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1. Introduction

In the last decade, the study of lattices of classes of modules has played an im-

portant role in the developement of the theory of rings and modules. Of particular

relevance is the study of the lattices of natural and conatural classes. In a series

of papers that culminates with the publication of the book [7], the concept of type

submodule with respect to a natural class is studied among several other topics.

Type submodules have been used to describe the structure of several classes of

modules, in particular, the class of nonsingular modules.

The concept of conatural class is introduced in [1]. The collection of all conatural

classes turns out to be a Boolean lattice. This lattice has been used by different

authors to classify certain classes of rings and modules. For instance, it is shown

in [1] that a ring R is right MAX if and only if each conatural class in mod-R is

generated by a family of simple modules. It is also shown that a ring R is right

perfect if and only if R is semilocal and | R − conat |= 2k where k ∈ N is the

number of isomorphism classes of simple R-modules. More examples can be found

in [5,6,8,9,10,11,12].

Our aim in this paper is to introduce the concept of cotype submodule, namely,

a submodule N of a module M is a cotype submodule if there exists a conatural

class C such that, among all the submodules of M , N is minimal with respect to

the property that M/N ∈ C. After showing some of the basic properties of cotype

submodules, we define the concept of cotype dimension, and characterize the amply
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supplemented modules with finite cotype dimension as those modules having DCC

on their cotype submodules.

This paper is divided into five sections. The second one contains some prelim-

inary notions and results which are either needed to understand the rest of the

paper or used throughout it. In section 3, we introduce the concept of cotype

submodule of a module and prove some of its basic properties. In section 4, we

define the notions of supplement interior, cotype interior and cotype supplement

of a submodule of a module M and show their existence under the condition that

M be amply supplemented. Finally, in the last section we define the concept of

cotype dimension of a module, prove some of its basic properties and characterize

the amply supplemented modules with finite cotype dimension.

2. Preliminaries

In this section we recall some concepts and results which appear in [1] and [2]

and will be used throughout the following sections. We start with the following

definition taken from [1].

Definition 2.1. A class of R-modules is called a cohereditary class if it is closed

under quotients. The class of all cohereditary classes is denoted by R-quot.

Examples of cohereditary classes are pretorsion, TTF and Serre classes in mod-R.

Let L be a big lattice with universal bounds 0 and 1. Then b ∈ L is a pseudo-

complement of a ∈ L if b is maximal with respect to a ∧ b = 0. If every element

a ∈ L has a pseudocomplement in L, then L is called pseudocomplemented, and

the class of all pseudocomplements in L is called the skeleton of L.

It is shown in [1] that (R− quot,≤,∧,∨) is a pseudocomplemented, complete,

big lattice, where the partial order, lattice operations, and universal bounds are

given by:

(1) For C1, C2 ∈ R− quot, C1 ≤ C2 ⇔ C1 ⊆ C2.
(2) For any family {Ci}i∈I ⊆ R− quot,

∧
i∈I

Ci =
∩
i∈I

Ci.

(3) For any family {Ci}i∈I ⊆ R− quot,
∨
i∈I

Ci =
∪
i∈I

Ci.

(4) 0 = {0}.
(5) 1 = mod−R.

Moreover, for C ∈ R-quot, its unique pseudocomplement in R-quot is given by

C⊥R−quot = {N ∈ mod−R | N has no nonzero quotients in C} .

The following definitions can be found in [1] and [2].
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Definition 2.2. 1) The skeleton of R − quot is denoted by R − conat and its

elements are called conatural classes.

2) Two R−modules M and N share nonzero quotients if there exists 0 ̸= K ∈
mod−R such that K is a quotient of both M and N .

3) A class C of R−modules satisfies condition (CN) if, whenever every nonzero

quotient of M shares nonzero quotients with some module in C, it follows that

M ∈ C.

In [1] it is shown that condition (CN) characterizes conatural classes, and that

any conatural class is closed under quotients, extensions and superfluous epimor-

phisms.

Examples of conatural classes are the following:

(1) The class of all projective semisimple R-modules.

(2) The class of all M ∈ mod−R such that MI = M , where I is an ideal of R.

For a class C of R−modules, the conatural class generated by C is given by

ξconat (C) =

{
M ∈ mod−R |

every nonzero quotient of M shares a

nonzero quotient with some module in C

}
For example, if C is the class of all simple R-modules, then ξconat (C) consists of all
M ∈ mod − R such that each of its proper submodules is included in a maximal

submodule of M .

When C consists of a single R-module M , we denote ξconat ({M}) simply by

ξconat (M).

