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Abstract. Semicommutative and Armendariz rings are a generalization of

reduced rings, and therefore, nilpotent elements play an important role in

this class of rings. There are many examples of rings with nilpotent elements

which are semicommutative or Armendariz. In fact, in [1], Anderson and

Camillo prove that if R is a ring and n ≥ 2, then R[x]/(xn) is Armendariz

if and only if R is reduced. In order to give a noncommutative generaliza-

tion of the results of Anderson and Camillo, we introduce the notion of nil-

semicommutative rings which is a generalization of semicommutative rings. If

R is a nil-semicommutative ring, then we prove that niℓ(R[x]) = niℓ(R)[x].

It is also shown that nil-semicommutative rings are 2-primal, and when R is

a nil-semicommutative ring, then the polynomial ring R[x] over R and the

rings R[x]/(xn) are weak Armendariz, for each positive integer n, generalizing

related results in [12].
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1. Introduction

Throughout this paper, all rings are associative with identity. Given a ring R,

we denote by niℓ(R) the subset of all nilpotent elements of R. Recall that a ring

R is called reduced if a2 = 0 implies that a = 0, for all a ∈ R; R is symmetric if

abc = 0 implies acb = 0, for all a, b, c ∈ R; R is reversible if ab = 0 implies ba = 0,

for all a, b ∈ R; R is semi-commutative if ab = 0 implies aRb = 0, for all a, b ∈ R. In

H.E. Bell’s paper [4], semicommutative property is called the insertion-of-factors-

property, or IFP. Rings satisfying IFP was later studied vis-à-vis QF-3 rings in [6]

by J.M. Habeb (who referred to rings satisfying IFP as zero insertive or zi), see also

[9]. By Rege and Chhawchharia [14], a ring R is called Armendariz if whenever

polynomials f(x) = a0 + a1x + · · · + anx
n, g(x) = b0 + b1x + · · · + bmxm ∈ R[x]

satisfy f(x)g(x) = 0, then aibj = 0 for each i, j. In [12], Liu and Zhao introduce

weak Armendariz rings as a generalization of Armendariz rings. A ring is weak

Armendariz if whenever the product of two polynomials is zero then the product
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of their coefficients is nilpotent. This further motivates the study of the nilpo-

tent elements in this class of rings. In [2], Ramon Antoine initiates the notion

of nil-Armendariz rings. A ring R is said to be nil-Armendariz if whenever two

polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) ∈ niℓ(R)[x] then ab ∈ niℓ(R) for all

a ∈ coef(f(x)) and b ∈ coef(g(x)), where coef(g(x)) denotes the set of all coeffi-

cients of g(x). What we observe is that in all the examples found in the literature

of Armendariz and weak Armendariz rings, the set of nilpotent elements forms an

ideal. One may think that this is true for weak Armendariz rings or at least Ar-

mendariz rings, but this is not the case, and Antoine [2] provided a counterexample

in the case of Armendariz rings. We have the following implications:

commutative ⇒ symmetric ⇒ reversible ⇒ semicommu⇒nil-semicommu⇒2-Primal

⇑ ⇓
reduced ⇒ Armendariz ⇒ weak-Armendariz ⇐ nil-Armendariz

In general, each of these implications is irreversible. Semicommutative rings are a

generalization of reduced rings, and therefore, nilpotent elements play an important

role in this class of rings. There are many examples of rings with nilpotent elements

which are semicommutative or Armendariz. In fact, in [1], Anderson and Camillo

proved that if n ≥ 2, then R[x]/(xn) is an Armendariz ring if and only if R is

reduced. This further motivates the study of the nilpotent elements in this class

of rings. What we observe is that in semicommutative rings, the set of nilpotent

elements forms an ideal. If the set of nilpotent elements forms an ideal, then it is

easy to see that the ring is nil-Armendariz.

In a commutative ring, the set of nilpotent elements coincides with the intersec-

tion of all prime ideals. This property is also possessed by certain noncommutative

rings, which are known as 2-primal rings. A ring R is called 2-primal if its prime

radical contains every nilpotent element of R. Research on 2-primal rings was inau-

gurated by G. Shin in [15] (though the name “2-primal” was not coined until later).

Shin proved in [15, Proposition 1.11] that a ring is 2-primal if and only if each of

its minimal prime ideals is completely prime, i.e., the corresponding prime factor

ring is a domain. In order to give a noncommutative generalization of the results

of Anderson and Camillo, we introduce the notion of nil-semicommutative rings

which is a generalization of semicommutative rings. We use this to define a new

class of rings strengthening the condition for semicommutative rings. This prop-

erty between semicommutative and 2-primal is what we call nil-semicommutative

rings. Most of the results found in [12] for semicommutative rings can be extended

to nil-semicommutative rings. We prove that if R is a nil-semicommutative ring,
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then the set of nilpotent elements of R is an ideal of R. This allows us to study

the conditions under which the polynomial ring over a nil-semicommutative ring is

also nil-semicommutative. These conditions are strongly connected to the question

of Amitsur of whether or not a polynomial ring over a nil ring is nil. This problem

was solved in the negative by Agata Smoktunowicz in [16]. Another property be-

tween commutative and 2-primal is what Cohn in [5] calls reversible rings: those

rings R with the property that ab = 0, ba = 0 for all a; b ∈ R. Cohn shows that

the Köthe Conjecture is true for the class of reversible rings. Indeed, all reversible

rings are 2-primal, and the Köthe Conjecture is clearly true for 2-primal rings more

generally, for the class of rings whose nilpotent elements form an ideal.

