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Abstract. Suppose that G is a finite group and H is a subgroup of G. H

is said to be s-quasinormally embedded in G if for each prime p dividing |H|,
a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal

subgroup of G; H is called weakly s-supplemented in G if there is a subgroup

T of G such that G = HT and H ∩T ≤ HsG, where HsG is the subgroup of H

generated by all those subgroups of H which are s-quasinormal in G. We inves-

tigate the influence of s-quasinormally embedded and weakly s-supplemented

subgroups on the p-nilpotency of a finite group.
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1. Introduction

All groups considered in this paper are finite. A subgroup H of a group G is

said to be s-quasinormal (or π-quasinormal) in G if H permutes with all Sylow

subgroups of G, i.e., HS = SH for any Sylow subgroup S of G. This concept was

introduced by Kegel in [6]. More recently, Ballester-Bolinches and Pedraza-Aguilera

[2] generalized s-quasinormal subgroups to s-quasinormally embedded subgroups.

A subgroup H of a group G is said to be s-quasinormally embedded in G if for

each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup

of some s-quasinormal subgroup of G. The concept of s-quasinormally embedded

subgroup has been studied extensively by M. Asaad [1] and Y. Li [9, 10]. As another

generalization of s-quasinormal subgroups, A.N.Skiba [14] introduced the following

concept: a subgroup H of a group G is called weakly s-supplemented in G if there

is a subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the

subgroup of H generated by all those subgroups of H which are s-quasinormal in

G. Later, many interesting results in finite groups were obtained by using weakly
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s-supplemented subgroups [5, 8, 12]. There are examples to show that weakly s-

supplemented subgroups need not be s-quasinormally embedded subgroups and in

general the converse is also false. In [7], we characterized the p-nilpotency and su-

persolvability of finite groups under the assumption that some maximal subgroups

or minimal subgroups of Sylow subgroups are s-quasinormally embedded or weakly

s-supplemented. Some known results are extended through the theory of forma-

tions. Let M be a maximal subgroup of a group G. If M1 is a maximal subgroup

of M , then we say M1 is a 2-maximal subgroup of G. The aim of this article is

to present another sufficient condition for a group to be p-nilpotent by replacing

maximal subgroups in [7, Theorem 3.1] by 2-maximal subgroups.

2. Preliminaries

For convenience, we list here some known results which are crucial in proving

our main result.

Lemma 2.1. ([2, Lemma 1]) Suppose that U is an s-quasinormally embedded sub-

group of a group G and N is a normal subgroup of G. Then

(1) U is s-quasinormally embedded in H whenever U ≤ H ≤ G.

(2) UN is s-quasinormally embedded in G and UN/N is s-quasinormally em-

bedded in G/N .

Proof. We only prove (1). Since U is s-quasinormally embedded in G, there is an

s-quasinormal subgroup K of G such that for each prime p dividing |U |, a Sylow

p-subgroup Up of U is also a Sylow p-subgroup of K. If U ≤ H, then Up is also

a Sylow p-subgroup of K ∩H. Since K is s-quasinormal in G, we have K ∩H is

s-quasinormal in H. Hence U is s-quasinormally embedded in H. �

Lemma 2.2. ([14, Lemma 2.10]) Let H be a weakly s-supplemented subgroup of a

group G.

(1) If H ≤ L ≤ G, then H is weakly s-supplemented in L.

(2) If N E G and N ≤ H ≤ G, then H/N is weakly s-supplemented in G/N .

(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N is

weakly s-supplemented in G/N .

Lemma 2.3. ([11, Lemma 2.5]) Let H be a normal subgroup of a group G such

that G/H is p-nilpotent and let P be a Sylow p-subgroup of H, where p is a prime

divisor |G|. If |P | ≤ p2 and (|G|, p2 − 1) = 1, then G is p-nilpotent.

Lemma 2.4. ([3, A, 1.2]) Let U, V , and W be subgroups of a group G. Then the

following statements are equivalent:
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(1) U ∩ VW = (U ∩ V )(U ∩W ).

(2) UV ∩ UW = U(V ∩W ).

Lemma 2.5. ([10, Lemma 2.3]) Suppose that H is s-quasinormal in G, P is a

Sylow p-subgroup of H, where p is a prime. If HG = 1, where HG denotes the core

in G of H, then P is s-quasinormal in G.

