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1. Introduction

Throughout this paper, R denotes an associative ring with identity element. All

modules, if not otherwise specified, are assumed to be left R-modules. If x is a

central element of R, when no confusion is likely, R∗ denotes the factor ring
R

xR
and, for any R-module A, Z(A) denotes the set of all zero-divisors of A.

Recall the following second change of rings theorems relative to the injective

dimension and the projective dimension:

Theorem A [1, Theorem 205]. Let x be a central non zero-divisor in R. If M is

an R-module such that x is a non zero-divisor on M , then

1 + idR∗

( M

xM

)
≤ idR(M)

except when M is an injective R-module (in which case M = xM).

Theorem B [1, Exercise 1, page 155]. Let x be a central element of R such that

x ̸∈ Z(R). Let M be an R-module such that M = xM . Then

1 + pdR∗(xM) ≤ pdR(M)

except when M is projective over R in which case xM = 0.

The aim of this paper is to generalize Theorem A and Theorem B dropping the

hypothesis “x ̸∈ Z(M)” and involving instead the submodule xM := {z ∈ M :

xz = 0} of M annihilated by x. Our generalized second change of rings theorem for

the injective dimension, Theorem 2.5, extends Theorem A by stating the following:
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Let x be a central element of R such that x ̸∈ Z(R). Let M be an R-module which

is not an injective R-module. Then

1 + idR∗

( M

xM

)
≤ idR(M) if and only if idR∗(xM)− 1 ≤ idR(M).

As for the projective dimension, via Theorem 2.7, we prove the following general

version of Theorem B: Let x be a central element of R such that x ̸∈ Z(R). Let M

be an R-module which is not projective over R. Then

1 + pdR∗(xM) ≤ pdR(M) if and only if pdR∗

( M

xM

)
− 1 ≤ pdR(M).

2. Main results

This section aims at giving a general version of the second change of rings theo-

rem for the homological dimensions, that is, Theorem A and Theorem B.

First, we establish the following results which will be useful in the sequel. Recall

that for a central element x of R, R∗ denotes the factor ring
R

xR
.

Lemma 2.1. Let M be an R-module and x a central element of R such that x ̸∈
Z(R). Then HomR(R

∗,M) ∼= xM , Ext1R(R
∗,M) ∼=

M

xM
and TorR1 (R

∗,M) ∼= xM .

Proof. As x ̸∈ Z(R), the following sequence is exact 0 −→ R
x−→ R −→ R∗ −→ 0.

Applying the functor HomR(−,M), we get the next exact sequence

0 −→ HomR(R
∗,M) −→ HomR(R,M)

x−→ HomR(R,M) −→ Ext1R(R
∗,M) −→ 0.

Since HomR(R,M) ∼= M , this latter sequence turns out to be the following exact

one

0 −→ HomR(R
∗,M) −→ M

x−→ M −→ Ext1R(R
∗,M) −→ 0.

Then the first two isomorphisms easily follows. Applying the functor ⊗RM instead

of HomR(−,M) to the initial exact sequence yields the last isomorphism. �

Lemma 2.2. Let x be a central element of R. Let 0 −→ N
i−→ P

α−→ M −→ 0

be an exact sequence of R-modules such that P is a projective R-module. Then the

natural sequence of R∗-modules

0 −→ xM −→ N

xN

i−→ P

xP

α−→ M

xM
−→ 0

is exact with
P

xP
is a projective R∗-module.
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Proof. Tensoring with R∗ the sequence 0 −→ N
i−→ P

α−→ M −→ 0 yields the

exact sequence

0 −→ TorR1 (R
∗,M) −→ N

xM

i−→ P

xP

α−→ M

xM
−→ 0.