Hirano’s claim [8] assumed that if R is semi-commutative then R[x] is semi-

commutative, and this was later shown to be false in [10, Example 2]. Due to an

example of Kim and Lee [11, Example 2.1], we know that if R is reversible then R[x]

may not even be semi-commutative. In this paper we define nil-semicommutative

rings which is a stronger condition than semicommutative rings and investigate

the properties of several extensions of nil-semicommutative rings. If R is a nil-

semicommutative ring, then we prove that niℓ(R[x]) = niℓ(R)[x]. It is shown that

nil-semicommutative rings are 2-primal and hence satisfy the Köthe conjecture. If R

is nil-semicommutative, then we prove that the polynomial ring R[x] over R and the

rings R[x]/(xn) are weak Armendariz, for each positive integer n. Since semicom-

mutative rings are nil-semicommutative, this generalizes [12]. Notice that, using 2.2,

2.3 and 2.4, we can provide various examples of weak α-rigid nil-semicommutative

rings that are not semicommutative.

2. Nil-semicommutative rings

In this section we introduce the class of nil-semicommutative rings which contains

the class of semicommutative rings. On the other hand, every semicommutative

ring is both 2-primal and nil-Armendariz. We show that there is a large class of nil-

semicommutative rings which are not semicommutative. For a ring R, Tn(R) and

Eij denote the upper triangular matrix ring and the elementary matrix, respectively.

Definition 2.1. We say that a ring R is nil-semicommutative if for every a, b ∈
niℓ(R), ab = 0 implies aRb = 0.

Clearly semicommutative rings are nil-semicommutative and that every subring

of a nil-semicommutative ring is nil-semicommutative. We first provide a large class

of nil-semicommutative rings which are not semicommutative.
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Example 2.2. For every reduced ring R, the upper triangular matrix ring T3(R)

is a nil-semicommutative ring which is not semicommutative.

Proof. Let


0 a12 a13

0 0 a23

0 0 0

 and


0 b12 b13

0 0 b23

0 0 0

 ∈ niℓ(T3(R)) and let


0 a12 a13

0 0 a23

0 0 0




0 b12 b13

0 0 b23

0 0 0

=0. Then


0 0 a12b23

0 0 0

0 0 0

=0. Since R is

reduced, a12Rb23 = 0, and that
0 a12 a13

0 0 a23

0 0 0




c11 c12 c13

0 c22 c23

0 0 c33




0 b12 b13

0 0 b23

0 0 0

=


0 0 a12c22b23

0 0 0

0 0 0


= 0. Hence T3(R) is nil-semicommutative. Now to see that T3(R) is not semicom-

mutative, we have E11E22 = 0, but E11E12E22 ̸= 0. �

Anderson and Camillo prove that Armendariz rings are abelian (i.e. all idempo-

tents are central). By [3, Corollary 2.8] semicommutative rings are abelian, but by

Example 2.2, it is clear that nil-semicommutative rings need not be abelian.

For a ring R, let

V (R) =




a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 0

0 0 0 a44

 | aij ∈ R, 0 ≤ i, j ≤ 4

 .

Then V (R) forms a subring of T4(R).

Example 2.3. For every reduced ring R, V (R) is a nil-semicommutative ring which

is not semicommutative.

Proof. Suppose that


0 a12 a13 a14

0 0 a23 a24

0 0 0 0

0 0 0 0

 ,


0 b12 b13 b14

0 0 b23 b24

0 0 0 0

0 0 0 0

 ∈ niℓ(V (R)),

and that
0 a12 a13 a14

0 0 a23 a24

0 0 0 0

0 0 0 0




0 b12 b13 b14

0 0 b23 b24

0 0 0 0

0 0 0 0

 =


0 0 a12b23 a12b24

0 0 0 0

0 0 0 0

0 0 0 0

=0.
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Since R is reduced,
0 a12 a13 a14

0 0 a23 a24

0 0 0 0

0 0 0 0




c11 c12 c13 c14

0 c22 c23 c24

0 0 c33 0

0 0 0 c44




0 b12 b13 b14

0 0 b23 b24

0 0 0 0

0 0 0 0

 =


0 0 a12c22b23 a12c22b24

0 0 0 0

0 0 0 0

0 0 0 0

 = 0.

We have E11E22 = 0, but E11E12E22 ̸= 0, so V (R) is not semicommutative. �

For a ring R, let

S(R) =




a11 0 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

 | aij ∈ R, 0 ≤ i, j ≤ 4

 .

Then S(R) forms a subring of T4(R).

Example 2.4. For every reduced ring R, S(R) is a nil-semicommutative ring which

is not semicommutative.

Proof. The proof is similar to that of Example 2.3. �

We also observe that in all the examples found in the literature of Armendariz

and weak Armendariz rings, the set of nilpotent elements forms an ideal. One may

think that this is true for weak Armendariz rings or at least Armendariz rings, but

this is not the case, and Antoine [2] provided a counterexample in the case of Ar-

mendariz rings. However we show that niℓ(R) is an ideal in a nil-semicommutative

ring R.

Theorem 2.5. If R is a nil-semicommutative ring, then niℓ(R) is an ideal of R.

Proof. Suppose that a2m = 0. Then amram=0, for each r ∈ R, since R is nil-

semicommutative. It is clear that am−1, aram ∈ niℓ(R). By nil-semicommutativity,

am−1raram = 0, am−1(ra)2, am−1 ∈ niℓ(R), which yields that am−1(ra)2ram−1 =

0, and that am−1(ra)3, am−2 ∈ niℓ(R). By nil-semicommutativity, am−1(ra)3ram−2

= 0, and that am−2, (ar)4am−2 ∈ niℓ(R). Continuing in this process we deduce

that (ar)2m = 0. Therefore ar, ra ∈ niℓ(R). Now suppose that am = 0, bn = 0,

let k = m + n + 1. Then (a + b)k =
∑

i1+j1+···+is+js=k(a
i1bj1ai2bj2 · · · aisbjs),
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0 ≤ i1, j1, . . . , is, js ≤ k. If i1 + i1 + · · · + is ≥ m, then ai1ai2 · · · ais = 0

,aip ∈ niℓ(R), for each p with 0 ≤ p ≤ s. We have ai1bj1ai2bj2 · · · aisbjs = 0,

since R is nil-semicommutative. If i1+ i1+ · · ·+ is ≤ m, then j1+ j1+ · · ·+ js ≥ n,

thus bj1+j2+···js = 0 and similarly we have ai1bj1ai2bj2 · · · aisbjs = 0. Hence

(a+ b)k = 0. �

Corollary 2.6. [12, Lemma 3.1] If R is a semicommutative ring, then niℓ(R) is

an ideal of R.

