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Abstract. The Lasker-Noether concept of a primary ideal is extended in

various ways to the category of associative, not necessarily commutative rings.

Generically these are called generalized primary conditions (right and left).

The structure of generalized primary rings is developed. Special consideration

is given to these rings under various chain conditions. The additive structure

of such rings is addressed in detail. Examples are given to illustrate and de-

limit the theory developed.
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1. Introduction

The concept of primary ideal in commutative rings has been generalized to a non-

commutative setting by several authors, e.g., Barnes [2], Chatters and Hajarnavis

[5], and Fuchs [11]. This was done with a vision of extending the Noether theory

of primary ideal decompositions, [20] or [8, Chapter 8]. In this paper, which is a

companion paper to [14], we examine several such generalizations and investigate

their interrelations and their relations to structural properties. This is a related de-

velopment to that given by the first two authors, [14]. Herein R will always denote

a nonzero ring (associative, not necessarily being commutative nor having unity).

Definition 1.1.

(i) R is a generalized right primary ring if, whenever A and B are ideals of R

such that AB = 0, then A = 0 or B is nilpotent.

(ii) R is a principal generalized right primary (p.g.r.p.) ring if whenever A and

B are principal ideals of R such that AB = 0, then either A = 0 or B is

nilpotent.

(iii) R is a completely g.r.p. ring if, whenever a, b ∈ R with ab = 0, then a = 0

or b is nilpotent.
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An ideal I of R is said to be a g.r.p. (p.g.r.p., completely g.r.p.) ideal if R/I is

a g.r.p. (respectively p.g.r.p., completely g.r.p.) ring. (Note: what is here called a

g.r.p. ideal is called a “right primary ideal” by Chatters and Hajarnavis, [5]. The

terms “primary ring” and “primary ideal” have been used in numerous ways in the

literature, with and without a direct connection to the concepts under consideration

in this paper.)

Similarly, one defines generalized left primary (g.l.p.), principal gereralized left

primary (p.g.l.p.), and completely g.l.p. rings and ideals. Some of the results will

be stated for right-sided conditions, with the left-handed analogs being obvious to

the reader.

Generically we refer to these six properties as generalized primary conditions,

when taken individually or in batches. In this paper we investigate the properties of

rings or ideals satisfying generalized primary conditions, the interrelations of these

conditions, and various equivalent conditions. The relation of generalized primary

conditions to various radicals are considered. The structure of the additive group

of rings satisfying generalized right primary conditions is developed. The effect

of chain conditions on generalized primary rings is investigated. We also consider

generalized primary rings which are right weakly regular or nonsingular.

Observe that nilpotent rings and all prime rings are both g.r.p. and g.l.p. We

give numerous examples of various types of generalized primary rings and ideals

throughout this paper.

2. Basic results and examples

We adopt the following notation:

(i) A� R, A�r R, A�l R mean that A is a two-sided, right, left ideal of R,

respectively;

(ii) for a nonempty subset X of R, we use 〈X〉, 〈X〉r, and 〈X〉l for the two-

sided, right, left ideal, respectively, of R generated by X;

(iii) r(X) is the right annihilator of X in R;

(iv) Mn(R) is the ring of all n× n matrices over R;

(v) N and Z are the set of natural numbers and the set of rational integers,

respectively.

We first make some observations concerning the interconnectedness between the

various generalized primary conditions.

Note that g.r.p. (g.l.p.) implies p.g.r.p. (p.g.l.p.). As the next example shows,

the converse need not hold, even in a ring with unity.
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Example 2.1. For n > 1, let Tn be the subring of Z2n generated by 2, and let

T be the external direct sum of the rings Tn. Identify each Tn with the ideal in

T under the natural embedding Tn → T . Note that Tn is nilpotent with index of

nilpotency n. Let A = T2 and let B be the sum of all the ideals Tn, for n > 2. Then

AB = 0 = BA and B is not nilpotent. So T is neither g.r.p. nor g.l.p. However,

since R is nil and commutative, T is both p.g.r.p. and p.g.l.p. Embed T in the Z2

algebra using the Dorroh extension method of embedding algebras in algebras with

unity, [4], [7]. Identify T in T 1. A routine calculation establishes that the proper

ideals of T 1 are exactly the ideals of T . Consequently, T 1 is a ring with unity which

is completely g.r.p. (g.l.p.), but which is neither g.r.p. nor g.l.p.

For any skew field K, the ring Mn(K) is prime, and hence g.r.p. and g.l.p.

However, since there exist nonzero idempotents in Mn(K), n > 2, whose product

is zero, we see that Mn(K) is not completely g.r.p. (g.l.p.).