It is also shown in [1] that (R− conat,≤,∧,∨) is a complemented, distribu-

tive, complete lattice, where the partial order, the lattice operations and universal

bounds are given by:

(1) For C1, C2 ∈ R− conat, C1 ≤ C2 ⇐⇒ C1 ⊆ C2.
(2) For any family {Ci}i∈I ⊆ R− conat,

∧
i∈I

{Ci} =
∩
i∈I

{Ci}.

(3) For any family {Ci}i∈I ⊆ R− conat,
∨
i∈I

{Ci} = ξconat

(∪
i∈I

{Ci}
)
.

(4) 0 = {0}.
(5) 1 = mod−R.

Moreover, for C ∈ R− conat, its unique complement in R− conat is given by

Cc = {M ∈ mod−R | M has no nonzero quotients in C} .

In [2], it is shown that R-conat is a set, and is therefore a Boolean lattice (see

Theo. 8 and Cor. 9). It is also shown there that, when R is a right perfect ring,
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then C ∈ R− conat if and only if C is closed under quotients, projective covers and

direct sums of simple modules (see Theo. 17).

Finally, it is worth noting that conatural classes have been used to characterize

certain kinds of rings. Recall that a ring R is right MAX if each nonzero right

R-module has maximal submodules. It is shown in [1] that a ring R is right MAX

if and only if each conatural class in mod-R is generated by a family of simple

modules. Since every right perfect ring R is right MAX, the same thing happens

to each conatural class in mod-R, except that in this case the family is finite (see

Theo. 42 and Cor. 43 in [1]).

3. Cotype submodules

In this section we introduce the concept of cotype submodule of a module and

prove some of its basic properties.

Definition 3.1. A submodule L of a module M is called a cotype submodule of M

if there exists a conatural class C such that, among all the submodules of M , L is

minimal with respect to the property that M/L ∈ C.

In this case, we shall also say that M/L is a cotype quotient of M of cotype C.

In order to give a more intrinsic characterization of this concept we need the

following definitions.

Definition 3.2. Two modules M and N are called coorthogonal, denoted as

M ⊥c N , if they do not share nonzero quotients. They are called coparallel, denoted

as M ∥c N , if every nonzero quotient of each one of them shares nonzero quotients

with the other.

Definition 3.3. Let L be a submodule of a module M . A submodule K of M is

called a supplement of L in M if K is minimal with respect to the property that

K + L = M .

It is known that K is a supplement of L in M if and only if K + L = M and

K ∩ L is superfluous in K (denoted by K ∩ L ≪ K).

Definition 3.4. A module M is called supplemented if every submodule of M has

a supplement in M .

Finally, we have:
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Theorem 3.5. Let M be a supplemented module. For a submodule L of M , the

following statements are equivalent:

1) L is a cotype submodule of M .

2) If K ≤ L and M/K ∥c M/L, then L = K.

3) If K � L, then M/L ⊥c
M/N for some K ≤ N � M .

4) There exists K ≤ M such that L is a supplement of K in M and M/L ⊥c
M/K.

Proof. (1 ⇒ 2) Assume that K ≤ L and M/K ∥c M/L. Let C be as in 1). Since C
satisfies condition (CN), M/K ∈ C. Hence by 1), K = L.

(2 ⇒ 1) Let C = ξconat(M/L). Assume that K ≤ L and M/K ∈ C. Then

M/K ∥c M/L, and by 2) K = L.

(2 ⇒ 3) Assume that K � L. Then by 2), M/K is not coparallel to M/L. Thus

there exists a nonzero quotient M/N of M/K such that M/N ⊥c
M/L.

(3 ⇒ 2) Assume that K ≤ L and M/K ∥c M/L. Then by 3), K = L.

(4 ⇒ 3) By 4), there exists N ≤ M such that L is a supplement of N in M and

M/L ⊥c
M/N. Assume that K � L. Then K ≤ K +N � M and M/L ⊥c

M/K+N.

(3 ⇒ 4) Let K be a supplement of L in M , and assume that there exists J � L

such that K + J = M . By 3), M/J has a nonzero quotient M/N such that M/L ⊥c

M/N. Consider the following diagram with exact row

0 → L/J � M/J � M/L → 0

π ↓
M/N

Note that π (L/J) ̸= 0, for otherwise there is an epimorphism M/L � M/N. Then we

can take the quotient
M/N

π(L/J) , and obtain an epimorphism M/L � M/N
π(L/J) . It follows

that π (L/J) = M/N, and therefore L/J + N/J = M/J, which gives L +N = M . We

now observe that

L+ (K ∩N) = (L+ J) + (K ∩N) = L+ (J + (K ∩N)) =

= L+ (N ∩ (K + J)) = L+ (N ∩M) = L+N = M.