As, by Lemma 2.1, TorR1 (R
∗,M) ∼= xM , we get the desired exact sequence. More-

over, as P is R-projective,
P

xP
∼= R∗ ⊗R P is an R∗-projective module. The proof

is complete. �

Lemma 2.3. Let x be a central element of R such that x ̸∈ Z(R). Let 0 −→
M

i−→ I
α−→ N −→ 0 be an exact sequence of R-modules such that I is an injective

R-module. Then the natural sequence of R∗-modules

0 −→ xM
xi−→ xI

xα−→ xN −→ M

xM
−→ 0

is exact with xI is an injective R∗-module.

Proof. Applying the functor HomR(R
∗,−) to the sequence 0 −→ M

i−→ I
α−→

N −→ 0, we get the exact sequence

0 −→ xM
xi−→ xI

xα−→ xN −→ Ext1R(R
∗,M).

As, by Lemma 2.1, Ext1R(R
∗,M) ∼=

M

xM
, we obtain the desired exact sequence.

Moreover, as I is R-injective, by [2, Theorem 3.44], xI := HomR(R
∗, I) is an

injective R∗-module completing the proof. �

Next, through Theorem 2.4 and Theorem 2.5, we generalize the second change

of rings theorem for the injective dimension, that is Theorem A. First, notice that

if M is an injective R-module and x is a central element of R such that x ̸∈ Z(R),

then M = xM and xM is injective over R∗.

Theorem 2.4. Let x be a central element of R such that x ̸∈ Z(R). Let M be an

R-module which is not injective over R. Then

1) 1 + idR∗

( M

xM

)
≤ max{idR∗(xM)− 1, idR(M)}.

2) If idR(M) < +∞, then idR∗

( M

xM

)
and idR∗(xM) are simultaneously finite.

3) Assume that idR∗(xM) > idR(M). Then idR∗(xM) = 2+idR∗

( M

xM

)
.

Proof. 1) (and (2)) If idR(M) = +∞, then we are done. Assume that 1 ≤
idR(M) = n < +∞. Let 0 −→ M −→ I −→ A −→ 0 (∗) be an exact sequence

of R-modules such that I is injective over R. Note that, being a quotient of the

injective R-module I, A is a divisible R-module, so that, as x ̸∈ Z(R), A = xA. So,

by [1, Theorem 204], idR∗(xA) ≤ idR(A) = n− 1. On the other hand, applying the
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functor HomR(R
∗,−) to the sequence (∗) yields, by Lemma 2.3, the exact sequence

of R∗-modules

0 −→ xM −→ xI −→ xA −→ M

xM
−→ 0.

Let K = Im(xI → xA). Then we have the next two exact sequences of R∗-modules
0 −→ xM −→ xI −→ K −→ 0 (∗∗)

0 −→ K −→ xA −→ M

xM
−→ 0 (∗ ∗ ∗).

It is then easy to see that idR∗

( M

xM

)
< +∞ if and only if idR∗(K) < +∞ if

and only if idR∗(xM) < +∞ establishing (2). If xM is injective over R∗, then K is

injective over R∗, so that, xA ∼= K⊕ M

xM
and thus idR∗

( M

xM

)
= idR∗(xA) ≤ n−1,

as claimed. Next, suppose that idR∗(xM) ≥ 1. Consider the following portion of

the long exact sequence associated to the sequence (∗ ∗ ∗)

ExtjR∗(B, xA) −→ ExtjR∗

(
B,

M

xM

)
−→ Extj+1

R∗ (B,K)

for each positive integer j and eachR∗-moduleB. Then idR∗

( M

xM

)
≤max

{
idR∗(K)−

1, idR∗(xA)
}
. Moreover, by the sequence (∗∗), as idR∗(xM) ≥ 1, we get idR∗(xM) =

1+idR∗(K). It follows that

idR∗

( M

xM

)
≤ max{idR∗(xM)− 2, n− 1}, as desired.