For commutative rings p.g.r.p. (p.g.l.p.) is equivalent to completely g.r.p. (g.l.p.).

More generally, if I is a p.g.r.p. (p.g.l.p.) ideal of a ringR and ifR/I is commutative,

then I is a completely g.r.p. (g.l.p.) ideal. This is not the situation for rings in

general, as the next example illustrates.

Example 2.2. Let A and B be simple nil rings which are not nilpotent. (For

examples of such rings see [23].) Then R = A ⊕ B is a nil ring, and identifying

A and B as ideals in R we have AB = 0 = BA. Since A and B are simple rings,

the ideals A and B are principal. Hence R is neither p.g.r.p. nor p.g.l.p. , but R is

completely g.r.p. (g.l.p.).

The next example shows that g.r.p. does not imply g.l.p. or even p.g.l.p.

Example 2.3. Let S be a semigroup with at least two elements and for which

each element is a right identity (a left zero semigroup). Let x, y be elements of the

semigroup ring F [S], where F is a field, with y = α1s1 + · · ·+ αnsn, αj ∈ F, sj ∈
S, j = 1, . . . , n. Then xy = xw(y), where w(x) = α1+· · ·+αn. Observe that xy = 0

if and only if either x = 0 or w(y) = 0. So r(F [S]) = {y ∈ F [S] | w(y) = 0}. If

w(y) = 0, y 6= 0, then 〈x〉〈y〉 = 0 for each x and consequently F [S] cannot be p.g.l.p.

For any ideals A,B of F [S] with A 6= 0 and AB = 0 we have w(b) = 0 for each

b ∈ B and hence B ⊆ r(F [S]). So B is nilpotent and consequently F [S] is g.r.p.

Using this construction with n = 2 and F = Z2 yields the smallest ring which is

g.r.p. but not p.g.l.p.

Example 2.4. Let R be the ring with trivial multiplication, R2 = 0, on the cyclic

group (Z6,+). This ring R is both g.r.p. and g.l.p. However, End R = End (Z6,+),
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which is isomorphic to the ring (Z6,+), [12, p. 211]. So End R is neither p.g.r.p.

nor p.g.l.p.

Observe that a prime ring (ideal) is both a g.r.p. and a g.l.p. ring (ideal). The

converse clearly does not hold.

Example 2.5. Recall that if b ∈ RbR for each b ∈ R, then the ideals of Mn(R) are

exactly the sets of the form MN (I), where I �R. See [16, p. 40]. (This, of course,

occurs for all rings with unity.) Thus, if R is g.r.p. (g.l.p.), then so is Mn(R) in

this case.

It has been shown that if R is g.r.p. and I is a two-sided ideal of R, then I is a

g.r.p. as a ring; see [14, Proposition 3.1]. The same is not true for right ideals.

Example 2.6. Let F be a field and let R =

[
F F

F F

]
. Let H =

[
F F

0 0

]
, A =[

0 F

0 0

]
. B =

[
F F

0 0

]
. Then AB = 0 but A 6= 0 and B is not nilpotent.

Proposition 2.7. Let I be a semiprime ideal of R. Then I is prime if and only if

I is p.g.r.p. (p.g.l.p.).

Proof. Take I to be p.g.r.p. and consider a, b ∈ R such that 〈a〉〈b〉 ⊆ I and 〈a〉 * I.

Then (〈b〉)n ⊆ I, for some n ∈ N, and hence 〈b〉 ⊆ I. Proceed similarly for p.g.l.p.

Consequently, if R is a semiprime ring, then R is a prime ring if and only if R

is a p.g.r.p. (p.g.l.p.) ring. Note that if R is g.r.p. or g.l.p. and semiprime, then

R is prime; and if I is a g.r.p. or g.l.p. ideal and I is semiprime, then I is a prime

ideal. �

Recall that an ideal I of R is said to be completely prime if, whenever a, b ∈ R
such that ab ∈ I, then a ∈ I or b ∈ I; and I is said to be completely semiprime if,

whenever a ∈ R such that an ∈ I for some n ∈ N, then a ∈ I, [19]. Using a proof

analogous to that used in Proposition 2.7 we have the following.

Proposition 2.8. Let I be a completely semiprime ideal of R. Then I is a com-

pletely prime ideal if and only if I is completely p.r.p. (g.l.p.).

Recall that in a commutative ring with unity any power of a maximal ideal is a

primary ideal, [22, p. 64]. An analogous, albeit more extensive, result is given next

in a generalized primary setting. We use (I(R), ·) for the multiplicative semigroup

of all ideals of R.
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Proposition 2.9. Let M be a maximal ideal of R and let n ∈ N.