Lemma 2.6. ([13, Lemma A]) If P is an s-quasinormal p-subgroup of a group G

for some prime p, then NG(P ) ≥ Op(G).

Lemma 2.7. ([10, Lemma 2.4]) Suppose P is a p-subgroup of G contained in

Op(G). If P is s-quasinormally embedded in G, then P is s-quasinormal in G.

Lemma 2.8. Let p be a prime dividing |G| with (|G|, p − 1) = 1. If P is a Sylow

p-subgroup of G such that every maximal subgroup of P is p-nilpotent supplemented

in G, then G is p-nilpotent.

Proof. If p2 - |G|, then G is p-nilpotent. Let P1 be a maximal subgroup of P . By

the hypothesis, P1 has a p-nilpotent supplement K1 in G. Let K1p′ be a normal

Hall p′-subgroup of K1. Then, obviously, K1p′ is a Hall p′-subgroup of G. Hence

G = P1K1 = P1NG(K1p′). We claim thatK1p′ is normal in G. Indeed, ifK1p′ is not

normal in G, then P ∩NG(K1p′) < P . It follows that P has a maximal subgroup P2

such that P ∩NG(K1p′) ≤ P2. It is clear P1 ̸= P2. By the hypothesis, P2 is also p-

nilpotent supplemented in G. By repeating the above argument, we can find a Hall

p′-subgroup K2 of G such that G = P2K2 = P2NG(K2p′). If p = 2, then K1p′ and

K2p′ are conjugate in G by applying a deep result of Gross ([4, Main Theorem]). If

p > 2, then G is a soluble group by Feit-Thompson’s Theorem and hence K1p′ and

K2p′ are conjugate in G. Since K2p′ is normalized by K2, there exists an element

g ∈ P2 such that Kg
2p′ = K1p′ . Then G = (P2NG(K2p′))g = P2NG(K1p′). This

implies that P = P ∩ G = P ∩ P2NG(K1p′) = P2(P ∩ NG(K1p′)) = P2. This

contradiction completes the proof. �

Lemma 2.9. ([15, Lemma 2.8]) Let M be a maximal subgroup of G and P a normal

p-subgroup of G such that G = PM , where p is a prime. Then P ∩M is a normal

subgroup of G.

3. Main result

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is a prime

divisor of |G| with (|G|, p2 − 1) = 1. If every 2-maximal subgroup of P is either

s-quasinormally embedded or weakly s-supplemented in G, then G is p-nilpotent.
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Proof. Suppose that the theorem is false and let G be a counterexample of minimal

order. We will derive a contradiction in several steps.

Step 1. If |P | 6 p2, then G is p-nilpotent by Lemma 2.3, a contradiction. Hence

we may assume |P | > p3 and so every 2-maximal subgroup of P is non-identity.

Step 2. G is not a non-abelian simple group.

If G is simple, then P has a maximal subgroup P1 which has no p-nilpotent

supplement in G by Lemma 2.8. It follows that for any 2-maximal subgroup P2

of P contained in P1, P2 has no p-nilpotent supplement in G. By the hypothesis,

P2 is either s-quasinormally embedded or weakly s-supplemented in G. If P2 is

s-quasinormally embedded in G, then there exists a s-quasinormal K such that P2

is a Sylow p-subgroup of K. Obviously, KG = 1. Then P2 is s-quasinormal in G

by Lemma 2.5, so NG(P2) ≥ Op(G) = G by Lemma 2.6. Therefore P2 is a normal

subgroup of G, a contradiction. If P2 is weakly s-supplemented in G, then there is

a non-p-nilpotent subgroup T of G such that G = P2T and

P2 ∩ T ≤ (P2)sG ≤ Op(G) = 1.

By Lemma 2.3, T is p-nilpotent, a contradiction.

Step 3. G has a unique minimal normal subgroup N such that G/N is p-

nilpotent. Moreover, Φ(G) = 1.

Let N be a minimal normal subgroup of G and we verify that the hypothesis

holds for G/N , from which we have that G/N is p-nilpotent by the choice of G.