Since K is a supplement of L, we get that K ∩ N = K, that is, K ≤ N . Hence

M = K + J ≤ N , which contradicts that M/N ̸= 0. This contradiction shows that

L is a supplement of K in M .

Let C = ξconat(M/L). By (2 ⇒ 1), we know that among all the submodules of

M , L is minimal with respect to the property that M/L ∈ C. Then L ∈ Cc, for

otherwise there is a nonzero quotient L/N ∈ C for some N ≤ L. From the exact

sequence

0 → L/N � M/N � M/L → 0
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with first and last terms in C, we get that M/N ∈ C, contradicting the minimality

of L. Therefore

M/K = L+K/K ∼= L/L∩K ∈ Cc

and so M/L ⊥c
M/K. �

Some basic facts about cotype submodules are contained in the following lemma.

Lemma 3.6. Let K and L be submodules of a supplemented module M . Then the

following statements hold:

1) If K ≤ L and L is a cotype submodule of M , then L/K is a cotype submodule

of M/K.

2) If L is a cotype submodule of M , then L+K = M if and only if M/L ⊥c
M/K.

3) If K is a cotype submodule of L and L is a cotype submodule of M , then K

is a cotype submodule of M .

Proof. 1) By Theorem 3.5, L is a supplement of L′ in M for some L′ ≤ M ,

and M/L ⊥c
M/L

′
. Then L/K + L

′
+K/K = M/K. Let X/K ≤ L/K be such that

X/K + L
′
+K/K = M/K. Then X+L

′
/K = M/K and therefore X + L

′
= M . It follows

that X = L. Furthermore, since M/L
′
+K is a quotient of M/L

′
, it follows that

M/K
L/K

∼= M/L ⊥c
M/L

′
+K ∼=

M/K

L
′
+K/K

.

2) ⇒) If L is a cotype submodule of M , then as seen in the proof of Theorem 3.5,

among all the submodules of M , L is minimal with respect to M/L ∈ ξconat (M/L) =

C, and L ∈ Cc. Therefore M/K = L+K/K ∼= L/L∩K ∈ Cc and M/L ⊥c
M/K.

⇐) It follows from the fact that M/L+K is a quotient of both M/L and M/K.

3) By Theorem 3.5, K is a supplement of K ′ in L for some K ′ ≤ M , and

L/K ⊥c
L/K

′
. Also, L is a supplement of L′ in M for some L′ ≤ M , and M/L ⊥c

M/L
′
. Then K + K

′
+ L

′
= M . We show first that K is minimal with this

property. Let X < K. Then as K is a supplement in L, X + K
′
< L, and as

L is a supplement in M , X + K
′
+ L

′
< M . Now, let N = K

′
+ L

′
. Then

L = L∩M = L∩ (K +N) = K+(L ∩N). By (2), L/K ⊥c
L/L∩N ∼= L+N/N = M/N.

Also M = L +N gives M/L ⊥c
M/N. Hence L/K and M/L belong to ξconat (M/N)

c
.

Then from the exact sequence 0 −→ L/K −→ M/K −→ M/L −→ 0 we get that

M/K ⊥c
M/N. �

In order to show another interesting fact about cotype submodules (or rather

cotype quotients) of a module M , we need the following definitions.
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Definition 3.7. A submodule L of a module M has ample supplements in M if,

for every submodule K of M such that K +L = M , there is a supplement K ′ of L

in M with K ′ ≤ K.

Definition 3.8. If every submodule of a module M has ample supplements in M ,

then M is called amply supplemented.

Recall that a ring R is right perfect if and only if every right R-module M

has a projective cover P (M), if and only if every right R-module M is amply

supplemented (see [14, 43.9]).

Now we are able to state the following result.

Proposition 3.9. Let R be a right perfect ring and C a conatural class in mod-

R. Assume that M/K1 and M/K2 are cotype quotients of M of cotype C. Then the

following statements hold:

1) P (M/K1) ∼= P (M/K2).

2) There exist superfluous epimorphisms M/K1 � M/L1, M/K2 � M/L2 with

M/L1
∼= M/L2.

3) P (K1) ∼= P (K2).

Proof. 1) Let L2 be a supplement of K2 in M . Since M/K2 is a cotype quotient,

M/K2 ⊥c
M/L2. Moreover, M/L2 ∈ Cc. Indeed, otherwise there is an epimorphism

M/L2 � M/N with 0 ̸= M/N ∈ C. Consequently, M/K2 ⊥c
M/N and so K2 +N = M .

