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Abstract. In this paper, the smash coproduct of Hopf quasigroups are dis-

cussed. Necessary and sufficient conditions for the smash coproduct of Hopf

quasigroups to be a Hopf quasigroup are derived. The dual situation for Hopf

coquasigroups are also discussed.

Mathematics Subject Classification (2010): 16T05, 16T15

Keywords: Hopf quasigroup, Hopf coquasigroup, smash coproduct, smash

product

1. Introduction

The concepts of Hopf quasigroups and Hopf coquasigroups were introduced re-

cently in [4] in order to capture the quasigroup features of the (algebraic) 7-sphere.

As the new generalizations of Hopf algebras, they are not required to be associa-

tive and coassociative. The lack of associativity and coassociativity is compensated

by certain conditions involving the antipode. Some investigation related to Hopf

quasigroups and Hopf coquasigroups can be found in [1,2,3,4,5,6].

Smash products of Hopf quasigroups and smash coproducts of Hopf coquasi-

groups were introduced in [1,4] as the ‘quasi’ versions of their Hopf algebra pre-

decessors [7]. It is natural to ask what conditions are needed for construction of

smash coproducts of Hopf quasigroups and smash products of Hopf coquasigroups.

The aim of this paper is to discuss possible definitions of coactions of Hopf quasi-

groups and actions of Hopf coquasigroups and to study the construction of smash

coproducts of Hopf quasigroups and products of Hopf coquasigroups. Since Hopf

quasigroups are not required to be associative, we introduce the ‘quasi’ version of

comodule coalgebra for Hopf quasigroups, for which a different (stronger) condition

is needed for construction of smash coproduct of Hopf quasigroups. The ‘coquasi’

version of module algebra for Hopf coquasigroups is introduced in a similar manner.
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All algebras and coalgebras are over a field k. Unadorned tensor product symbol

represents the tensor product of k-vector spaces. We use Sweedler notation for

coproduct, that is, for all h ∈ H, ∆(h) = h(1) ⊗ h(2) (summation implicit)[8].

2. Preliminaries on Hopf (co)quasigroups

In this section, we recall the definitions of a Hopf quasigroup and a Hopf co-

quasigroup from [4].

Definition 2.1. Let H be a vector space that is a unital (not necessarily associa-

tive) algebra with multiplication µ : H ⊗H → H and unit 1 : k→ H. H is called

a Hopf quasigroup if H is a counital coassociative coalgebra with comultiplication

∆ : H → H ⊗H and counit ε : H → k that are algebra homomorphisms and there

exists a linear map S : H → H such that

µ ◦ (id⊗µ) ◦ (S⊗ id⊗ id) ◦ (∆⊗ id) = ε⊗ id = µ ◦ (id⊗µ) ◦ (id⊗S⊗ id) ◦ (∆⊗ id),

µ ◦ (µ⊗ id) ◦ (id⊗S⊗ id) ◦ (id⊗∆) = id⊗ ε = µ ◦ (µ⊗ id) ◦ (id⊗ id⊗S) ◦ (id⊗∆).

One can write these more explicitly as

S(h(1))(h(2)g) = εH(h)g = h(1)(S(h(2))g), (2.1)

(gS(h(1)))h(2) = εH(h)g = (gh(1))S(h(2)) (2.2)

for all h, g ∈ H.

Definition 2.2. Let H be a vector space that is a unital associative algebra with

multiplication µ : H ⊗H → H and unit 1 : k→ H and a counital (not necessarily

coassociative) coalgebra with comultiplication ∆ : H → H⊗H and counit ε : H →
k that are algebra homomorphisms. H is called a Hopf coquasigroup if there exists

a linear map S : H → H such that

(µ⊗ id)◦ (S⊗ id⊗ id)◦ (id⊗∆)◦∆ = 1⊗ id = (µ⊗ id)◦ (id⊗S⊗ id)◦ (id⊗∆)◦∆,

(id⊗µ)◦ (id⊗ id⊗S)◦ (∆⊗ id)◦∆ = id⊗1 = (id⊗µ)◦ (id⊗S⊗ id)◦ (∆⊗ id)◦∆.

One can write these more explicitly as

S(h(1))h(2)(1) ⊗ h(2)(2) = 1⊗ h = h(1)S(h(2)(1))⊗ h(2)(2), (2.3)

h(1)(1) ⊗ S(h(1)(2))h(2) = h⊗ 1 = h(1)(1) ⊗ h(1)(2)S(h(2)) (2.4)

for all h ∈ H.
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As for standard Hopf algebras, the map S is called an antipode. It is proven in [4]

that the antipode is antimultiplicative and anticomultiplicative and it immediately

follows from (any of) equations (2.1)-(2.4) that, for all h ∈ H,

S(h(1))h(2) = h(1)S(h(2)) = εH(h)1,

i.e., S enjoys the standard antipode property.