Based on Artin and Wedderburn, the Wedderburn radical of a ring R means the

sum of all nilpotent ideals in R (in spite of this sum being not a radical, it was

given the name), written by N0(R). We also denote the lower nilradical of R by

Nil∗(R).

Lemma 2.7. Nil-semicommutative rings are 2-primal.

Proof. It is sufficient to prove that niℓ(R) ⊆ Nil∗(R). Let a ∈ niℓ(R). Since by

Theorem 2.5, niℓ(R) is an ideal R, RaR ⊆ niℓ(R). Since R is nil-semicommutative,

RaR is a nilpotent ideal, soRaR ∈ N0(R) ⊆ Nil∗(R). Hence each nilpotent element

is contained in an arbitrary prime ideal. �

By Theorem 2.5, we see that the Köthe Conjecture is true for the class of nil-

semicommutative rings. Indeed, all nil-semicommutative rings are 2-primal, and

the Köthe Conjecture is clearly true for 2-primal rings.

We now give an example of a 2-primal ring, which is not nil-semicommutative.

Example 2.8. Let R be a reduced ring. By Example 2.11, T5(R) is not nil-

semicommutative, as it is not abelian, but it is clear that T5(R) is 2-primal.

Corollary 2.9. Nil-semicommutative rings are nil-Armendariz.

Proof. Let R be a nil-semicommutative ring. By Theorem 2.5, niℓ(R) is an ideal

of R. So by [2, Proposition 2.1], R is nil-Armendariz. �

Corollary 2.10. Nil-semicommutative rings are weak Armendariz.

Proof. Nil-semicommutative rings are nil-Armendariz and nil-Armendariz rings

are weak Armendariz, by [2]. �

Hence nil-semicommutative rings stand as a generalization of semicommutative

rings and a particular case of weak Armendariz rings.
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One may suspect that the nil-semicommutative property is inherited by Tn(R).

But the following example erases the possibility. Observe that

niℓ(Tn(R)) =


niℓ(R) R R

0
. . . R

0 0 niℓ(R)

 .

Example 2.11. For any ring R, the triangular matrix ring T5(R) is not nil-

semicommutative. Take 0 ̸= a ∈ niℓ(R), then we have aE11, E23 ∈ niℓ(T5(R))

and aE11E23 = 0, but aE11E12E23 = aE13 ̸= 0.

Now we give an example of a ring R such that niℓ(R) is an ideal and that R is

not nil-semicommutative.

Example 2.12. Let R be a reduced ring. By [12, Proposition 2.2], T4(R) is weak-

Armendariz, and niℓ(T4(R)) is an ideal of T4(R). However we see that T4(R) is

not nil-semicommutative. Consider E12, E34 ∈ niℓ(T4(R)), and E12E34 = 0, but

E12E23E34 ̸= 0.

Proposition 2.13. Finite product of nil-semicommutative rings is nil-semicomm-

utative.

Proof. First we observe that niℓ(
∏n

i=0 Ri)=
∏n

i=0 niℓ(Ri). To see this let

(a1, a2, . . . , an) ∈ niℓ(
∏n

i=0 Ri), then (a1, a2, . . . , an)
k = 0, aki = 0 and hence

(a1, a2 . . . , an) ∈
∏n

i=0 niℓ(Ri). If (b1, b2, . . . , bn) ∈
∏n

i=0 niℓ(Ri), then bki
i = 0. Let

k = max{k1, k2, . . . , kn}, then (b1, b2, . . . , bn)
k = 0, so (b1, b2, . . . , bn) ∈ niℓ(

∏n
i=0 Ri).

If (a1, a2, . . . , an),(b1, b2, . . . , bn) ∈ niℓ(
∏n

i=0 Ri), (a1, a2, . . . , an) · (b1, b2, . . . , bn) =
0, then for each i, j = 1, 2, . . . , n, aibj = 0. Since Ri is nil-semicommutative,

aiRibi = 0, for each i. So we get (a1, a2, . . . , an)
∏n

i=0 Ri(b1, b2, . . . , bn)=0. �

The ring of Laurent polynomials in x with coefficients in a ring R, consists of all

formal sums
∑n

i=k mix
i with obvious addition and multiplication, where mi ∈ R

and k, n are (possibly negative) integers. We denote this ring by R[x;x−1].

Proposition 2.14. Let R be a ring and Ω be a multiplicatively closed subset of R

consisting of central regular elements. Then R is nil-semicommutative if and only

if Ω−1R is nil-semicommutative.

Proof. It suffices to prove the necessary condition because subrings of nil-semicomm

utative are also nil-semicommutative. Let αβ = 0 with α = u−1a, β = v−1b ∈
niℓ(Ω−1R), then u, v ∈ Ωa, b ∈ niℓ(R), since Ω is contained in the center of R.
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We have 0 = αβ = u−1av−1b = u−1v−1(ab) = (uv)−1(ab) and so ab = 0. It fol-

lows that arb = 0 for all r ∈ R because R is nil-semicommutative. Now for each

γ = ω−1r ∈ Ω−1R with ω ∈ Ω and r ∈ R, αγβ = (uωv)−1arb = (uωv)−10 = 0.