Then M/K2 = K2+N/K2
∼= N/K2∩N ∈ C, and from the exact sequence

0 → N/K2∩N → M/K2∩N → M/N → 0

it follows that M/K2∩N ∈ C. Since K2 ∩ N ≤ K2 and K2 is minimal with respect

to M/K2 ∈ C, K2 ∩ N = K2 and K2 ≤ N . But then M/K2 and M/L2 share the

nonzero quotient M/N, contradicting that M/K2 ⊥c
M/L2. Next, we show that the

cotype quotient M/L2 is of cotype Cc. Assume that there exists L ≤ L2 such that

M/L ∈ Cc. Then M/L+K2 ∈ C ∩ Cc and so L +K2 = M . Since L2 is a supplement

of K2, L = L2.

Now, as M/K1 ⊥c
M/L2, K1 + L2 = M , and we can take a supplement L1 of K1

in M such that L1 ≤ L2. Since M/K1 is a cotype quotient, M/K1 ⊥c
M/L1 and, as

above, M/L1 ∈ Cc. It follows that L1 = L2.

Finally, note that M/K1 = K1+L2/K1
∼= L2/K1∩L2, M/K2 = K2+L2/K2

∼= L2/K2∩L2,

and there are superfluous epimorphisms P (L2)
≪� L2

≪� L2/K1∩L2 and P (L2)
≪�
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L2
≪� L2/K2∩L2. Therefore

P (M/K1) ∼= P (L2/K1∩L2) ∼= P (L2) ∼= P (L2/K2∩L2) ∼= P (M/K2) .

2) Let f : P (M/K1)
∼=−→ P (M/K2) be an isomorphism, and for i = 1, 2, let πi :

P (M/Ki) � M/Ki be superfluous epimorphisms. Since the image of a superfluous

submodule and the sum of two superfluous submodules are superfluous, Kerπ1 +

f−1 (Kerπ2) ≪ P (M/K1) and f (Kerπ1) +Kerπ2 ≪ P (M/K2). It follows that

Kerπ1+f−1(Kerπ2)/Kerπ1 ≪ P (M/K1)/Kerπ1
∼= M/K1

and

f(Kerπ1)+Kerπ2/Kerπ2 ≪ P (M/K2)/Kerπ2
∼= M/K2,

that is, there are superfluous epimorphisms

M/K1
∼= P (M/K1)/Kerπ1 � P (M/K1)/Kerπ1+f−1(Kerπ2)

and

M/K2
∼= P (M/K2)/Kerπ2 � P (M/K2)/f(Kerπ1)+Kerπ2.

Finally, Kerπ1 + f−1 (Kerπ2) ∼= f (Kerπ1) +Kerπ2, gives

P (M/K1)/Kerπ1+f−1(Kerπ2)
∼= P (M/K2)/f(Kerπ1)+Kerπ2.

3) Let Li be a supplement of Ki in M for i = 1, 2. Then M/L1 and M/L2 are

cotype quotients of cotype Cc, and by 1), P (M/L1) ∼= P (M/L2). Furthermore, by

[8, 5.2.4], there are superfluous epimorphisms

P (Ki)
≪� Ki

≪� Ki/Ki∩Li
∼= Ki+Li/Li = M/Li

for i = 1, 2. Consequently, P (K1) ∼= P (M/L1) ∼= P (M/L2) ∼= P (K2). �

We end this section with some examples.

Example 3.10. 1) If p is a prime number, the only cotype submodules of Zp∞ are

0 and Zp∞ .

2) From the decomposition Q/Z =
⊕
p∈P

Zp∞ , where P denotes the set of prime

numbers, it follows that each direct summand of Q/Z is a cotype submodule.
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4. Cotype supplement and cotype interior

Throughout this section, we will assume that the module M is amply

supplemented. Given a submodule L of M , we define three submodules of L, the

supplement interior, the cotype supplement and the cotype interior of L in M , as

follows.

Definition 4.1. Let L be a submodule of M . A supplement interior of L in M is

a submodule N of M minimal with respect to the property that L/N ≪ M/N.

We note that “supplement interior” is the same notion as “coclosure” as defined

in [4, 3.10, 20.25] (and was also earlier called “s-closure” by Keskin [13]).

Theorem 4.2. Let L be a submodule of M . Then:

1) There is a submodule K of M such that K is minimal with respect to the

property that M/K ⊥c
M/L. Moreover, K is a cotype submodule of M .

2) There is a submodule J of M such that J is minimal with respect to the

properties that J ≤ L and M/J ∥c M/L. Moreover, J is a cotype submodule of M ,

which is also a supplement interior of L in M .