3. The smash coproduct for Hopf quasigroups

In [1], it was given the definition of action of Hopf quasigroup. Now we will

define the coaction of Hopf quasigroup.

Definition 3.1. Let H be a Hopf quasigroup. A vector space M is called a left

H-comodule if there is a linear map ρ : M → H⊗M,ρ(m) = m(1)⊗m(2) such that,

for all m ∈M

m(1) ⊗m(2)(1) ⊗m(2)(2) = m(1)
(1) ⊗m(1)

(2) ⊗m(2), (3.1)

εH(m(1))m(2) = m. (3.2)

An algebra (not necessarily associative) A is a left H-comodule algebra if A is a

left H-comodule and for all a, a′ ∈ A

ρ(aa′) = a(1)a′(1) ⊗ a(2)a′(2), (3.3)

ρ(1A) = 1H ⊗ 1A. (3.4)

A coalgebra C is a left quasi H-comodule coalgebra if C is a left H-comodule and

for all c ∈ C, h ∈ H

c(1)h⊗ c(2)(1) ⊗ c(2)(2) = c(1)
(1)(c(2)

(1)h)⊗ c(1)(2) ⊗ c(2)(2), (3.5)

c(1)εC(c(2)) = εC(c)1H . (3.6)

A Hopf quasigroup A is called a left H-comodule Hopf quasigroup if it is a left H-

comodule algebra and a left quasi H-comodule coalgebra simultaneously, denoted

it by (A,ρ), in which ρ is the comodule action.

Let H be a Hopf quasigroup, (A, ρ) a left H-comodule Hopf quasigroup. Define

A>JH = A ⊗ H as a vector space, with tensor product multiplication, unit and

counit, and comultiplication

∆A>JH(a⊗h) = a(1)⊗a(2)(1)h(1)⊗a(2)(2)⊗h(2) (3.7)

for all a ∈ A, h ∈ H.
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Definition 3.2. With the notation above, A>JH is called a smash coproduct of

A and H if A>JH is a Hopf quasigroup with antipode S : A⊗H → A⊗H

S(a⊗ h) = SA(a(2))⊗ SH(a(1)h) (3.8)

for all a ∈ A, h ∈ H.

In the following, we will study the necessary and sufficient conditions for A>JH

to be a smash coproduct Hopf quasigroup.

Theorem 3.3. Let H be a Hopf quasigroup, (A, ρ) is a left H-comodule Hopf

quasigroup, then the following statements are equivalent for all a ∈ A, h, g ∈ H.

(1) A>JH is a smash coproduct Hopf quasigroup for A and H;

(2) The following conditions hold

(c1) ha(1)⊗a(2) = a(1)h⊗a(2);
(c2) a(1)(hg)⊗a(2) = (a(1)h)g⊗a(2);
(c3) h(a(1)g)⊗a(2) = (ha(1))g⊗a(2).

(3) The following conditions hold

(cp1) a(1)(hg)⊗a(2) = h(a(1)g)⊗a(2);
(c2) a(1)(hg)⊗a(2) = (a(1)h)g⊗a(2).

Proof. (2) ⇔ (3) Assume that (2) holds, then for all a ∈ A, h, g ∈ H,

a(1)(hg)⊗a(2) (c2)
= (a(1)h)g⊗a(2) (c1)

= (ha(1))g⊗a(2) (c3)
= h(a(1)g)⊗a(2),

hence (cp1) holds.

Conversely, suppose that (3) holds, then (c1) follows by letting g = 1H in (cp1).

For all a ∈ A, h, g ∈ H, we have

h(a(1)g)⊗a(2) (cp1)
= a(1)(hg)⊗a(2) (c2)

= (a(1)h)g⊗a(2) (c1)
= (ha(1))g⊗a(2).

so (c3) follows.

(3)⇒ (1) It is not hard to verify that 1A>JH = 1A ⊗ 1H is the unit of A>JH,

εA>JH = εA ⊗ εH is the counit of A>JH and εA>JH is a algebra homomorphism.