3) Assume that idR∗(xM) > idR(M). Then, applying (1), 1+idR∗

( M

xM

)
≤ idR∗(xM)−

1, that is, 2+idR∗

( M

xM

)
≤ idR∗(xM). On the other hand, consider the above two

exact sequences of R∗-modules
0 −→ xM −→ xI −→ K −→ 0 (∗∗)

0 −→ K −→ xA −→ M

xM
−→ 0 (∗ ∗ ∗).

In view of the following portion of the long exact sequence associated to the sequence

(∗ ∗ ∗)

ExtjR∗

(
B,

M

xM

)
−→ Extj+1

R∗ (B,K) −→ Extj+1
R∗ (B, xA)

for each positive integer j and each R∗-module B, we get

idR∗(K) ≤ max
{
1 + idR∗

( M

xM

)
, idR∗(xA)

}
.
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It follows, using the sequence (∗∗), that

idR∗(xM) ≤ 1 + idR∗(K)

≤ 1 + max
{
1 + idR∗

( M

xM

)
, idR∗(xA)

}
≤ 1 + max

{
1 + idR∗

( M

xM

)
, idR(M)− 1

}
.

As, by hypotheses, idR∗(xM) > idR(M), we get idR∗(xM) ≤ 2+idR∗

( M

xM

)
yield-

ing the desired equality and completing the proof. �

Our next result represents the generalized version of Theorem A of the introduc-

tion.

Theorem 2.5. Let x be a central element of R such that x ̸∈ Z(R). Let M be an

R-module which is not an injective R-module. Then

1 + idR∗

( M

xM

)
≤ idR(M) if and only if idR∗(xM)− 1 ≤ idR(M).

Proof. If idR∗(xM) − 1 ≤ idR(M), then, by Theorem 2.4(1), 1+idR∗

( M

xM

)
≤

idR(M). Conversely, assume that 1+idR∗

( M

xM

)
≤ idR(M). Let us resume the

notation of the proof of Theorem 2.4 and, thus, considering the above two exact

sequences of R∗-modules
0 −→ xM −→ xI −→ K −→ 0 (∗∗)

0 −→ K −→ xA −→ M

xM
−→ 0 (∗ ∗ ∗)

we show in the proof of Theorem 2.4(3) that

idR∗(K) ≤ max
{
1 + idR∗

( M

xM

)
, idR∗(xA)

}
.

It follows that

idR∗(K) ≤ max
{
idR(M), idR(M)− 1

}
= idR(M).

Hence, using the sequence (∗∗), we get idR∗(xM) ≤ 1+idR∗(K) ≤ 1+idR(M), as

desired. �

Next, through Theorem 2.6 and Theorem 2.7, we generalize the second change

of rings theorem for the projective dimension, that is Theorem B. Note that if M

is a projective R-module and x is a central element of R such that x ̸∈ Z(R), then
M

xM
is projective over R∗ and xM = 0.
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Theorem 2.6. Let x be a central element of R such that x ̸∈ Z(R). Let M be an

R-module. Then

1) pdR∗

( M

xM

)
≤ max{2 + pdR∗(xM), pdR(M)}.

2) If pdR(M) < +∞, then pdR∗

( M

xM

)
and pdR∗(xM) are simultaneously finite.

3) If 1+pdR∗(xM) > pdR(M) and M is not projective over R, then pdR∗

( M

xM

)
=

2+pdR∗(xM).

Proof. 1) (and (2)) If pdR(M) = +∞, then we are done. Also, if M is projective

over R, then
M

xM
is projective over R∗ and xM = 0. Then, assume that 1 ≤

pdR(M) = n < +∞. Let 0 −→ A −→ P −→ M −→ 0 (∗) be an exact sequence of

R-modules such that P is projective over R. Note that as A is a submodule of the

projective module P and x ̸∈ Z(R), x ̸∈ Z(A), that is, xA = 0. So, by [3, Theorem

4.3.5], pdR∗

( A

xA

)
≤ pdR(A) ≤ n − 1. On the other hand, tensoring the sequence

(∗) with R∗ yields, by Lemma 2.2, the exact sequence of R∗-modules

0 −→ xM −→ A

xA
−→ P

xP
−→ M

xM
−→ 0.