Proof. 1) Let C = ξconat (M/L) and D = ξconat (M). Since R-conat is a Boolean

lattice, there exists C′ ∈ R-conat such that D = C ∨ C′ and C ∧ C′ =0. If C′ ̸= 0,

there is a nonzero module M
′ ∈ C′ which shares a nonzero quotient M/K with M .

Then M/K ∈ C′ and therefore M/K ⊥c
M/L. Let K̄ be a supplement of L in M with

K̄ ≤ K. By [8, 5.2.4c], K/K̄ ≪ M/K̄, that is, there is a superfluous epimorphism

M/K̄ � M/K. Hence M/K̄ ∈ C′ and M/K̄ ⊥c
M/L. This shows that K̄ is a cotype

submodule of M , and by Lemma 3.6(2), K̄ is minimal with respect to M/K̄ ⊥c
M/L.

2) Let C = ξconat(M/L). As in the proof of a), there is a supplement K of L in

M such that K is minimal with respect to M/K ⊥c
M/L. Let J be a supplement of

K in M with J ≤ L. Again, by [8, 5.2.4c], L/J ≪ M/J, that is, the epimorphism

M/J � M/L is superfluous. Then M/J ∈ C and therefore M/J ∥c M/L. Since M/L ⊥c

M/K, also M/J ⊥c
M/K. Hence M/J is a cotype quotient of cotype ξconat(M/J) = C,

that is, J is minimal with respect to M/J ∥c M/L. Moreover, J is also minimal with

respect to L/J ≪ M/J. Indeed, if J
′ ≤ J ≤ L and L/J

′ ≪ M/J
′
, then, as above,

M/J
′ ∈ C and M/J

′ ∥c M/L. Therefore J
′
= J and J is a supplement interior of L

in M . �

We observe that if C′ = 0 in the proof above, that is, D = C, then K = M and

J = 0.
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Definition 4.3. Let L be a submodule of M . The submodules K and J of M

satisfying respectively 1) and 2) of the above theorem are called, respectively, a

cotype supplement and a cotype interior of L.

Proposition 4.4. Let L be a submodule of M . Then:

1) There exists a cotype submodule J of M maximal with respect to J ≤ L.

2) There exists a cotype submodule K of M minimal with respect to K+L = M .

3) J and K are supplements of each other and J ∩K ≪ M .

Proof. Let J and K be, respectively, a cotype interior and a cotype supplement

of L in M .

1) Let J ′ be a cotype submodule of M such that J ≤ J ′ ≤ L. Assume that M/J ′

is of cotype C. Then, as M/L is a quotient of M/J′ and the epimorphism M/J � M/L

is superfluous, M/L and M/J belong to C. But J ′ is minimal with respect to M/J ∈ C,
hence J = J ′.

2) It follows from 1) of the above theorem and Lemma 3.6.

3) It follows from the proof of 2) of the above theorem and [8, 5.2.4b]. �

5. Cotype dimension

In this section we define the notion of cotype dimension of a module. We prove

its basic properties for amply supplemented modules.

We start with a more general result.

Proposition 5.1. Let {Mi}i∈I be a family of R-modules and assume that N is a

nonzero quotient of P

(⊕
i∈I

Mi

)
. Then N shares a nonzero quotient with Mj for

some j ∈ I.

Proof. Since P

(⊕
i∈I

Mi

)
∼=

⊕
i∈I

(P (Mi)), we may assume that the Mi, i ∈ I, are

all projective, and that there is an epimorphism f :
⊕
i∈I

Mi � N . Let K = ker (f)

and, for i ∈ I, let ρi :
⊕
i∈I

Mi � Mi be the projection and gi the composition

K ↪→
⊕
i∈I

Mi � Mi. Note that if gi is surjective then, as Mi is projective, Mi

is a summand of K. Hence the gi, i ∈ I, cannot be all surjective, for otherwise

K =
⊕
i∈I

Mi, which contradicts that N ̸= 0. Then we may choose j ∈ I such

that gj is not surjective. If gj = 0, there is an epimorphism N � Mj . If not,

we may consider the nonzero quotient Mj/Im(gj) and obtain again an epimorphism

N � Mj/Im(gj). �
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If L is a lattice, an element a ∈ L is called an atom if a ̸= 0 and, whenever c ≤ a

with 0 ̸= c ∈ L, then c = a. The lattice L is called atomic if, for every 0 ̸= c ∈ L,
there exists an atom a ∈ L such that a ≤ c.

The following definition appears in [2].

Definition 5.2. A moduleM is called q-atomic if ξconat (M) is an atom in R-conat.

