < a + k + 1 ≤ b ⇒ c 6= b.

Therefore J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0. On the other hand if a = s + k + 1

and b > t then let c = a + 1. In this case J(Fsa, Fat, Fab) = 0 ⇒ ystab = ysbat and

J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0 and so ystab = 0. If a = s + k + 1 and b < t then

s < s + k + 1 = a < a + k + 1 ≤ b < t⇒ s + 2k + 2 < t and hence by Theorem 4.1,

ystab = 0.
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(⇒) Suppose t = s + 2k + 2, a = s + k + 1, and b = t. There is no value of c

such that Fsc and Fct are both defined while c 6= a. As such, there are no Jacobi

identities available to zero out ystab, thus ystab 6= 0. �

Now we have reduced the problem to a finite number of ways the non-trivial

ystab values may be produced. For convenience we will investigate the non-trivial

possibilities by separating the variable relationships into three cases. Either (1)

s = a, (2) a > t, or (3) s < a < t, sorted from easiest to hardest.

4.2. Types of elements.

Case 1: s = a

For a fixed value of s, suppose s = a. Theorems 4.1 and 4.2 discuss b ≥ s+2k+2,

so consider b < s + 2k + 2. Let tmin = s + k + 1, the minimum possible value of t.

Since s = a⇒ t < b this gives tmin < b < s+ 2k+ 2 = tmin +k+ 1, so b = tmin + j,

for j ∈ {1, . . . , k}.

Theorem 4.3. When b = tmin + j, j ∈ {1, . . . , k} we get j new non-trivial values

for ystab.

Proof. For any value of j, t < b < s+ 2k + 2. Therefore 6 ∃c such that Fac and Fcb

are both defined, similarly 6 ∃c such that Fsc and Fct are both defined, which forces

ystab 6= 0.

For b = tmin + j, t < b we get t ∈ {tmin, tmin + 1, . . . , tmin + j − 1} and so t may

take on j values for a fixed b, and hence giving j new distinct possible non-trivial

ystab elements as t fluctuates. �

Case 2: a > t

Theorem 4.4. If a > t, then ystab 6= 0 for all t and b such that both t < s+ 2k + 2

and b < a + 2k + 2. Otherwise ystab = 0 when a > t.

Proof. If t ≥ s + 2k + 3 or b ≥ a + 2k + 3 then Theorem 4.1 ⇒ ystab = 0. If

t = s + 2k + 2 or b = a + 2k + 2 then Theorem 4.2 ⇒ ystab = 0 since a > t ⇒
t 6= a + k + 1 and a 6= s + k + 1.

If t < s + 2k + 2 and b < a + 2k + 2 then there is no value of c, such that Fsc

and Fct are both defined for s < c < t. Similarly there is no value of c, such that

Fac and Fcb are both defined for a < c < b. Therefore the idea in Theorem 4.1, of

using J(Fsc, Fct, Fab) = 0 or J(Fst, Fac, Fcb) = 0 will not work here. Also, placing

a c such that s < t < c < a < b will not provide any helpful Jacobi identities, no

matter how large the gap between t and a. Thus ystab will always be non-zero in

this case. �
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Case 3: s < a < t

Theorems 4.1 and 4.2 discuss b ≥ a + 2k + 2 and t ≥ s + 2k + 2.

Theorem 4.5. If s < a < t, then ystab 6= 0 if b < a + 2k + 2 and t < s + 2k + 2.

Proof. There is not enough space between s, t, a, b to define a suitable c to use

any Jacobi identities previously mentions. Therefore we cannot zero out ystab when

b ∈ {a + k + 1, . . . , a + 2k + 1} and t ∈ {s + k + 1, . . . , s + 2k + 1}. �

Collecting all this information, Table 1 lists all non-zero ystab possibilities.

Table 1. ystab 6= 0 possibilities

Theorem 4.2 1. b = a + 2k + 2, t = a + k + 1, and s = a

2. t = s + 2k + 2, a = s + k + 1 and b = t

Theorem 4.3 s = a, b = tmin + j where j ∈ {1, . . . , k}
Theorem 4.4 a > t, t < s + 2k + 2, and b < a + 2k + 2

Theorem 4.5 s < a < t, t < s + 2k + 2, and b < a + 2k + 2

5. Counting the multiplier elements for [Gst, Gab], t 6= a

As a reminder, n denotes the number of rows and columns in the matrices. We

are interested in counting all the cases when ystab 6= 0. There are two types of

elements: (1) y(s, s+x1, s+x2, s+x3) where x1, x2, x3 are all fixed, which produce

n − w multiplier elements for w = max{x1, x2, x3} as s traverses 1, 2, . . . , n − w

and (2) y(s, s + x1, a, a + x2) where a > s + x1 and x1, x2 are both fixed, which

produce 1
2 (n − (x2 + x1 + 1))(n − (x2 + x1)) multiplier elements as a traverses

s + x1 + 1, . . . , n− x2 for s ∈ {1, . . . , n− (x2 + x1 + 1)}.
We now use this to count the number of non-trivial values for ystab when t 6= a.