(i) If (I(R), ·) has a right (left) identity, then Mn is a g.r.p. (g.l.p.) ideal.

(ii) If (I(R), ·) has identity, then Mn is a g.r.p. and g.l.p. ideal.

Proof. Observe that if (I(R), ·) has a right (left) identity, then the right (left)

identity will be R itself, and will be unique. Consider A,B�R such that AB ⊆Mn

and A *Mn. If B ⊆M , then Bn ⊆Mn. If B *M , then B +M = R, and hence

AB +AM = AR = A. So A ⊆Mn +M ⊆M . Then A ⊆ AB +AM ⊆Mn +M2.

Continue this process to get A ⊆Mn, a contradiction. Proceed similarly if (I(R), ·)
has a left identity. Then (ii) is an immediate consequence of (i). �

Corollary 2.10. Let M be a maximal ideal of R, and let n ∈ N.

(i) If R has a right (left) unity, then Mn is a g.r.p. (g.l.p.) ideal.

(ii) If R has unity, then Mn is a g.r.p. and a g.l.p. ideal.

The following two propositions show the behavior of generalized primary ideals

under homomorphisms, which is analogous to the well-known results for prime and

semiprime ideals.

Proposition 2.11. Let φ : R→ R̄ be a surjective homomorphism and I �R with

Ker φ ⊆ I.

(i) If I is g.r.p. (g.l.p.) in R, then φ(I) is g.r.p. (g.l.p.) in R̄.

(ii) If I is p.g.r.p. (p.g.l.p.) in R, then φ(I) is p.g.r.p. (p.g.l.p.) in R̄.

(iii) If I is completely g.r.p. (g.l.p.) in R, then φ(I) is completely g.r.p. (g.l.p.)

in R̄.

Proof. Let K = Ker φ. From (R/K)/(I/K) ∼= R/I we see that I a g.r.p. (g.l.p.)

ideal of R implies I/K = φ(I) is a g.r.p. (g.l.p.) ideal of R̄. Proceed similarly for

the other cases. �

In a similar fashion we can prove the following result.

Proposition 2.12. Let φ : R→ R̄ be a surjective homomorphism and Ī � R̄ with

Ī = φ−1(I).

(i) If Ī is g.r.p. (g.l.p.) in R̄, then I is g.r.p. (g.l.p.) in R.

(ii) If Ī is p.g.r.p. (p.g.l.p.) in R̄, then I is p.g.r.p. (p.g.l.p.) in R.

(iii) If Ī is completely g.r.p. (g.l.p.) in R̄, then I is completely g.r.p. (g.l.p.) in

R.
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Observe that the zero ideal of Z, which is prime, maps onto an ideal in Z6

which is not generalized primary. So Ker φ ⊆ I cannot be dispensed with in the

hypothesis of Proposition 2.11.

3. Equivalent conditions to generalized primary conditions

This section is motivated in part by work of N. H. McCoy [18] and O. Ste-

infeld [24], who gave a wide selection of equivalent conditions to an ideal being

prime. As in that work, the equivalent conditions given here involve one-sided

ideals, finitely generated ideals, and principal ideals.

Proposition 3.1. The following are equivalent:

(i) R is g.r.p.;

(ii) if A and B are right ideals of R and AB = 0, then A = 0 or B is nilpotent;

(iii) if A and B are left ideals of R and AB = 0, then A = 0 or B is nilpotent;

(iv) if a ∈ R and B �R such that 〈a〉B = 0, then a = 0 or B is nilpotent;

(v) if a ∈ R and B �R such that 〈a〉rB = 0, then a = 0 or B is nilpotent;

(vi) if A1, . . . , An are nonzero ideals of R and A1 · · ·An = 0, then at least one

of A2, . . . , An is nilpotent.

Proof. Assume (i). If A and B are right ideals of R such that AB = 0, then

〈A〉RB = (A + RA)RB = ARB + RARB = 0. If A 6= 0, then RB is nilpotent,

and hence B is nilpotent. Thus (i) implies (ii), and the converse is immediate.