Example 5.3. 1) If M is simple, then M is q-atomic.

2) More generally, if M is hollow, that is, if every proper submodule of M is

superfluous in M , then M is q-atomic.

3) If R is right perfect, then every indecomposable projective R-module is hollow,

and so q-atomic.

4) If M is amply supplemented, then M is q-atomic if and only if its only cotype

submodules are 0 and M . If M is q-atomic and L is a cotype submodule of M with

M/L of cotype ξconat (M/L), then L = M or L = 0. If C ∈ R − conat is such that

0 ̸= C ⊆ ξconat (M), then C contains a nonzero quotient M/K of M . Let L ≤ M be

a cotype interior of K, then 0 ̸= ξconat (M/L) = ξconat (M/K) ⊆ C yields L = 0, and

so ξconat (M) = C.
5) If R is right MAX (in particular, if R is right perfect), then R-conat is an

atomic lattice.

Lemma 5.4. Assume that A1, ..., Ak are pairwise coorthogonal q-atomic quotients

of M , M with a projective cover, such that there is a superfluous epimorphism

M �
k⊕

i=1

Ai. If B1, ..., Bm are pairwise coorthogonal nonzero quotients of M , then

m ≤ k.

Proof. Since the projective cover of M is that of
k⊕

i=1

Ai, by the above proposition,

each Bi shares a nonzero quotient Q with some Aj . Now, as ξconat (Q) ⊆ ξconat (Aj)

and Aj is q-atomic, it follows thatQ is also q-atomic. Hence, without loss of general-

ity, we may assume that the Bi are q-atomic. Again, by the above proposition, and

after renumbering the Ai, we may assume that B1 ∥c A1. Repeating this process,

we obtain that B2 ∥c Ai for some i. Since B2 ⊥c B1, i ̸= 1, and after renumbering

the Ai, we may take i = 2, if 2 ≤ k. Suppose that k + 1 ≤ m. Then we are able

to repeat this process n times obtaining Bi ∥c Ai for i = 1, ..., k. Repeating the

process once more, we obtain Bk+1 ∥c Ai for some i ≤ k and so Bk+1 ∥c Bi. This

contradiction shows that m ≤ k. �
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Definition 5.5. A module M has finite cotype dimension n, denoted by

ct.dim (M) = n, if ξconat (M) is the join of n atoms in R-conat. If no such n exists,

we say that the cotype dimension of M is infinite. If M = 0, then ct.dim (M) = 0.

Note that ct.dim (M) = ct.dim (P (M)).

Example 5.6. 1) If M is q-atomic, then ct.dim (M) = 1 (in particular,

ct.dim (Zp∞) = 1).

2)] If R is right perfect, then for all M ∈ mod − R, ct.dim (M) ≤ n where n is

the number of isomorphism classes of simple R-modules.

3) From the decomposition Q/Z =
⊕
p∈P

Zp∞ , where P denotes the set of prime

numbers, it follows that ct.dim (Q/Z) = ∞.

The following lemmas contain characterizations of both finite and infinite co-

type dimensions, respectively, for amply supplemented modules. Given an R-

homomorphism f : M −→ N , we say that f is superfluous if its kernel is superfluous

in M .

Lemma 5.7. For an amply supplemented module M , the following statements are

equivalent:

1) ct.dim (M) = n.

2) There exist n pairwise coorthogonal q-atomic quotients of M , A1, ..., An, such

that the morphism M −→
n⊕

i=1

Ai induced by the canonical epimorphisms is super-

fluous.

Proof. 1) ⇒ 2) Assume that C = ξconat (M) =
n∨

i=1

Ci , where C1 , ..., Cn are atoms in

R-conat. For i = 1, ..., n, let 0 ̸= Ni ∈ Ci . Then Ci = ξconat (Ni) and Ni is q-atomic.

Since Ni ∈ C, Ni and M share a nonzero quotient Ai = M/Ki which is also q-atomic,

and Ci = ξconat (Ai). Note that by Theorem 4.2, K1, ..., Kn can be chosen as cotype

submodules of M . Let K =
n∩

i=1

Ki be the kernel of the morphism M −→
n⊕

i=1

M/Ki

induced by the canonical epimorphisms. If K is not superfluous in M , we can

take a supplement L of K in M . Then L + K = M , and so Ki + L = M for all

i = 1, ..., n. Hence M/Ki ⊥c
M/L for all i = 1, ..., n. Since C′ = ξconat (M/L) ≤ C and

R-conat is Boolean, M/L has finite cotype dimension and there exists i ∈ {1, ...n}
such that M/Ki and M/L share a q-atomic quotient. This contradicts the fact that

M/Ki ⊥c
M/L.