Hence Ω−1R is nil-semicommutative. �

Corollary 2.15. For a ring R, R[x] is nil-semicommutative if and only if R[x;x−1]

is nil-semicommutative.

Proof. Suppose that R[x] is nil-semicommutative. Let Ω = {1, x, x2, · · · }, then
clearly Ω is a multiplicatively closed subset of R[x]. Since R[x;x−1] = Ω−1R[x]. It

follows that R[x;x−1] is nil-semicommutative by Proposition, 2.14, The sufficient

condition is proved straightforwardly since subrings of nil-semicommutative rings

are also nil-semicommutative. �

A classical right quotient ring for R is a ring Q which contains R as a subring

in such a way that every regular element (i.e., non-zero-divisor) of R is invertible

in Q and Q = {ab−1 | a, b ∈ R, b regular}.
By the Goldie’s Theorem, if R is a semiprime right Goldie ring, then R has

classical right quotient rings. Hence there exists a class of rings satisfying the

following hypothesis.

Lemma 2.16. Suppose R is a semiprime right Goldie ring. Then the following

statements are equivalent:

(1) R is reduced.

(2) R is semicommutative.

(3) R is nil-semicomutative.

(4) Q is reduce.

(5) Q is semicommutative.

(6) Q is finite direct product of division rings.

Proof. (1) ⇒ (2) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (1) See [10, Corollary 13].

(2) ⇔ (3) One can prove this, using Proposition 2.18. �

The trivial extension of a ring R is the ring T (R,R) = {

(
a b

0 a

)
| a, b ∈ R},

with the usual matrix operations. It is clear that niℓ(T (R,R)) = {

(
a b

0 a

)
|

a ∈ niℓ(R), b ∈ R}. For a nil-semicommutative ring R, we give an example that

T (R,R) may not be nil-semicommutative.
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Example 2.17. Let R be a reduced ring. By Example 2.2 , S = T3(R) is nil-

semicommutative. But T (S, S) is not nil-semicommutative. To see this, take

a =


0 1 1

0 0 0

0 0 0

 , b =


0 1 1

0 1 1

0 0 1

 , c =


0 1 1

0 0 0

0 0 0

 , d =


1 1 1

0 0 1

0 0 −1

,

e =


1 1 1

0 0 1

0 0 0

 and f =


1 1 1

0 1 0

0 0 0

 . Then (a, b), (c, d) ∈ niℓ(T (S, S)), (e, f) ∈

T (S, S) and (a, b)(c, d) = 0 but (a, b)(e, f)(c, d) ̸= 0.

The following results show that, for a semiprime ring, the properties of reduced,

symmetric, reversible, semicommutative, 2-primal and nil-semicommutative are co-

incide.

Proposition 2.18. For a semiprime ring R, the following statements are equiva-

lent:

(1) R is reduced.

(2) R is symmetric.

(3) R is reversible.

(4) R is semicommutative

(5) R is nil-semicommutative.

(6) R is 2-primal.

Proof. (1)-(4) are equivalent by [11, Lemma 2.7]. (1) ⇒ (5) It is clear.

(5) ⇒ (1) Let a2 = 0 then a ∈ niℓ(R), by nil-semicommutative we have aRa = 0,

since R is semiprime then a = 0.

(6) ⇔ (1) By definition a ring R is 2-primal if and only if Nil∗(R) = niℓ(R).

This yields that, a ring R is reduced if and only if it is semiprime and 2-primal. �

Corollary 2.19. For a von Neumann regular ring R, the following statements are

equivalent:

(1) R is reduced.

(2) R is symmetric.

(3) R is reversible.

(4) R is semicommutative.

(5) R is nil-semicommutative.

(6) R is 2-primal.

We say a right (or left) ideal I of a ring R is nil-semicommutative if ab ∈ I implies

aRb ⊆ I for a, b ∈
√
I, where

√
I = {s ∈ R | sn ∈ I, for some positive integer n}.
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Lemma 2.20. Let I be an ideal of a ring R. Then R/I is a nil-semicommutative

ring if only if I is a nil-semicommutative ideal.

Proof. It is clear. �

We denote rR(U) = {r ∈ R |Ur = 0}) and ℓR(U) = {r ∈ R | rU = 0}).

Proposition 2.21. For a ring R the following conditions are equivalent:

(1) R is nil-semicommutative.

(2) rniℓ(R)(U) is an ideal of R for each U ⊆ niℓ(R).

(3) ℓniℓ(R)(V ) is an ideal of R for each V ⊆ niℓ(R).

Proof. (1) ⇒ (2) Let r ∈ rniℓ(R)(U). Since R is nil-semicommutative, URr = 0.

So Rr ⊆ rniℓ(R)(U) and that rR ⊆ rniℓ(R)(U) for each r ∈ rniℓ(R)(U).

(2) ⇒ (1) It is clear.

(1) ⇔ (3) It is similar to (1) ⇔ (2). �

Proposition 2.22. Let R be a nil-semicommutative ring. Then

(1) R/rniℓ(R)(U) is a nil-semicommutative ring for each U ⊆ niℓ(R).

(2) R/lniℓ(R)(V ) is a nil-semicommutative ring for each V ⊆ niℓ(R).

Proof. 1) If a, b ∈ niℓ(R/rniℓ(R)(U)), then there exist positive integers m,n such

that an, bm ∈ rniℓ(R)(U). So a, b ∈ niℓ(R). If a.b = 0, then Uab = 0. Since

R is nil-semicommutative, Uarb = 0, for each r ∈ R. Since niℓ(R) is an ideal,

arb ∈ rniℓ(R)(U) for each r ∈ R. So arb = arb = 0, for each r ∈ R. Thus

R/rniℓ(R)(U) is a nil-semicommutative ring.