Proceed similarly to establish (i) is equivalent to (iii). To see that (i) implies (vi),

suppose A1, . . . , An are nonzero ideals of R with A1A2 · · ·An = 0; then either

A1 · · ·An−1 = 0 or An is nilpotent. If A1 · · ·An−1 = 0, then either A1 · · ·An−2 = 0

or An−1 is nilpotent. Repeating this process yields that Aj is nilpotent for some

j, 2 ≤ j ≤ n. Thus (i) implies (vi), and the converse is trivial. Thus (i), (ii), (iii),

and (vi) are equivalent. Now to show (i) implies (iv) let a ∈ R and B�R such that

〈a〉B = 0; then either 〈a〉 = 0 or B is nilpotent. Since a ∈ 〈a〉, the former yields

a = 0, Thus (i) implies (iv). To show the converse holds, assume (iv) and consider

A,B � R. If A 6= 0, choose 0 6= a ∈ A. Then 〈a〉B = 0, 〈a〉 6= 0, and thus B is

nilpotent. Proceed similarly to establish (i) implies (v). �

Analogous results are obtained for a ring that is g.l.p.

Corollary 3.2. Let I �R. The following are equivalent:

(i) I is a g.r.p. ideal;

(ii) if A,B �r R such that AB ⊆ I, then either A �r I or Bn �r I, for some

n ∈ N;
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(iii) if A,B �l R such that AB ⊆ I, then either A �r I or Bn �r I, for some

n ∈ N;

(iv) if A1, . . . , An are ideals of R with A1 · · ·An ⊆ I and Aj * I for j = 1, . . . , n,

then there exists m ∈ N such that Am
k ⊆ I for at least one k > 1.

Proposition 3.3. The following are equivalent:

(i) R is p.g.r.p.;

(ii) if A�R and b ∈ R such that A〈b〉 = 0, then A = 0 or 〈b〉 is nilpotent;

(iii) if A,B � R and B is finitely generated with AB = 0, then A = 0 or B is

nilpotent;

(iv) if a, b ∈ R such that aRb = 0, then a = 0 or 〈b〉 is nilpotent;

(v) if a, b ∈ R with 〈a〉r〈b〉r = 0, then a = 0 or 〈b〉r is nilpotent;

(vi) if a, b ∈ R with 〈a〉l〈b〉l = 0, then a = 0 or 〈b〉r is nilpotent.

Proof. Assume (i). Consider A � R, b ∈ R with A〈b〉 = 0. If A 6= 0, then let

a ∈ A, a 6= 0. So 〈a〉〈b〉 ⊆ A〈b〉 = 0, and consequently 〈b〉 is nilpotent.

Assume (ii). Let A,B � R with B = 〈b1, . . . , bn〉 and AB = 0. Then A〈bj〉 =

0, j = 1, . . . , n, and hence each 〈bj〉 is nilpotent. But B = 〈b1〉 + · · · + 〈bn〉, and

since the finite sum of nilpotent ideals is nilpotent, we have B is nilpotent.

Assume (iii). Consider a, b ∈ R with aRb = 0 and a 6= 0. The a routine

calculation establishes that 〈a〉R〈b〉 ⊆ aRb + aRbR + RaRb + RaRbR = 0. So

〈a〉R = 0 or 〈b〉 is nilpotent. If the former, then 〈a〉〈b〉 = 0 and hence either 〈a〉 = 0

or 〈b〉 is nilpotent.

Assume (iv). Let a, b ∈ R such that 〈a〉r〈b〉r = 0. Then 〈a〉rR〈b〉r ⊆ 〈a〉r〈b〉r = 0

and hence aRb = 0. So a = 0 or 〈b〉r is nilpotent.

Assume (v). Let a, b ∈ R such that 〈a〉r〈b〉r = 0. Consequently 〈a〉rR〈b〉r = 0

and hence aRb = 0, which yields a = 0 or 〈b〉 is nilpotent. Similarly obtain (iv)

implies (vi).

Observe that (i) follows immediately from either (v) or (vi), which completes the

logical circuit. �

Corollary 3.4. Let I �R. The following are equivalent:

(i) I is a p.g.r.p. ideal;

(ii) if A � R and b ∈ R such that A〈b〉 ⊆ I, then either A ⊆ I or (〈b〉)n ⊆ I,

for some n ∈ N;

(iii) if A,B �R and B is finitely generated with AB ⊆ I, then either A ⊆ I or

Bn ⊆ I, for some n ∈ N;
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(iv) if a, b ∈ R such that aRb ⊆ I, then either a ∈ I or (〈b〉)n ⊆ I, for some

n ∈ N;

(v) if a, b ∈ R with 〈a〉r〈b〉r ⊆ I, then either 〈a〉r ⊆ I or (〈b〉r)n ⊆ I, for some

n ∈ N;

(vi) if a, b ∈ R with 〈a〉l〈b〉l ⊆ I, then either 〈a〉l ⊆ I or (〈b〉l)n ⊆ I, for some

n ∈ N.