If |PN/N | 6 p2, then G/N is p-nilpotent by Lemma 2.3. Hence we may assume

that |PN/N | > p3. Let M/N be a 2-maximal subgroup of PN/N . Then M =

M ∩ PN = (M ∩ P )N . Let H = M ∩ P . Since

|P : H| = |P : M ∩ P | = |PN : (M ∩ P )N | = |PN/N : M/N | = p2,

we have H is a 2-maximal subgroup of P . By the hypothesis, H is either s-

quasinormally embedded or weakly s-supplemented in G. If H is s-quasinormally

embedded in G, then M/N = HN/N is s-quasinormally embedded in G by Lemma

2.1(2). If H is weakly s-supplemented in G, then there is a subgroup T of G such

that G = HT and H∩T ≤ HsG. Therefore G/N = M/N ·TN/N = HN/N ·TN/N .

Since H ∩ N = M ∩ P ∩ N = P ∩ N is a Sylow p-subgroup of N , we have (|N :

H ∩ N |, |N : T ∩ N |) = 1. Then (H ∩ N)(T ∩ N) = N = N ∩ G = N ∩HT . By

Lemma 2.4, (HN) ∩ (TN) = (H ∩ T )N . It follows that (HN/N) ∩ (TN/N) =

(HN ∩ TN)/N = (H ∩ T )N/N ≤ HsGN/N ≤ (HN/N)sG. Hence M/N is weakly

s-supplemented in G/N . Since (|G/N |, p2 − 1) = 1, we have G/N satisfies all the

hypotheses of the theorem. The minimality of G yields that G/N is p-nilpotent.
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Since the class of all p-nilpotent groups is a saturated formation, N is the unique

minimal normal subgroup of G and Φ(G) = 1.

Step 4. Op′(G) = 1.

If Op′(G) ̸= 1, then G/Op′(G) satisfies the hypothesis by Step 3. The minimality

of G implies that G/Op′(G) is p-nilpotent and so G is p-nilpotent, a contradiction.

Step 5. Op(G) = 1.

Assume that Op(G) ̸= 1. Then, by Step 3, N ≤ Op(G) and G has a maximal

subgroup M such that G = MN and G/N ∼= M is p-nilpotent. Hence we may

suppose M has a normal Hall p′-subgroup Mp′ and M ≤ NG(Mp′) ≤ G. The

maximality of M implies that M = NG(Mp′) or NG(Mp′) = G. If the latter holds,

then Mp′ E G. Mp′ is actually the normal p-complement of G, which is contrary to

the choice of G. Hence we must have M = NG(Mp′). By Lemma 2.9, Op(G)∩M is

normal in G. If Op(G)∩M ̸= 1, then N ≤ Op(G)∩M ≤ M , a contradiction. Thus

Op(G) ∩M = 1. Since N ∩M = 1, we have that N = Op(G). Write Mp = P ∩M .

It is easy to see that Mp is a Sylow p-subgroup of M and Mp < P . Thus there

exists a maximal subgroup P1 of P such that Mp ≤ P1. Pick some 2-maximal

subgroup P2 of P such that P2 < P1 and P2 E P . By the hypothesis, P2 is either

s-quasinormally embedded or weakly s-supplemented in G.

First, we assume that P2 is s-quasinormally embedded in G. Then there is an s-

quasinormal subgroup K of G such that P2 is a Sylow p-subgroup of K. If KG ̸= 1,

then N ≤ KG ≤ K. It follows that N ≤ P2 ≤ P1 and so P = NMp = NP1 = P1, a

contradiction. We may suppose that KG = 1. By Lemma 2.5, P2 is s-quasinormal

in G. By Lemma 2.6, NG(P2) ≥ Op(G). Consequently, G = POp(G) implies that

P2 E G. Since N is the unique minimal normal subgroup of G, N ≤ P2. It yields

the same contradiction as above.

We now assume that P2 is weakly s-supplemented in G. Then there is a subgroup

T of G such that G = P2T and P2 ∩ T ≤ (P2)sG. From Lemma 2.6, we have

Op(G) ≤ NG((P2)sG). Since (P2)sG is subnormal in G,

P2 ∩ T ≤ (P2)sG ≤ Op(G) = N.

Thus, (P2)sG ≤ P2 ∩N and

((P2)sG)
G = ((P2)sG)

Op(G)P = ((P2)sG)
P ≤ (P2 ∩N)P = P2 ∩N ≤ N.