To show that A>JH is a smash coproduct Hopf quasigroup for A and H, we

only need to prove that ∆A>JH is coassociative, ∆A>JH is a algebra homomorphism

and antipode S satisfies equations (2.1) and (2.2).
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For all a ∈ A, h ∈ H, we have

(∆A>JH⊗id)∆A>JH(a⊗h)

= a(1)⊗a(2)(1)(a(3)(1)(1)h(1))⊗a(2)
(2)⊗a(3)(1)(2)h(2)⊗a(3)

(2)⊗h(3)
(3.1)
= a(1)⊗a(2)(1)(a(3)(1)h(1))⊗a(2)(2)⊗a(3)(2)(1)h(2)⊗a(3)(2)(2)⊗h(3)

= a(1)⊗a(2)(1)(1)(a(2)(2)(1)h(1))⊗a(2)(1)(2)⊗a(2)(2)(2)(1)h(2)⊗a(2)(2)(2)(2)⊗h(3)
(3.5)
= a(1)⊗a(2)(1)h(1)⊗a(2)(2)(1)⊗a(2)

(2)
(2)

(1)
h(2)⊗a(2)(2)(2)

(2)
⊗h(3)

= (id⊗∆A>JH)∆A>JH(a⊗h),

which means ∆A>JH is coassociative. Next we will prove ∆A>JH is a algebra homo-

morphism. In fact,

∆A>JH(1A ⊗ 1H)
(3.4)
= 1A ⊗ 1H ⊗ 1A⊗1H

and for all a, b ∈ A, h, g ∈ H, we have

∆A>JH((a⊗ h)(b⊗ g))

= a(1)b(1)⊗(a(2)b(2))
(1)(h(1)g(1))⊗(a(2)b(2))

(2)⊗h(2)g(2)
(3.3)
= a(1)b(1)⊗(a(2)

(1)b(2)
(1))(h(1)g(1))⊗a(2)(2)b(2)(2)⊗h(2)g(2)

(c2)
= a(1)b(1)⊗a(2)(1)(b(2)(1)(h(1)g(1)))⊗a(2)(2)b(2)(2)⊗h(2)g(2)

(cp1)
= a(1)b(1)⊗a(2)(1)(h(1)(b(2)

(1)
g(1)))⊗a(2)(2)b(2)(2)⊗h(2)g(2)

(c2)
= a(1)b(1)⊗(a(2)

(1)h(1))(b(2)
(1)
g(1))⊗a(2)(2)b(2)(2)⊗h(2)g(2)

= (a(1)⊗a(2)(1)h(1)⊗a(2)(2)⊗h(2))(b(1)⊗b(2)(1)g(1)⊗b(2)(2)⊗g(2))

= ∆A>JH(a⊗ h)∆A>JH(b⊗ g).

Finally, we will check identities (2.1) and (2.2) hold. For all a, b ∈ A, h ∈ H, we

have

S((a⊗ h)(1))((a⊗ h)(2)(b⊗g))

= S(a(1)⊗a(2)(1)h(1))((a(2)(2)⊗h(2))(b⊗g))

= (SA(a(1)
(2))⊗SH(a(1)

(1)(a(2)
(1)h(1))))(a(2)

(2)b⊗h(2)g)

= SA(a(1)
(2))(a(2)

(2)b)⊗SH(a(1)
(1)(a(2)

(1)h(1)))(h(2)g)

(3.5)
= SA(a(2)(1))(a

(2)
(2)b)⊗SH(a(1)h(1))(h(2)g)

(2.1)
= εA(a(2))b⊗SH(a(1)h(1))(h(2)g)

(3.6)(2.1)
= εA(a)εH(h)b⊗g,
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and

(a⊗ h)(1)(S((a⊗ h)(2))(b⊗g))

= a(1)(SA(a(2)
(2)(2))b)⊗(a(2)

(1)h(1))(SH(a(2)
(2)(1)h(2))g)

(3.1)
= a(1)(SA(a(2)

(2))b)⊗(a(2)
(1)

(1)
h(1))(SH(a(2)

(1)
(2)
h(2))g)

(2.1)
= a(1)(SA(a(2)

(2))b)⊗εH(a(2)
(1)h)g

(3.2)(2.1)
= εA(a)εH(h)b⊗g.

By similar computations, we get

((b⊗g)S((a⊗h)(1)))(a⊗h)(2) = εA(a)εH(h)b⊗g,

((b⊗g)(a⊗h)(1))S((a⊗h)(2)) = εA(a)εH(h)b⊗g.

(1)⇒ (3) For all a, b ∈ A, g, h ∈ H,

∆A>JH((a⊗ h)(b⊗ g))

= a(1)b(1)⊗(a(2)
(1)b(2)

(1))(h(1)g(1))⊗a(2)(2)b(2)(2)⊗h(2)g(2),

and

∆A>JH(a⊗ h)∆A>JH(b⊗ g)

= a(1)b(1)⊗(a(2)
(1)h(1))(b(2)

(1)
g(1))⊗a(2)(2)b(2)(2)⊗h(2)g(2).

Since ∆A>JH is a algebra homomorphism, we obtain

a(1)b(1)⊗(a(2)
(1)b(2)

(1))(h(1)g(1))⊗a(2)(2)b(2)(2)⊗h(2)g(2)

= a(1)b(1)⊗(a(2)
(1)h(1))(b(2)

(1)
g(1))⊗a(2)(2)b(2)(2)⊗h(2)g(2)).