Proof. Apply Proposition 3.3 to the p.g.r.p. ring R/I and then lift from R/I back

to R. �

Corollary 3.5. If the sum of any nonempty set of nilpotent principal ideals is

nilpotent, then R p.g.r.p. implies R is g.r.p.

Proof. Let R be p.g.r.p. and consider A,B �R with AB = 0 and A 6= 0. For any

b ∈ B, we have A〈b〉 = 0, and hence 〈b〉 is nilpotent. The sum of all such 〈b〉 is

equal to B, and is nilpotent. �

Observe that the crucial condition yielding nilpotence could be replaced by any

one of several stronger conditions. For example:

(i) the sum of any set of nilpotent ideals is nilpotent;

(ii) every nil ideal is nilpotent;

(iii) R is right (left) Artinian;

(iv) R is right (left) Noetherian;

(v) a.c.c. on nilpotent ideals;

(vi) a.c.c. on ideals.

If I is a p.g.r.p. ideal of R and R/I satisfies any one of the seven finiteness

conditions just discussed, then I is a g.r.p. ideal.

Corollary 3.6. If R satisfies either the a.c.c. on ideals or is either left or right

Artinian, then every p.g.r.p. ideal of R is a g.r.p. ideal.

There are numerous other equivalences one could give for g.r.p. or p.g.r.p. rings

or ideals. The ones above are exemplary and have been proven to be the most

useful so far.

Corollary 3.7. Let M be maximal among proper ideals of R which are finitely

generated.

(i) If (I(R), ·) has a right (left) identity, then Mn is a p.g.r.p. (p.g.l.p.) ideal.

(ii) If (I(R), ·) has identity, then Mn is a p.g.r.p. (p.g.l.p.) ideal.
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Proof. (i) The proof is similar to that used in Proposition 2.9, but making use of

finitely generated ideals A and B and that the sum and product of finitely generated

ideals are again finitely generated. Then (ii) follows from (i). �

Corollary 3.8.

(i) If R has no nonzero nilpotent elements and R is p.g.r.p. (p.g.l.p.), then R

has no nonzero divisors of zero, and hence is both g.r.p. and g.l.p.

(ii) If I is a completely semiprime and a p.g.r.p. (p.g.l.p.) ideal of a ring R,

then I is a completely prime ideal of R.

Proof. Let a, b ∈ R such that ab = 0. Since R has no nonzero nilpotents, we have

arb = 0 for each r ∈ R; so aRb = 0. Using Proposition 3.3 and that R is p.g.r.p. we

have a = 0 or b is nilpotent. The latter yields b = 0. Part (ii) follows immediately

from (i). �

4. Structure theory

In this section we develop structure theory for generalized primary rings and

ideals.

Proposition 4.1. Let I be a nonzero ideal of R and 0 6= S a nonempty subset of

R such that I ∩ S = 0.

(i) If R is p.g.r.p. (p.g.l.p.) and S is a right (left) ideal of R, then 〈y〉 is

nilpotent for each y ∈ I, so I is nil.

(ii) If R is g.r.p.(g.l.p.) and 0 6= S is a right (left) ideal of R, then I is nilpotent.

Proof. Let R be p.g.r.p. and take S to be a right ideal. Then SI ⊆ S ∩ I = 0 and

hence 〈y〉 is nilpotent for each y ∈ I. Thus Σy∈I〈y〉 is nil. Proceed similarly for R

p.g.l.p. and for R g.r.p. and g.l.p. �

Let Λ be a nonempty set of nonzero (right, left, two-sided) ideals of R. Recall

that a nonzero (right, left, two-sided) ideal I is essential among right ideals in Λ if

I ∩X 6= 0, for each X ∈ Λ. For example, if Λ is the set of all nonzero right ideals

of R, we say “R is essential among right ideals”.

The next result follows immediately from Proposition 4.1.

Corollary 4.2. Let I be a nonzero ideal of R.

(i) If R is p.g.r.p. (p.g.l.p.), then either I is essential among principal right

(left) ideals of R, or I is the sum of nilpotent principal ideals.

(ii) If R is g.r.p. (g.l.p.), then R is either indecomposable or R is nilpotent.
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Corollary 4.3.

(i) If R is p.g.r.p. (p.g.l.p.), then R is either indecomposable or R is the sum

of nilpotent ideals and hence is nil.

(ii) If R is g.r.p. (g.l.p.), then R is either indecomposable or R is nilpotent.

Proof. Let R be p.g.r.p. and assume R = A ⊕ B, where A and B are nonzero.

Then for each nonzero a ∈ A, b ∈ B we have 〈a〉〈b〉 = 0 = 〈b〉〈a〉. So 〈a〉 and 〈b〉 are

nilpotent. The desired results follow immediately. The proof of (ii) is similar. �

Corollary 4.4. Let e be a central idempotent in R.