As in section 3, notice that the element counts take the form n−x where x denotes

a distance between matrix positions. For the calculations below we assume n to

be sufficiently large. Once we have the result, if ever n − x is not positive then

replace it with zero since the necessary matrix units would not have been available

to produce the corresponding multiplier elements with the appropriate subscripts.

5.1. Counting the cases in Theorem 4.2.

Since the two ystab values listed in Table 1 simplify to y(s, s+k+1, s, s+2k+2)

and y(s, s + 2k + 2, s + k + 1, s + 2k + 2), in total they contribute 2(n− (2k + 2))

values to the multiplier.
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5.2. Counting the cases in Theorem 4.3.

Recall that tmin = s + (k + 1) and s = a ⇒ t < b. Hence ystab = y(s, tmin +

i, s, tmin + j) where i < j, which gives i ∈ {0, 1, 2, . . . , j − 1}. Therefore tmin + j =

max{s, tmin + i, s, tmin + j} and since tmin + j = s+k+ 1 + j this means that ystab

will assume n − (k + 1 + j) values as s varies, for a fixed i and j. For j fixed, i

may assume the j distinct values mentioned above, yielding n− (k + 1 + j) values

of ystab for each i, and j × (n − (k + 1 + j)) values for ystab as s and i both vary.

Since j can range from 1 up to k, in total this produces

k∑
j=1

j × (n − (k + 1 + j))

non-trivial values for ystab in this situation.

5.3. Counting the cases in Theorem 4.4.

Let bmin = a+(k+1) = the minimum possible value for b. So ystab = y(s, tmin+

i, a, bmin + j) = y(s, s + k + 1 + i, a, a + k + 1 + j) where i, j ∈ {0, 1, 2, . . . , k}.
If we let x1 = k+ 1 + i and x2 = k+ 1 + j, then ystab = y(s, s+x1, a, a+x2) and

we know from our earlier discussion that this may assume (n−(x2+x1+1))(n−(x2+x1))
2

different values for a fixed x1 and x2 (fixed i and j here). Since i and j both range

in value from 0 to k, in total this produces

k∑
j=0

k∑
i=0

(n− (2k + i + j + 3))× (n− (2k + i + j + 2))

2

non-trivial values for ystab in this situation.

5.4. Counting the cases in Theorem 4.5.

This is the most difficult case to count. Even though ystab takes the form y(s, s+

x1, s + x2, s + x3), we can have either t < b or b ≤ t making it difficult to choose

max{x1, x2, x3} which is needed to count this occurrence. The former is more

numerous but the larger the k, the more common the latter. Theorem 4.5 produces

4 distinct patterns, one from the b ≤ t scenario and three from the t < b scenario.

We will separate these into the 4 cases that follow and use tmin = s + k + 1 as

before, in addition to tmax = tmin + k for the minimum and maximum t values.

Please notice that the largest possible value of b is tmin + 3k which occurs when

t < b, a = tmax − 1, and b = a + 2k + 1.

5.4.1. Case 1: b ≤ t.

Since we have b ∈ {a+ k + 1, . . . , a+ 2k + 1} and t ∈ {s+ k + 1, . . . , s+ 2k + 1},
then s < a < t forces b > tmin. Therefore it is sufficient to consider t = tmin + j

where 1 ≤ j ≤ k since tmax = tmin + k. This allows for b = tmin + i with 1 ≤ i ≤ j
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which causes a ∈ {s + 1, . . . , s + i}. So as i fluctuates we get

j∑
i=1

i =
j(j + 1)

2

possible occurences of b ≤ t for each j since a may take on i different values for

each fixed b = tmin + i. Fortunately j(j+1)
2 is counting how a and b move around

for a fixed t. Since t is the largest number we get n− (k + 1 + j) ystab possibilities

for a fixed t = tmin + j = s + k + 1 + j as s varies. Since 1 ≤ j ≤ k we get a total

of

k∑
j=1

j(j + 1)

2
· (n− (k + 1 + j)) possibilities.

5.4.2. Case 2: t < b and b ∈ {tmin + 1, . . . , tmin + k}.
Suppose b = tmin + i, then t < b gives t ∈ {tmin, . . . , tmin + i− 1}. Having s < a

implies a ∈ {s+1, . . . , s+i} and the upper bound on b causes a < tmin. Notice that

a and t may both assume i different values and neither letter’s position affects the

other, giving i2 possible arrangements of a and t. With b = tmin + i = s+ k + 1 + i

we count n− (k + 1 + i) occurences of this for a fixed i as s fluctuates. So as i also

fluctuates we get a total of

k∑
i=1

i2 · (n− (k + 1 + i)) possibilities.