Now, let H = Im
( A

xA
→ P

xP

)
. We have the next two exact sequences of R∗-

modules 
0 −→ xM −→ A

xA
−→ H −→ 0 (∗∗)

0 −→ H−→ P

xP
−→ M

xM
−→ 0 (∗ ∗ ∗).

It is then clear that pdR∗

( M

xM

)
< +∞ if and only if pdR∗(H) < +∞ if and only if

pdR∗(xM) < +∞ establishing (2). Consider the following portion of the long exact

sequence associated to the sequence (∗∗)

ExtjR∗(xM,B) −→ Extj+1
R∗ (H,B) −→ Extj+1

R∗ (
A

xA
,B)

for each integer j ≥ 0 and eachR∗-moduleB. Then pdR∗(H) ≤max
{
1+pdR∗(xM),

pdR∗

( A

xA

)}
. Moreover, by the sequence (∗∗∗), we have pdR∗

( M

xM

)
≤ 1+pdR∗(H).

It follows that

pdR∗

( M

xM

)
≤ 1 + max{1 + pdR∗(xM), n− 1}

= max{2 + pdR∗(xM), pdR(M)}, as desired.

3) Assume that 1+pdR∗(xM) > pdR(M) ≥ 1. Then, by (1), pdR∗

( M

xM

)
≤

2+pdR∗(xM). Conversely, proceeding as in (1), consider the above-mentioned two
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exact sequences 
0 −→ xM −→ A

xA
−→ H −→ 0 (∗∗)

0 −→ H−→ P

xP
−→ M

xM
−→ 0 (∗ ∗ ∗).

If
M

xM
is projective over R∗, then H is projective over R∗, and thus pdR∗(xM) =

pdR∗

( A

xA

)
≤ pdR(M)− 1 which is contradictory to our initial assumption. Then

pdR∗

( M

xM

)
≥ 1, so that pdR∗(H) = pdR∗

( M

xM

)
− 1. Consider the following

portion of the long exact sequence associated to the sequence (∗∗)

ExtjR∗

( A

xA
,B

)
−→ ExtjR∗(xM,B) −→ Extj+1

R∗ (H,B)

for each integer j ≥ 0 and each R∗-module B. Hence

pdR∗(xM) ≤ max
{
pdR∗

( A

xA

)
, pdR∗(H)−1

}
≤ max

{
pdR(M)−1, pdR∗

( M

xM

)
−

2
}
. This ensures, as 1+pdR∗(xM) > pdR(M), that pdR∗(xM) ≤ pdR∗

( M

xM

)
− 2.

It follows that pdR∗

( M

xM

)
= 2+pdR∗(xM) establishing (3) and completing the

proof. �

The following stands for the dual result of Theorem 2.5 and it represents the

generalized version of Theorem B of the introduction.

Theorem 2.7. Let x be a central element of R such that x ̸∈ Z(R). Let M be an

R-module which is not projective over R. Then

1 + pdR∗(xM) ≤ pdR(M) if and only if pdR∗

( M

xM

)
− 1 ≤ pdR(M).

Proof. Let pdR∗

( M

xM

)
− 1 ≤ pdR(M). If 1+pdR∗(xM) > pdR(M), then, by

Theorem 2.6(3),

pdR∗

( M

xM

)
= 2 + pdR∗(xM)

> 1 + pdR(M) which is absurd.

It follows that 1+pdR∗(xM) ≤ pdR(M). Conversely, assume that 1+pdR∗(xM) ≤
pdR(M). Then, using Theorem 2.6(1),

pdR∗

( M

xM

)
≤ 1 + max{1 + pdR∗(xM), pdR(M)}

≤ 1 + pdR(M), as desired.

�
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