2) ⇒ 1) For 1 ≤ i ≤ n, let Ai = M/Ki, and let K =
n∩

i=1

Ki be the kernel of

the superfluous morphism M −→
n⊕

i=1

M/Ki induced by the canonical epimorphisms.
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Let C = ξconat (M) and, for 1 ≤ i ≤ n, let Ci = ξconat (M/Ki). Clearly,
n∨

i=1

Ci ≤ C.

Since R-conat is Boolean, if
n∨

i=1

Ci ̸= C, there exists 0 ̸= C′ ∈ R-conat such that

C
n

=
∨
i=1

Ci ∨ C′
and

n∨
i=1

Ci ∧ C′
= 0. As 0 ̸= C′ ⊆ C, there exists a nonzero module

M
′ ∈ C′

which shares a nonzero quotient M/L with M . Therefore M/L ⊥c
M/Ki for

all i = 1, ..., n.

Now we shall prove by induction on n that any module N which is coorthogonal

to M/Ki for all i = 1, ..., n, is coorthogonal to M/
n∩

i=1

Ki. If n = 1, the assertion is

clear. Assume it is true for n = r. Then N ⊥c
M/

r∩
i=1

Ki, and since the M/Ki are

pairwise coorthogonal, also M/Kr+1 ⊥c
M/

r∩
i=1

Ki. It follows that
r∩

i=1

Ki +Kr+1 = M

and thus M/Kr+1 =
r∩

i=1

Ki+Kr+1/Kr+1
∼=

r∩
i=1

Ki/
r+1∩
i=1

Ki. Then from the exact sequence

0 −→
r∩

i=1
Ki/

r+1∩
i=1

Ki −→ M/
r+1∩
i=1

Ki −→ M/
r∩

i=1

Ki −→ 0

it follows that N ⊥c
M/

r+1∩
i=1

Ki.

From the above paragraph we obtain that M/L ⊥c
M/K, which gives K+L = M .

But K ≪ M gives M = L, contradicting the fact that M/L ̸= 0. �

Lemma 5.8. For an amply supplemented module M , ct.dim (M) = ∞ if and only

if there exist an infinite number of pairwise coorthogonal nonzero quotients of M .

Proof. ⇒) We may assume that there is only a finite number of pairwise coorthog-

onal q-atomic quotients of M . Let these be M/K1, ...,M/Kn. By Theorem 4.2, they

can be chosen so that they are all cotype quotients of M . Since ct.dim (M) = ∞,

the morphism M −→
n⊕

i=1

M/Ki induced by the canonical epimorphisms is not super-

fluous. Let K =
n∩

i=1

Ki and L be a supplement of K in M . Then K+L = M implies

Ki + L = M for all i = 1, ..., n, and therefore M/Ki ⊥c
M/L for all i = 1, ..., n.

Now, since ξconat (M/L) is not an atom in R-conat, it contains properly a conat-

ural class C ≠ 0. In fact, since R-conat is Boolean, ξconat (M/L) = C ∨ C′, where

0 ̸= C′ ∈ R-conat is such that C ∧ C′ = 0. Let M/N1 and M/N2 be cotype quotients

of M/L of cotype C and C′, respectively. Then M/N1 ⊥c
M/N2 and M/Nj ⊥c

M/Ki for

j = 1, 2 and i = 1, ..., n. A similar argument can now be applied to ξconat (M/Nj)

for j = 1, 2.

⇐) Let {M/Nj}j∈J be an infinite family of pairwise coorthogonal nonzero quo-

tients of M , and assume that ξconat (M) =
n∨

i=1

Ci, where each Ci is an atom in
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R-conat. Note that, for 1 ≤ i ≤ n, Ci = ξconat (Ai) with Ai q-atomic. Now, since

R-conat is Boolean, each M/Nj has finite cotype dimension, and therefore shares a

q-atomic quotient with Ai for some i ∈ {1, ..., n}. Since there is only a finite number

of indexes i and an infinite number of indexes j ∈ J , it necessarily occurs that for

some k ̸= j ∈ J , M/Nk and M/Nj share a q-atomic quotient. This contradiction

shows that ct.dim (M) = ∞. �

The next lemma contains several basic properties of the cotype dimension, which

is allowed to be ∞, in this case n+∞ = ∞ for every n ≥ 0.

Lemma 5.9. Let L be a submodule of an amply supplemented module M . Then

the following properties hold:

1) If L ≪ M , then ct.dim (M)=ct.dim (M/L).

2) ct.dim (M) ≤ ct.dim (L) + ct.dim (M/L).