5.4.3. Case 3: t < b and b ∈ {tmin + k + 1, . . . , tmin + 2k}.
Now that b > tmin + k = tmax, we get t < b for free but we introduce the

possibility that a ≥ tmin and must enforce s < a < t. If b = tmin + k + i then

a ∈ {s+ i, . . . , s+k+ i} in order to guarantee s < a and a+k+ 1 ≤ b ≤ a+ 2k+ 1.

Additionally tmin ≤ t ≤ tmax so a and t may each assume k + 1 different values.

This would give (k + 1)2 possible interactions, however we must eliminate some to

ensure s < a < t. If a = s + k + 1 = tmin then we cannot allow t = tmin, similarly

if a = s+ k + 2 then we cannot allow t = tmin, tmin + 1, and so on. If a = s+ k + i,

disregard t = tmin, . . . , tmin + i− 1. This gives a total of 1 + 2 + . . .+ i eliminations

as a traverses s + k + 1, . . . , s + k + i. Therefore we will allow (k + 1)2 − i(i+1)
2

possible interaction of a and t. Since b = tmin + k + i = s+ 2k + i+ 1 exceeds t, we

get n− (2k + i+ 1) occurences of this for a fixed i as s fluctuates. Thus as i varies

the total possibilities we get are

k∑
i=1

((
(k + 1)2 − i(i + 1)

2

)
· (n− (2k + i + 1))

)
.

5.4.4. Case 4: t < b and b ∈ {tmin + 2k + 1, . . . , tmin + 3k}.
Since b is larger than the previous case, t < b is still automatic but guaranteeing

s < a < t needs extra care. Now we have a new concern to keep a < tmax = s+2k+

1. Suppose b = tmin + 2k + i, so a ∈ {s + k + i, . . . , s + 2k}. Suppose a = s + 2k =

tmax − 1, then t must be tmax. If a = s + 2k − 1 then t must be tmax or tmax − 1.

Each additional decrement of a will increment the allowed values of t. Notice there
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are k+ 1− i numbers a may take, yielding 1 + 2 + . . .+ (k+ 1− i) = (k+1−i)(k+2−i)
2

interactions of a and t for this fixed b. Since b = tmin + 2k + i = s + 3k + i + 1

we get n − (3k + i + 1) occurences of this for a fixed i as s fluctuates. Thus as i

fluctuates we get a total of

k∑
i=1

(
(k + 1− i)(k + 2− i)

2
· (n− (3k + i + 1))

)
values

of ystab.

6. dimM(Lk) formula

Putting all possible cases together gives the open form result

dimM(Lk) =

k∑
i=1

i · (n− (2k + 2 + i)) +

k∑
j=1

(k − j + 1) · (n− (3k + 2 + j))+

2(n− (2k + 2))+

k∑
j=1

j × (n− (k + 1 + j))+

k∑
j=0

k∑
i=0

(n− (2k + i + j + 3))× (n− (2k + i + j + 2))

2
+

k∑
j=1

j(j + 1)

2
· (n− (k + 1 + j))+

k∑
i=1

i2 · (n− (k + 1 + i))+

k∑
i=1

((
(k + 1)2 − i(i + 1)

2

)
· (n− (2k + i + 1))

)
+

k∑
i=1

(
(k + 1− i)(k + 2− i)

2
· (n− (3k + i + 1))

)

Notice that the 4th, 6th, and 7th terms combine into a single sum nicely to give

dimM(Lk) =

k∑
i=1

i · (n− (2k + 2 + i)) +

k∑
j=1

(k − j + 1) · (n− (3k + 2 + j))+

2(n− (2k + 2))+

k∑
j=0

k∑
i=0

(n− (2k + i + j + 3))× (n− (2k + i + j + 2))

2
+

k∑
j=1

3j(j + 1)

2
· (n− (k + 1 + j))+

k∑
i=1

((
(k + 1)2 − i(i + 1)

2

)
· (n− (2k + i + 1))

)
+

k∑
i=1

(
(k + 1− i)(k + 2− i)

2
· (n− (3k + i + 1))

)
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Assuming that n is sufficiently large, at least 4k + 3, the previous formula will

work without modification. In the event n < 4k + 3 some terms should be zeroed

off to ensure all n − x terms in the open form are positive. In order to develop a

formula to work for any n and k pair it will be helpful to reindex these sums to

better see when terms should be zeroed off. Additionally the double sum can be

rewritten as single sums by reindexing over the counter i+j+1 and then reindexing

again with the other single sums. The reindexing yields dimM(Lk) =
2k+1∑
j=k+2

(
3

2
· (j − k − 1)(j − k)(n− j)