(2) is similar to (1). �

3. Polynomial extension of nil-semicommutative rings

Due to an example of Kim and Lee [11, Example 2.1], we know that if R is

reversible then R[x] may not even be semi-commutative. Hirano’s claim [8] assumed

that if R is semi-commutative then R[x] is semi-commutative, and this was later

shown to be false in [10, Example 2]. By [2, Theorem 5.3], the question of whether

niℓ(R[x]) = niℓ(R)[x] for nil-Armendariz rings is equivalent to the question of

whether polynomial rings over nil rings are nil. Amitsur, proved that this is true

for K-algebras over uncountable fields. But recently, Agata Smoktunowicz, in [16],

has proven that the result is not true for algebras over countable fields.

Lemma 3.1. Let R be a nil-semicommutative ring. If f1f2 · · · fn ∈ R[x], Cf1f2···fn ∈
niℓ(R), then Cf1Cf2 · · ·Cfn ∈ niℓ(R), where Cf denotes the set of coefficients of f.
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Proof. It is similar to the proof of [12, Proposition, 3.3]. �

Corollary 3.2. If R is a nil-semicommutative ring, then niℓ(R[x]) ⊆ niℓ(R)[x].

Theorem 3.3. If R is a nil-semicommutative ring, then niℓ(R[x]) = niℓ(R)[x].

Proof. By Corollary 3.2, niℓ(R[x]) ⊆ niℓ(R)[x]. Now suppose that ami
i = 0, for

i = 0, 1, . . . , n. Let k = m0 +m1 + · · ·+mn + 1, then

(a0 + a1x+ a2x
2 + · · ·+ anx

n)k =
∑nk

s=0

(∑
i1+i2+···+ik=s ai1ai2 · · · aik

)
xs.

Consider ai1 , ai2 , · · · aik ∈ {a0, a1, . . . an}. If the number of a0’s in ai1ai2 · · · aik
is more than m0, then we write ai1ai2 · · · aik as b0a

j1
0 b1a

j2
0 · · · bt−1a

jt
0 bt, where 1 ≤

j1, j2, . . . , jt, m0 ≤ j1+j2+. . .+jt and for each i that 0 ≤ i ≤ t, bi is product of some

elements choosing from {a0, a1, . . . an} or equal to 1. Since aj1+j2+···+jt
0 =0 and R is

nil-semicommutative, aj10 b1a
j2
0 aj30 · · · ajt0 = 0. By Lemma 2.5, aj10 b1, a

j2
0 aj30 · · · ajt0 ∈

niℓ(R). Then by nil-semicommutativity we have aj10 b1a
j2
0 b2a

j3
0 aj40 · · · ajt−1

0 ajt0 = 0.

Continuing this process we have b0a
j1
0 b1a

j2
0 · · · bt−1a

jt
0 bt=0, thus ai1ai2 . . . aik = 0.

If the number of ai’s in ai1ai2 . . . aik is more than mi, a similar discussion yields

that ai1ai2 . . . aik = 0. Hence
∑

i1+i2+···+ak=s ai1ai2 . . . aik = 0. This implies that

(a0 + a1x+ · · ·+ anx
n)

k
= 0. �

Notice that, in [12], Liu and Zhao proved that, if R is a semicommutative ring,

then niℓ(R)[x] ⊆ niℓ(R[x]).

Corollary 3.4. If R is a semicommutative ring, then niℓ(R[x]) = niℓ(R)[x].

Theorem 3.5. If R is a nil-semicommutative and Armendariz ring, then the poly-

nomial ring R[x] is nil-semicommutative.

Proof. Let f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ niℓ(R[x]). Since R is nil-

semicommutative, by Theorem 3.3, we have niℓ(R)[x] = niℓ(R[x]). So ai, bj ∈
niℓ(R) for 0 ≤ i ≤ m, 0 ≤ j ≤ n (∗). Suppose that f(x)g(x) = 0. Since R is

Armendariz, aibj=0 and by (∗) and nil-semicommutativity we have aiRbj = 0

for 0 ≤ i ≤ m, 0 ≤ j ≤ n. For each h(x) =
∑p

k=0 ckx
k ∈ R[X] we have

f(x)h(x)g(x) =
∑m+n+p

s=0 (
∑

i+j+k=s aickbj)x
s=0. Thus f(x)R[x]g(x) = 0 and

hence R[x] is nil-semicommutative. �

C. Huh, Y. Lee and A. Smoktunowicz [10, Example 2] gave an example of a

semicommutative ring R such that R[x] is not semicommutative. We see that in

this case, R[x] is also not nil-semicommutative.
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Example 3.6. Let Z2 be the field of integers modulo 2 and consider the free al-

gebra of polynomials with zero constant terms in noncommuting indeterminates

a0, a1, a2, b0, b1, b2, c over Z2 denoted by A = Z2[a0, a1, a2, b0, b1, b2, c]. Note that

A is a ring without identity and consider an ideal of Z2 + A, say I, generated

by a0b0, a1b2 + a2b1, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a2b2, a0rb0, a2rb2, (a0a1a2)r

(b0b1b2) with r ∈ A and r1r2r3r4 with r1, r2, r3, r4 ∈ A. Then clearly A4 ⊆ I.

Let R = Z2 + A\I. Notice that a0, a1, a2, b0, b1, b2,∈ niℓ(R). By [10, Example

2] R is semicommutative and by Theorem 3.3, we have (a0 + a1x + a2x
2), (b0 +

b1x + b2x
2) ∈ niℓ(R[x]) , (a0 + a1x + a2x

2)(b0 + b1x + b2x
2) ∈ I[x] = 0R[x], but

(a0+ a1x+ a2x
2)c(b0+ b1x+ b2x

2) ̸∈ I[x] = 0R[x] because a0cb1+ a1cb0 ̸∈ I. Hence

R[x] is not nil-semicommutative.