(i) If R is p.g.r.p. (p.g.l.p.), then either e is zero or R has unity and e = 1.

(ii) If I is a p.g.r.p. (p.g.l.p.) ideal of R, then either eR ⊆ I or r(e) ⊆ I.

Proof. (i) Let R be p.g.r.p. and consider e 6= 0. Then R = r(e) ⊕ eR as a direct

sum of two-sided ideals. Since eR 6= 0 and R is not nil, we have r(e) = 0 and hence

R has e as a two-sided unity.

(ii) Let I be a p.g.r.p. ideal of R. If e ∈ I, then eR ⊆ I. Consider e /∈ I. Then

ē = e+ I is a nonzero central idempotent in the p.g.r.p. ring R̄ = R/I. So ē is the

unity for R̄ and hence x− ex ∈ I, for each x ∈ R, which implies r(e) ⊆ I. �

Proposition 4.5. Let R be p.g.r.p. (p.g.l.p.).

(i) If R has a minimal ideal I, then either R is subdirectly irreducible with

heart I, or I2 = 0.

(ii) If R is not subdirectly irreducible, then the socle is square zero.

Proof. (i) If R is not subdirectly irreducible, then I∩B = 0 for some nonzero ideal

B. Consequently BI = 0. Since any minimal ideal must be principal, R p.g.r.p.

implies I2 = 0.

(ii) If R is not subdirectly irreducible, then the socle is either zero or is the sum of

square zero minimal ideals, yielding (Soc R)2 = 0.

Proceed similarly for R p.g.l.p. �

We use J(R) and V (R) for the Jacobson radical of R and the von Neumann

regular ideal of R, respectively.

Proposition 4.6. If R is p.g.r.p. (p.g.l.p.), then either:

(i) J(R) = 0 and R is a prime ring; or

(ii) J(R) 6= 0 and V (R) = 0.
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Proof. From J(R) ∩ V (R) = 0 and Proposition 4.1 we have J(R) = 0 or V (R)

is nil. The former implies R is semiprime and hence prime, while the latter yields

V (R) = 0. (Recall: nil ideals are contained in J(R).) �

An analogous result is obtained using the Brown-McCoy radical G(R) and the

maximal biregular ideal B(R). (For details on the Brown-McCoy radical and the

maximal biregular ideal, see [27, Chapter V], [13, Chapter IV] ). For our purposes

the crucial datum is G(R) ∩ B(R) = 0, [27, Proposition 44.4].

Proposition 4.7. If R is p.g.r.p. (p.g.l.p.) then either:

(i) G(R) = 0 and R is a prime ring; or

(ii) G(R) 6= 0 and B(R) = 0.

Proof. The proof is similar to that of Proposition 4.6, making use of J(R) ⊆ G(R)

and B(R) is a von Neumann regular ideal. �

Recall [13] a Hoehnke radical on the class of all rings is an assignment γ : R →
γ(R), such that γ(R) �R and:

(i) f(γ(R)) ⊆ γ(f(R)), for each surjective homomorphism f ;

(ii) γ(R/γ(R)) = 0.

Every Amitsur-Kurosh radical is a Hoehnke radical, which, inter alia, includes

the prime radical, P, and the Jacobson radical.

Proposition 4.8. Let γ be a Hoehnke radical such that P(T ) ⊆ γ(T ) for each

p.g.r.p. (p.g.l.p.) ring T . If γ(R) is a p.g.r.p. (p.g.l.p.) ideal of R, then γ(R) is a

prime ideal of R.

Proof. From P(R/γ(R)) ⊆ γ(R/γ(R)) = 0, we have that the p.g.r.p. (p.g.l.p.)

ring R/γ(R) is prime, and hence γ(R) is a prime ideal of R. �

We next consider descending chain conditions on generalized primary rings. Fol-

lowing Szász [25,26] we call a ring with d.c.c. on principal right ideals an MHR-ring.

(Such rings are also called “perfect rings”, [3].) The following known results for the

structure of MHR-rings wil be used.

Lemma 4.9. Let R be an MHR-ring.

(i) If J(R) = 0, then R is a finite direct sum of simple MHR-rings.

(ii) If R is simple and R2 6= 0, then R is isomorphic to a Rees matrix ring over

a skew field.
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For a proof, see [17, Theorem 78.2, Theorem 79.1]. For a discussion of Rees

matrix rings, see [17, Section 79] or [21, p. 76].