)
+ 2(n− (2k + 2))+

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +

3k+2∑
j=2k+3

j − 2k − 2

2
· (n− j) (n− j + 1)+

4k+1∑
j=3k+2

1

2
· (4k + 2− j)(4k + 3− j)(n− j)+

4k+2∑
j=3k+3

(4k + 3− j) · (n− j) +

4k+3∑
j=3k+3

4k + 4− j

2
· (n− j) (n− j + 1)

for sufficiently large n. Now it is easier to see when n − j will not be positive in

one of the sums above. Whenever this happens a sum should be terminated since

further increments of j also cause this dilema. If k ≥ 2 then we can separate the

above open form into six cases based on when sums should terminate early, so that

within each case the open form no longer needs to be modified. This will allow us

to expand the open form in each case into a closed polynomial form. Below is the

result, computational algebra omitted.

(1) Case 1: k + 2 ≤ n < 2k + 3

L is abelian, hence dimM(Lk) = 1
2 (dimL)(dimL− 1) = 1

8 (n− k − 1)(n−
k)(n− k + 1)(n− k − 2)

(2) Case 2: n = 2k + 3, . . . , 3k + 1

dimM(Lk) =

 2k+1∑
j=k+2

3

2
· (j − k − 1)(j − k)(n− j)

+ 2(n− (2k + 2))+

n∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

n∑
j=2k+3

(j − 2k − 2) · (n− j) +

n∑
j=2k+3

j − 2k − 2

2
· (n− j) (n− j + 1)
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dimM(Lk) = −4− 3
2nk

3 + 2n− 13
4 k− 2nk− 4nk2 + 15

4 k3 + 27
8 k2 + 1

2n
2k2 +

n2k + 9
8k

4

(3) Case 3: n = 3k + 2

dimM(Lk) =

 2k+1∑
j=k+2

3

2
· (j − k − 1)(j − k)(n− j)

+ 2(n− (2k + 2))+

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +

3k+2∑
j=2k+3

j − 2k − 2

2
· (n− j) (n− j + 1)

dimM(Lk) = −4+2n− 27
4 k+ 5

4nk+ 5
4nk

2− 21
4 k3− 55

8 k2+ 1
4n

2k2+ 1
4n

2k− 9
8k

4

= 11
4 k + 27

8 k2 + 15
4 k3 + 9

8k
4

(4) Case 4: n = 3k + 3, . . . , 4k + 1

dimM(Lk) =

 2k+1∑
j=k+2

3

2
· (j − k − 1)(j − k)(n− j)

+ 2(n− (2k + 2))+

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +

3k+2∑
j=2k+3

j − 2k − 2

2
· (n− j) (n− j + 1)+

n∑
j=3k+2

1

2
· (4k + 2− j)(4k + 3− j)(n− j)+

n∑
j=3k+3

(4k + 3− j) · (n− j) +

n∑
j=3k+3

4k + 4− j

2
· (n− j) (n− j + 1)

dimM(Lk) = −1− 3
2nk

3 − 1
2n + 17

4 k − 5nk + 1
2n

2 − 4nk2 + 15
4 k3 + 63

8 k2 +
1
2n

2k2 + n2k + 9
8k

4

(5) Case 5: n = 4k + 2

dimM(Lk) =

 2k+1∑
j=k+2

3

2
· (j − k − 1)(j − k)(n− j)

+ 2(n− (2k + 2))+

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+
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3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +

3k+2∑
j=2k+3

j − 2k − 2

2
· (n− j) (n− j + 1)+

4k+1∑
j=3k+2

1

2
· (4k + 2− j)(4k + 3− j)(n− j)+

n∑
j=3k+3

(4k + 3− j) · (n− j) +

n∑
j=3k+3

4k + 4− j

2
· (n− j) (n− j + 1)

dimM(Lk) = −2 + 55
6 nk3 + 19

12n −
49
12k + 20

3 nk − 23
24n

2 + 16nk2 + 5
12n

3 −
275
12 k3 − 371

24 k2 − 7
2n

2k2 + 2
3n

3k − 4n2k − 229
24 k4 − 1

24n
4

= 17
4 k + 47

8 k2 + 35
4 k3 + 25

8 k4

(6) Case 6: n ≥ 4k + 3

No sums terminate early, hence the original calculation of dimM(Lk) may

be used.

dimM(Lk) = −1− 3
2nk

3 − 1
2n + 17

4 k − 5nk + 1
2n

2 − 4nk2 + 15
4 k3 + 63

8 k2 +
1
2n

2k2 + n2k + 9
8k

4

If k = 1, notice that cases 2 and 4 get skipped as they count zero values of n. In

the event that k = 0 we can refer back to [2] or notice that the first and final cases

describe this scenario: n < 3 and n ≥ 3.
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