Theorem 3.7. If R is a nil-semicommutative ring, then R[x] is a weak Armendariz

ring.

Proof. Let F =
∑p

i=0 fiy
i, G =

∑q
j=0 gjy

j ∈ R[x][y] such that FG = 0. Set

fi =
∑mi

s=0 a
i
sx

s, gj =
∑nj

t=0 b
j
tx

t. Then, as in the proof of [1, Theorem 2], we see

that aisb
j
t ∈ niℓ(R) by Theorem 2.5. Thus

∑
s+t=k a

i
sb

j
t is a nilpotent element of

R for each i, j, s, t. Now, by Theorem 3.3, figj =
(∑mi

s=0 a
i
sx

s
) (∑nj

t=0 b
j
tx

t
)

=∑mi+nj

k=0

(∑
s+t=k a

i
sb

j
t

)
xk is a nilpotent element of R[x]. This means that R[x] is

weak Armendariz. �

Corollary 3.8. [12, Theorem 3.8] If R is a semicommutative ring, then R[x] is a

weak Armendariz ring.

Theorem 3.9. If R is a nil-semicommutative ring, then R[x]/(xn) is a weak Ar-

mendariz ring, for each positive integer n.

Proof. Denote x in R[x]/(xn) by u so R[x]/(xn) = R[u] = R + Ru+ Ru2 + · · ·+
Run−1, where u commutes with elements of R and un = 0. Let f, g ∈ R[u][y]

be such that fg = 0. Suppose that f =
∑p

i=0 fiy
i and g =

∑q
j=o gjy

j . Let fi =∑n−1
s=0 aisu

s, gj =
∑n−1

t=0 bjtu
t. Then f =

∑n−1
s=0 (

∑p
i=0 a

i
sy

i)us,

g =
∑n−1

t=0 (
∑q

j=o b
j
ty

j)ut. From fg = 0, we have the following equations:

∑
s+t=k

(
p∑

i=0

aisy
i

) q∑
j=o

bjty
j

 (1)

for k = 0, 1, ..., n − 1. We will show by induction on s + t that aisb
j
t ∈ niℓ(R) for

0 ≤ i ≤ p, 0 ≤ j ≤ q, and each s, t with s + t = 0, 1, ..., n − 1. If s + t = 0, then

s = t = 0. Thus
(∑p

i=0 a
i
0y

i
) (∑q

j=o b
j
0y

j
)
= 0. Since R is nil-semicommutative, R
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is weak Armendariz by Corollary 2.10. Thus ai0b
j
0 ∈ niℓ(R) for 0 ≤ i ≤ p, 0 ≤ j ≤ q.

Now suppose that k ≤ n − 1 is such that aisb
j
t ∈ niℓ(R) for 0 ≤ i ≤ p, 0 ≤ j ≤ q

and s, t with s + t < k. We will show that aisb
j
t ∈ niℓ(R) for 0 ≤ i ≤ p, 0 ≤ j ≤ q

and each s, t with s+ t = k. From (1) we have

0 =
∑

s+t=k

(
p∑

i=0

aisy
i

) q∑
j=0

bjty
j

 =
∑

s+t=k

p+q∑
l=0

∑
i+j=l

aisb
j
t

 yl

=

p+q∑
l=0

 ∑
s+t=k

∑
i+j=l

aisb
j
t

 yl =

p+q∑
l=0

∑
i+j=l

∑
s+t=k

aisb
j
t

 yl.

Thus ∑
s+t=k

a0sb
0
t = 0,

∑
s+t=k

a0sb
1
t +

∑
s+t=k

a1sb
0
t = 0, ...,

∑
s+t=k

a0sb
p+q
t +

∑
s+t=k

a1sb
p+q−1
t + · · ·+

∑
s+t=k

ap+q
s b0t = 0.

If s ≥ 1, then k − s < k. Thus by induction hypothesis, a00b
0
k−s ∈ niℓ(R) and

so b0k−sa
0
0 ∈ niℓ(R). Hence a01b

0
k−1a

0
0 + a02b

0
k−2a

0
0 + · · · + a0kb

0
0a

0
0 ∈ niℓ(R), since R

is nil-semicommutative. Therefore, if we multiply
∑

s+t=k a
0
sb

0
t = 0 on the right

side by a00, then it follows that a00b
0
ka

0
0 ∈ niℓ(R) and so a00b

0
k ∈ niℓ(R). If we

multiply
∑

s+t=k a
0
sb

0
t = 0 on the right side by a01, then a01b

0
k−1a

0
1 = −a00b

0
ka

0
1 −

(a02b
0
k−2a

0
1+· · · + a0kb

0
0a

0
1) = −(a00b

0
k)a

0
1 − (a02(b

0
k−2a

0
1)+· · · + a0k(b

0
0a

0
1)) ∈ niℓ(R),

since R is nil-semicommutative. Thus a01b
0
k−1 ∈ niℓ(R). Similarly, we can show

that a02b
0
k−2 ∈ niℓ(R), ..., a0kb

0
0 ∈ niℓ(R). So we have shown that aisb

j
t ∈ niℓ(R) for

each s, t with s + t = k and i, j with i + j = 0. Suppose that l ≤ p + q is such

that aisb
j
t ∈ niℓ(R) for each s, t with s + t = k and i, j with i + j < l. We will

show that aisb
j
t ∈ niℓ(R) for each s, t with s + t = k and each i, j with i + j = l.

If t < k then by induction hypothesis, a00b
j
t ∈ niℓ(R) thus bjta

0
0 ∈ niℓ(R). If i ≥ 1,

then l − i < l. Thus by induction hypothesis on p + q, a00b
l−i
k ∈ niℓ(R) for each

i ≥ 1, which implies bl−i
k a00 ∈ niℓ(R). Multiplying∑

s+t=k

a0sb
l
t +

∑
s+t=k

a1sb
l−1
t + · · ·+

∑
s+t=k

alsb
0
t = 0

on the right side by a00 we have a00b
l
ka

0
0 ∈ niℓ(R), so a00b

l
k ∈ niℓ(R). Similarly we

can show that aisb
j
t ∈ niℓ(R) for each s, t with s + t = k and i, j with i + j = l.