Corollary 4.10. Let R be an MHR-ring. If R is p.g.r.p. (p.g.l.p.), then either:

(i) R is a simple ring which is isomorphic to a Rees matrix ring over a skew

field; or

(ii) J(R) 6= 0 and V (R) = 0.

Proof. If J(R) = 0, then R is isomorphic to a Rees matrix ring over a skew field

by the lemma. �

Another characterization of R in part (i) of Corollary 4.10 is that R is isomorphic

to a dense ring of linear transformations of finite rank on some vector space over a

skew field. This uses a characterization of simple MHR-rings due (independently)

to Szász and Faith; see [25] or [9]. Of course, if one strengthens the hypothesis

to R is right (left) Artinian, then the Artin-Wedderburn Theorem yields that R is

isomorphic to Mn(D), for some skew field D.

5. Additive group structure

Let T(R) and d(R) be the torsion subgroup and the maximal divisible subgroup

of (R,+), respectively. Recall that each of T(R) and d(R) are ideals of R and that

d(R) is a two-sided anihilator of T(R). Also, for each prime p the p-component of

(T(R),+) is an ideal of R, denoted here by Rp, and T(R) is the ring direct sum of

these components. (See [12, Section 66].) Recall that an abelian group G is said to

be reduced if d(G) = 0.

Proposition 5.1. If R is p.g.r.p. (p.g.l.p.), then either:

(i) (R,+) is reduced and T(R) = Rp, for some fixed prime p;

(ii) (R,+) is reduced and T(R) is nil;

(iii) (R,+) is torsion-free;

(iv) d(R) + T(R) is a nil ideal and neither d(R) nor T(R) is zero.

Proof. Parts (i) and (ii) follow immediately from d(R) ·T(R) = 0 and RpRq = 0

if p 6= q. If d(R) 6= 0, then either T(R) 6= 0 and hence d(R)+T(R) is nil, or (R,+)

is torsion-free. �

A similar argument yields the following result.
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Proposition 5.2. If R is g.r.p. (g.l.p.), then either:

(i) (R,+) is reduced and T(R) = Rp, for some fixed prime p;

(ii) (R,+) is reduced and T(R) is nilpotent;

(iii) (R,+) is torsion-free;

(iv) d(R) + T(R) is a nilpotent ideal and neither d(R) nor T(R) is zero.

Note that T(d(R)), the maximal torsion subgroup of the maximal divisible sub-

group of (R,+), is an ideal of R. If R has d.c.c. on principal ideals, then T(d(R))

is a two-sided annihilator of R, [10, Corollary 4.3.21]. This immediately yields:

Proposition 5.3. Let R have d.c.c. on principal ideals.

(i) If R is p.g.r.p. (p.g.l.p.), then either (d(R),+) is torsion-free or R is nil.

(ii) If R is g.r.p. (g.l.p.), then either (d(R),+) is torsion-free or R is nilpotent.

Recall that if T(R) is a ring direct summand of R, then R is said to be fissile

(or to split). The mild chain condition introduced in Section 4, the MHR-ring

condition, guarantees that a ring is fissile. (See [1], [6], or [17, Theorem 81.3].)

Proposition 5.4. Let R be an MHR-ring.

(i) If R is p.g.r.p. (p.g.l.p.), then either:

(a) (R,+) is torsion-free;

(b) R = Rp, for some fixed prime p, and (R,+) is reduced; or

(c) R is nil.

(ii) If R is g.r.p. (g.l.p.), then either:

(a) (R,+) is torsion-free;

(b) R = Rp, for some fixed prime p, and (R,+) is reduced; or

(c) R is nilpotent.

Proof. Write R = T(R) ⊕ F , where F � R and (F,+) is torsion-free. Then use

Propositions 5.1 and 5.2 to get (i) and (ii), respectively. �

Note that in case (i) (respectively, case (ii)) of Proposition 5.4, R is nil (respec-

tively, nilpotent) if (R,+) is any one of the following: mixed; torsion, not reduced;

torsion, reduced, not a p-group.

Corollary 5.5. Let R have left or right unity. If R is p.g.r.p. (p.g.l.p.), then either

(R,+) is torsion-free or R = Rp, for some fixed prime p.

Under the stronger hypothesis of both R and J(R) being MHR-rings much more

can be said. To do so we use the following known result.
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Lemma 5.6. Let R and J(R) both be MHR-rings. Then:

(i) R = T ⊕ S, where T is a finite direct sum of full matrix rings over infinite

skew fields and (S,+) has d.c.c. ;

(ii) R = F ⊕T(R), where F is a primitive ring and (F,+) is torsion-free.

For a proof, see [17, Theorems 67.4 and 81.4].