(3.9)

Taking b = 1A in (3.9), we have

a(1)⊗a(2)(1)(h(1)g(1))⊗a(2)(2)⊗h(2)g(2) = a(1)⊗(a(2)
(1)h(1))g(1)⊗a(2)(2)⊗h(2)g(2).

(3.10)

Taking a = 1A in (3.9), we get

b(1)⊗b(2)(1)(h(1)g(1))⊗b(2)(2)⊗h(2)g(2) = b(1)⊗h(1)(b(2)(1)g(1))⊗b(2)(2)⊗h(2)g(2).
(3.11)

Applying εA⊗idH⊗idA⊗εH to both sides of (3.10) and (3.11), respectively, we find

that

a(1)(hg)⊗a(2) = (a(1)h)g⊗a(2),

h(b(1)g)⊗b(2) = b(1)(hg)⊗b(2).

So (3) follows. This completes the proof. �
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4. The smash product for Hopf coquasigroups

The results of Section 3 can be dualized to the Hopf coquasigroup case.

Definition 4.1. Let H be a Hopf coquasigroup. A vector space M is called a right

H-module if there is a linear map α : M⊗H → M , α(m⊗h) = m · h such that, for

all m ∈M,h, g ∈ H

(m · h) · g = m · (hg), (4.1)

m · 1H = m. (4.2)

A algebra A is called a right quasi H-module algebra if A is a right H-module

and for all a, a
′ ∈ A

h(1)⊗(aa
′
) · h(2) = h(1)(1)⊗(a · h(1)(2))(a

′
· h(2)), (4.3)

1A · h = εH(h)1A. (4.4)

A coalgebra (not necessarily coassociative) C is a right H-module coalgebra if C

is a right H-module and for all c ∈ C, h ∈ H

∆(c · h) = c(1) · h(1)⊗c(2) · h(2), (4.5)

εC(c · h) = εC(c)εH(h). (4.6)

A Hopf coquasigroup C is called a right H-module Hopf coquasigroup if C is

both a right quasi H-module algebra and a right H-module coalgebra .

Let H be a Hopf coquasigroup, C is a right H-module Hopf coquasigroup. Let

H nC be equal to H ⊗C as a vector space, with tensor product comultiplication,

unit and counit, and multiplication

(h⊗c)(g⊗d) = hg(1)⊗(c · g(2))d

for all h, g ∈ H, c, d ∈ C.

Definition 4.2. With notation as above, H n C is called a smash product for H

and C if H n C is a Hopf coquasigroup with antipode S : H ⊗ C → H ⊗ C

S(h⊗ c) = SH(h)(1) ⊗ SC(c) · SH(h)(2)

for all h ∈ H, c ∈ C.

In what follows, we will present necessary and sufficient conditions for H nC to

be a smash product Hopf coquasigroup. The proof will be omitted since it is dual

to the proof of Theorem 3.3.
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Theorem 4.3. Let H be a Hopf coquasigroup, C is a right H-module Hopf coquasi-

group, then the followings are equivalent for all h ∈ H, c ∈ C.

(1) H n C is a smash product Hopf coquasigroup for H and C;

(2) the following conditions hold

(dc1) h(1)⊗ c · h(2) = h(2)⊗ c · h(1);

(dc2) h(1)(1)⊗ h(1)(2)⊗ c · h(2) = h(1)⊗ h(2)(1)⊗ c · h(2)(2);

(dc3) h(1)(1)⊗ c · h(1)(2)⊗ h(2) = h(1)⊗ c · h(2)(1)⊗ h(2)(2).

(3) the following conditions hold

(dcp1) h(1)(1)⊗ h(1)(2)⊗ c · h(2) = h(1)(1)⊗ h(2)⊗ c · h(1)(2);

(dc2) h(1)(1)⊗ h(1)(2)⊗ c · h(2) = h(1)⊗ h(2)(1)⊗ c · h(2)(2).

In [4], the structure of k[S2n−1] is introduced as an example of Hopf coquasi-

group. The Hopf coquasigroup k[S2n−1] has a left action of kZn
2 defined by

σa · xb = (−1)a·bxa

such that the resulting cross product k[S2n−1] o kZn
2 is a Hopf coquasigroup (see

[4, Proposition 5.10 and Example 5.11] for the detail). Then we have an example

that fits in the Theorem 4.3.

Example 4.4. Let C = k[S2n−1] be a Hopf coquasigroup equipped with an action

of kZn
2 by

xa / σb = S(σb) · xa = σ−b · xa = (−1)−b·axa,

then k[S2n−1] is a right kZn
2 -module Hopf coquasigroup and kZn

2 n k[S2n−1] is a

smash product Hopf coquasigroup.
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