Therefore, by induction we have aisb
j
t ∈ niℓ(R) for each 0 ≤ i ≤ p, 0 ≤ j ≤ q, and

s, t with s+ t = 0, 1, 2, ..., n− 1. We have also

figj =

(
n−1∑
s=0

aisu
s

)(
n−1∑
t=0

bjtu
t

)
=

2n−2∑
k=0

( ∑
s+t=k

aisb
j
t

)
uk =

n−1∑
k=0

( ∑
s+t=k

aisb
j
t

)
uk.
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Since R is nil-semicommutative, by Theorem 2.5,
∑

s+t=k a
i
sb

j
t ∈ niℓ(R). Thus by

Theorem 3.3, figj ∈ niℓ(R[u]). This shows that R[u] is weak Armendariz and the

result follows. �

Corollary 3.10. [12, Theorem 3.9] If R is a semicommutative ring, then R[x]/(xn)

is a weak Armendariz ring, for each positive integer n.

In [12, Theorem 3.6], Liu and Zhao, proved that, for a ring R, if R/I is weak

Armendariz for some ideal I of R and I is semicommutative, then R is weak Ar-

mendariz. By a similar proof we can extend Liu and Zhao’s result and obtain:

Proposition 3.11. For a ring R suppose that R/I is weak Armendariz for some

ideal I of R. If I is nil-semicommutative, then R is weak Armendariz.

Proof. It is similar to the proof of [12, Theorem 3.6]. �

According to L. Ouyang [13], a ring R is called weak α-skew Armendariz if

whenever polynomials p =
∑m

i=0 aix
i, and q =

∑n
j=0 bjx

j in R[x;α] satisfy pq = 0,

then aiα
i(bj) is a nilpotent element of R for each 0 ≤ i ≤ m, 0 ≤ j ≤ n.

A ring R is said to be weak α-rigid if aα(a) ∈ niℓ(R) ⇔ a ∈ niℓ(R).

Proposition 3.12. [13, Proposition 2.3] Let R be a weak α-rigid ring and niℓ(R)

be an ideal of R. Then we have the following:

(1) If ab ∈ niℓ(R), then aαm(b) ∈ niℓ(R), αn(a)b ∈ niℓ(R) for positive integers

m and n.

(2) If αk(a)b ∈ niℓ(R) for some positive integer k, then ab, ba ∈ niℓ(R).

(3) If aαt(b) ∈ niℓ(R) for some positive integer t, then ab, ba ∈ niℓ(R).

In [13, Theorem 3.3], L. Ouyang proved that, if R is a weak α-rigid ring with

niℓ(R) an ideal of R, then R is a weak α-skew Armendariz ring. L. Ouyang in [13,

Theorem 3.9] proved that if R is a weak α-rigid and semicommutative ring, then

R[x] is a weak α-skew Armendariz ring. By a similar proof we can extend it to the

following more general result. We notice that in all the examples 2.2, 2.3 and 2.4 if

we take R any α-rigid ring, then by [13, Theorem 3.1] and the fact that each subring

of a nil-semicommutative ring is nil-semicommutative, there are various examples

of weak α-rigid nil-semicommutative rings that are not semicommutative. In [7],

the authors introduced α-compatible rings and studied its properties. A ring R is

α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. In this case, clearly the

endomorphism α is injective. Also by [7, Lemma 2.2], a ring R is α-rigid if and

only if R is α-compatible and reduced.
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Theorem 3.13. If R is a weak α-rigid and nil-semicommutative ring, then R[x]

is a weak α-skew Armendariz ring.

Proof. Let f = f0 + f1y + · · · + fpy
p ∈ R[x][y;α] and g = g0 + g1y + · · · +

gqy
q ∈ R[x][y;α] be such that fg = 0. Suppose that fi =

∑mi

s=0 a
i
sx

s. Let

m = Max{mi}, i = 0, 1, . . . , p. Then each fi can be written in the form of

fi =
∑m

s=0 a
i
sx

s. By [13, Proposition 2.4], α(1) = 1, and we have xy = yx and

xa = ax for each a ∈ R. Thus

f =

p∑
i=0

(
m∑
s=0

aisx
s)yi =

m∑
s=0

(

p∑
i=0

aisy
i)xs.

Similarly, each gj can be written in the form of gj =
∑n

t=0 b
j
tx

t, and thus

g =

q∑
j=0

(
n∑

t=0

bjtx
t)yj =

n∑
t=0

(

q∑
j=0

bjty
j)xt.

From fg = 0, we have the following equation:∑
s+t=k

(

p∑
i=0

aisy
i)(

q∑
j=0

bjty
j) = 0, k = 0, 1, . . . ,m+ n. (2)

We will show by induction on s+ t that aisα
i(bjt ) ∈ niℓ(R) for each 0 ≤ i ≤ p, and

0 ≤ j ≤ q and each s, t with s + t = 0, 1, . . . ,m + n. If s + t = 0, then s = t = 0.