Corollary 5.7. Let both R and J(R) be MHR-rings. If R is p.g.r.p. (p.g.l.p.), then

either:

(i) R is the direct sum of nilpotent ideals and hence is nil;

(ii) R ∼= Mn(D), where D is a skew field of characteristic zero; or

(iii) R = Rp, for a fixed prime p, and (R,+) is reduced and has d.c.c.

Proof. From Lemma 5.6 (ii), R = F ⊕ T(R), where F is a primitive ring and

(F,+) is torsion-free. If (R,+) is mixed, then R is a direct sum of nilpotent ideals

and hence is nil. Consider R not nil. Then either (R,+) is torsion-free or mixed.

If the former, then (R,+) cannot have d.c.c. , so using Lemma 5.6 (i) we have

R ∼= Mn(D), where D is a skew field of characteristic zero. If (R,+) is torsion,

then R ∼= Rp, for some fixed prime p, and (R,+) is reduced. Using Lemma 5.6 (i)

this then gives the desired results. �

Observe that if g.r.p. (g.l.p.) replaced p.g.r.p. (p.g.l.p.) in the hypothesis of

Corollary 5.7, then in part (i) “nil” can be replaced by nilpotent. Also, in in

Corollary 5.7 if one assumes that R has a nonzero idempotent, then part (i) is no

longer a possibility.

Note that each of the three cases in Corollary 5.7 can be realized.

Using the MHR condition we also can get a corollary to Proposition 2.9.

Corollary 5.8. Let M be a maximal ideal of R. If R is a MHR-ring and (R,+)

is torsion-free, then Mn is a g.r.p. ideal, for each n.

Proof. It is known that if R is a torsion-free MHR-ring, then b ∈ bR, for each

b ∈ R. (See [17, Theorem 81.2] or [6].) So R will be a right identity for (I(R), ·).
Use Proposition 2.9 to obtain the desired result. �

An analogous result gives that in a torsion-free ring with d.c.c. on principal left

ideals, then Mn is a g.l.p. ideal for any maximal ideal M and each n.
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6. Right weakly regular rings and non-singular rings

Definition 6.1. A ring R is right weakly regular (r.w.r.) if every right ideal H

satisfies H2 = H. These rings are also called fully right idempotent and right fully

idempotent. (See [15] for a survey of results on this class of rings.)

Recall [24, Theorem 1] that the following are equivalent for a ring T :

(i) T is a prime ring;

(ii) if A,B are principal right ideals of T and AB = 0, then A = 0 or B = 0.

Proposition 6.2. If R is r.w.r. and p.g.r.p., then R is prime.

Proof. Let A,B be principal right ideals of R such that AB = 0 and A 6= 0. Since

R is p.g.r.p. we have Bn = 0 for some n ≥ 1. But B2 = B, since R is r.w.r. Thus

B = 0. Hence R is a prime ring. �

Note that any nonzero nilpotent ring is g.r.p. but not r.w.r. Any ring which is

the direct sum of two fields is r.w.r. but not g.r.p.

Example 6.3. R is r.w.r. and not g.r.p.

Let F be a field, and let R = F⊕F . Then R is r.w.r. Let A = F⊕0 and B = 0⊕B.

Then AB = 0 but A 6= 0 and B is not nilpotent.

Let Zr(R) denote the right singular ideal of R and let E(R) denote the injective

hull of R. It is well-known that if Zr(R) = 0, then E(R) is a ring.

Proposition 6.4. If R is a semiprime g.r.p. ring with identity and Zr(R) = 0,

then E(R) is prime, hence g.r.p.

Proof. Let A,B be right ideals of E(R) and suppose that AB = 0. Then (A ∩
R)(B ∩ R) = 0. Since R is g.r.p., then either (A ∩ R) = 0 or (B ∩ R) is nilpotent.

If A∩R = 0, then A = 0. If B ∩R is nilpotent, then B ∩R = 0, which implies that

B = 0. �

Proposition 6.5. Let R be a g.r.p. ring with identity and let Zr(R) = 0. If

A,B are nonzero right ideals of E(R) and AB = 0, then either A = 0 or every

R-submodule of B contains a nonzero nilpotent element.

Proof. Let AB = 0. Then (A∩R)(B ∩R) = 0. If A∩R = 0 then A = 0. If A 6= 0

then (B ∩R)n = 0 for some n ≥ 1.

Let 0 6= b ∈ B, b /∈ R. Since R is essential in E(R), then bR ∩ R 6= 0. Thus

there exists 0 6= x ∈ R and 0 6= bx ∈ bR ∩R ⊆ B ∩R, and thus bx is nilpotent. �
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