It follows that ((P2)sG)
G = 1 or ((P2)sG)

G = P2∩N = N . If ((P2)sG)
G = P2∩N =

N , thenN ≤ P2, the same contradiction as above. If ((P2)sG)
G = 1, then P2∩T = 1

and so |T |p = p2. Hence T is p-nilpotent by Lemma 2.3. Let Tp′ be the normal

p-complement of T . If p = 2, then Tp′ and Mp′ are conjugate in G by the result
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of Gross ([4, Main Theorem]). If p > 2, then G is odd since (|G|, p2 − 1) = 1. By

the Feit-Thompson Theorem, G is a solvable group and so Tp′ and Mp′ are also

conjugate in G. Hence there exists g ∈ G such that T g
p′ = Mp′ . Hence

T g ≤ NG(T
g
p′) = NG(Mp′) = M.

However, Tp′ is normalized by T , so g can be considered as an element of P2. Thus

G = P2T
g = P2M and P = P2Mp ≤ P1, a contradiction.

Step 6. G does not have a 2-maximal subgroup which has a p-nilpotent supple-

ment in G.

By Lemmas 2.1(1) and 2.2(1), every 2-maximal subgroup of P is either s-

quasinormally embedded or weakly s-supplemented in NP . As (|NP |, p2 − 1) = 1

and P is also a Sylow p-subgroup of NP , hence NP satisfies the hypothesis of the

theorem. If NP < G, then the choice of G yields that NP is p-nilpotent. It follows

that N is p-nilpotent, a contradiction. Therefore we have G = NP . Suppose that

G has a 2-maximal subgroup which has a p-nilpotent supplement L in G. We may

assume that N has a Hall p′-subgroup Np′ such that Np′ is the p-complement of L.

By Frattini’s argument,

G = NNG(Np′) = (P ∩N)Np′NG(Np′) = (P ∩N)NG(Np′)

and so

P = P ∩G = P ∩ (P ∩N)NG(Np′) = (P ∩N)(P ∩NG(Np′)).

If P ∩ NG(Np′) = P , then P ≤ NG(Np′) and so NG(Np′) = G. It follows that

Np′ E G, which contradicts Step 4. Hence P ∩ NG(Np′) < P and we may pick a

maximal subgroup P1 of P such that P ∩NG(Np′) ≤ P1. Then P = (P ∩N)P1. Let

P0 be a 2-maximal subgroup of P such that P0 < P1. By the hypothesis, P0 is either

s-quasinormally embedded or weakly s-supplemented in G. If P0 is s-quasinormally

embedded in G, then there is an s-quasinormal subgroup K of G such that P0 is

a Sylow p-subgroup of K. If KG ̸= 1, then N ≤ KG ≤ K. It follows that N ∩ P0

is a Sylow p-subgroup of N . We know N ∩ P0 ≤ N ∩ P . Since N ∩ P is a Sylow

p-subgroup of N , we have N ∩ P0 = N ∩ P . Consequently, P = (P ∩N)P1 = P1,

a contradiction. Hence we may suppose that KG = 1. By Lemma 2.5, P0 is s-

quasinormal in G. Thus P0 ≤ Op(G) = 1 by Step 5, a contradiction. Now assume

P0 is weakly s-supplemented in G. Then there is a subgroup T of G such that

G = P0T and

P0 ∩ T ≤ (P0)sG ≤ Op(G) = 1
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by Step 5. Since |T |p = p2, T is p-nilpotent by Lemma 2.3. Let Tp′ be the normal

p-complement of T , then Tp′ is a Hall p′-subgroups of G. By [4, Main Theorem] and

Feit-Thompson’s Theorem, Tp′ and Np′ are conjugate in G. Since Tp′ is normalized

by T , there exists g ∈ P0 such that T g
p′ = Np′ . Hence

G = (P0T )
g = P0T

g = P0NG(T
g
p′) = P0NG(Np′)

and

P = P ∩G = P ∩ P0NG(Np′) = P0(P ∩NG(Np′)) ≤ P1,

which is a contradiction.

Step 7. The final contradiction that completes the proof.

If all 2-maximal subgroups of P are s-quasinormally embedded in G, then G is

p-nilpotent by [16, Main Theorem], a contradiction. Thus there exists a 2-maximal

subgroup P3 of P such that P3 is weakly s-supplemented in G. Then there exists

a subgroup T of G such that G = P3T and P3 ∩ T ≤ (P3)sG ≤ Op(G) = 1 by Step

5. By Lemma 2.3, T is p-nilpotent, which contradicts Step 6. �
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