Thus (
∑p

i=0 a
i
0y

i)(
∑q

j=0 b
j
0y

j) = 0. Since R is nil-semicommutative, niℓ(R) is an

ideal of R by Theorem 2.5. Thus R is weak α-skew Armendariz by [13, Theorem

3.3]. So ai0α
i(bj0) ∈ niℓ(R) for each 0 ≤ i ≤ p, and each 0 ≤ j ≤ q. Now suppose

that k ≤ m + n is such that aisα
i(bjt ) ∈ niℓ(R) for each 0 ≤ i ≤ p, and each

0 ≤ j ≤ q, and each s, t with s + t < k. We will show that aisα
i(bjt ) ∈ niℓ(R) for

each 0 ≤ i ≤ p, and each 0 ≤ j ≤ q, and each s, t with s+ t = k. From (2), we have∑
s+t=k

(

p∑
i=0

aisy
i)(

q∑
j=0

bjty
j) =

∑
s+t=k

p+q∑
l=0

(
∑
i+j=l

aisα
i(bjt ))y

l

=

p+q∑
l=0

(
∑

s+t=k

∑
i+j=l

aisα
i(bjt ))y

l =

p+q∑
l=0

(
∑
i+j=l

∑
s+t=k

aisα
i(bjt ))y

l.

Thus ∑
s+t=k

a0sb
0
t = 0;

∑
s+t=k

a0sb
1
t +

∑
s+t=k

a1sα(b
0
t ) = 0;

. . . . . . . . . . . . . . . . . .∑
s+t=k

a0sb
l
t +

∑
s+t=k

a1sα(b
l−1
t ) + · · ·+

∑
s+t=k

alsα
l(b0t ) = 0;
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∑
s+t=k

apsα
p(bqt ) = 0.

If s < k, then by the induction hypothesis, a0sb
0
0 ∈ niℓ(R) and so b00a

0
s ∈ niℓ(R)

for s < k. Hence b00a
0
0b

0
k + b00a

0
1b

0
k−1 + · · · + b00a

0
k−1b

0
1 ∈ niℓ(R), since R is nil-

semicommutative. Therefore, if we multiply
∑

s+t=k a
0
sb

0
t = 0 on the left side

by b00, then it follows that b00a
0
kb

0
0 ∈ niℓ(R), and so b00a

0
k ∈ niℓ(R) and a0kb

0
0 ∈

niℓ(R). If we multiply
∑

s+t=k a
0
sb

0
t = 0 on the left side by b01, then b01a

0
k−1b

0
1 =

(b01a
0
0b

0
k + b01a

0
1b

0
k−1 + · · · + b01a

0
k−2b

0
2) − b01a

0
kb

0
0 = −(b01a

0
0)b

0
k − (b01a

0
1)b

0
k−1 − · · · −

(b01a
0
k−2)b

0
2 − b01(a

0
kb

0
0) ∈ niℓ(R), since R is nil-semicommutative. Thus a0k−1b

0
1 ∈

niℓ(R). Similarly, we can show that a0k−2b
0
2 ∈ niℓ(R), · · · , a00b0k ∈ niℓ(R). So we

show that aisα
i(bjt ) ∈ niℓ(R) for each s, t with s+ t = k and each i, j with i+ j = 0.

Suppose that l ≤ p + q is such that aisα
i(bjt ) ∈ niℓ(R) for each s, t with s + t = k

and each i, j with i + j < l. We will show that aisα
i(bjt ) ∈ niℓ(R) for each s, t

with s + t = k and each i, j with i + j = l. If s < k, then by the induction

hypothesis, aisα
i(b00) ∈ niℓ(R). Thus aisb

0
0 ∈ niℓ(R) by Proposition 3.12, and so

b00a
i
s ∈ niℓ(R). If i < l, then by the induction hypothesis on l, aikα

i(b00) ∈ niℓ(R)

for each i < l, which implies aikb
0
0 ∈ niℓ(R) and so b00a

i
k ∈ niℓ(R) for each i < l.

Multiplying
∑

s+t=k a
0
sb

l
t+
∑

s+t=k a
1
sα(b

l−1
t )+· · ·+

∑
s+t=k a

l
sα

l(b0t ) = 0 on the left

side by b00, we have b00a
l
kα

l(b00) ∈ niℓ(R), since niℓ(R) is an ideal of R by Theorem

2.5, Thus b00a
l
kα

l(b00)α
l(alk) = b00a

l
kα

l(b00a
l
k) ∈ niℓ(R). Thus b00a

l
k ∈ niℓ(R) which

implies alkb
0
0 ∈ niℓ(R) and so alkα

l(b00) ∈ niℓ(R) by Proposition 3.12, Similarly, we

can show that aisα
i(bjt ) ∈ niℓ(R) for each s, t with s + t = k and each i, j with

i + j = l. Therefore, by induction, we have aisα
i(bjt ) ∈ niℓ(R) for each 0 ≤ i ≤ p,

and 0 ≤ j ≤ q and each s, t with s+ t = 0, 1, . . . ,m+ n. We have

fiα
i(gj) =

m∑
s=0

aisx
sαi(

n∑
t=0

bjtx
t) =

m∑
s=0

aisx
s)

n∑
t=0

αi(bjt )x
t) =

m+n∑
k=0

(
∑

s+t=k

aisα
i(bjt ))x

k.

Since R is nil-semicommutative, by Theorem 2.5,
∑

s+t=k a
i
sα

i(bjt ) ∈ niℓ(R). Thus

by Theorem 3.3, fiα
i(gj) ∈ niℓ(R[x]). Therefore R[x] is weak α-skew Armendariz.

�

Corollary 3.14. [13, Theorem 3.9]If R is a weak α-rigid and semicommutative

ring, then R[x] is a weak α-skew Armendariz ring.

Corollary 3.15. Let R be a weak α-rigid nil-semicommutative ring. Then R[x]/⟨xn⟩
is a weak α-skew Armendariz ring, where ⟨xn⟩ is the ideal of R[x] generated by xn.

Proof. It is similar to the proof of [13, Corollary 3.10]. �
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Corollary 3.16. [13, Corollary 3.10] Let R be a weak α-rigid semicommutative

ring. Then R[x]/⟨xn⟩ is a weak α-skew Armendariz ring, where ⟨xn⟩ is the ideal of

R[x] generated by xn.
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