3) If L is a cotype submodule of M , then ct.dim (M) = ct.dim (L)+ct.dim (M/L).

4) If M =
n⊕

i=1

Mi, then ct.dim (M) ≤
n∑

i=1

ct.dim (Mi).

5) Let M =
n⊕

i=1

Mi. If Mi ⊥c Mj for all i ̸= j then ct.dim (M) =
n∑

i=1

ct.dim (Mi).

The converse holds if ct.dim (M) < ∞.

6) If M ∥c M/L then ct.dim (M) = ct.dim (M/L). In particular, if J is a cotype

interior of L, then ct.dim (M/L) = ct.dim (M/J).

7) If ct.dim (M) < ∞ and ct.dim (M) = ct.dim (M/L), then M ∥c M/L.

Proof. 1) It is clear.

2) Let Q be a quotient of M and assume that Q ⊥c
M/L. Consider the following

diagram with exact row

0 −→ L −→ M −→ M/L −→ 0

↓ g

Q

If g (L) = Q, then Q is a quotient of L. If not, we may consider the nonzero

quotient Q/g(L) and obtain an epimorphism M/L � Q/g(L) contradicting that Q ⊥c

M/L. Since not every quotient of L is a quotient of M , ct.dim (M) ≤ ct.dim (L) +

ct.dim (M/L).

3) If L is a cotype submodule of M with M/L of cotype C, then there exists

K ≤ M such that L is a supplement of K in M and M/L ⊥c
M/K; moreover,

L ∈ Cc. Now, since L ∩K ≪ L, it follows that

ξconat (L) = ξconat (L/L∩K) = ξconat (M/K) ⊆ ξconat (M) ∧ Cc.
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The result then follows by noting that ξconat (L) = ξconat (M) ∧ Cc. Indeed, if

N ∈ ξconat (M) ∧ Cc, then any nonzero quotient Q of N shares a nonzero quotient

M/J with M , and M/J ⊥c
M/L. Therefore J + L = M and M/J ∼= L/J∩L. Hence Q

shares a nonzero quotient with L, thereby proving that N ∈ ξconat (L).

4) and 5) Let M =
n⊕

j=1

Mj , and assume that, for i ≤ j ≤ n, ξconat (Mj) =

mj∨
i=1

ξconat (Aji), where the Aji are pairwise coorthogonal q-atomic quotients of Mj .

We establish an equivalence relation on the Aji , namely, Aji is equivalent to Akl

if and only if Aji ∥c Akl
. Let r be the number of equivalence classes. Then

ct.dim (M) = r ≤ m1 + ...+mk, and equality holds if and only if each equivalence

class is a singleton if and only if Mj ⊥c Mk whenever j ̸= k.

6) Assume that M ∥c N , and that ξconat (M) =
n∨

i=1

ξconat (Ai) with the Ai

pairwise coorthogonal q-atomic quotients of M . Then each Ai, with 1 ≤ i ≤ n,

shares a nonzero quotient Bi with N . Since the Bi are also pairwise coorthogonal

and q-atomic, it follows that ct.dim (N) ≥ n = ct.dim (M). Similarly, ct.dim (M) ≥
ct.dim (N).

7) If M is not coparallel to M/L, there exists a nonzero quotient Q of M such that

Q ⊥c
M/L. Since M is of finite cotype dimension, so are both M/L and Q. Thus

we may assume that ξconat (M/L) =
n∨

i=1

ξconat (Ai) and ξconat (Q) =
m∨
j=1

ξconat (Bj),

where the Ai and the Bj are pairwise coorthogonal q-atomic quotients of M/L and

Q, respectively. Since Ai ⊥c Bj for all i ∈ {1, ..., n} and all j ∈ {1, ...,m}, it

follows that ct.dim (M) ≥ n + m > n = ct.dim (M/L). This contradiction shows

that M ∥c M/L. �

We end this section with the following result.

Theorem 5.10. For any amply supplemented module M , the following are equiv-

alent:

1) ct.dim (M) < ∞.

2) M has DCC on cotype submodules.

Proof. 1) ⇒ 2) Assume that C = ξconat (M) is the join of n atoms in R-conat.

Let K1 ≥ ... ≥ Ki ≥ Ki+1 ≥ ... be a descending chain of cotype submodules

of M . Then, for i ≥ 1, there are epimorphisms M/Ki+1 � M/Ki, and therefore

inclusions ξconat (M/Ki) ⊆ ξconat (M/Ki+1) of conatural subclasses of C. As R-conat

is Boolean, each element in the interval [0, C] is the join of k atoms, where 0 ≤ k ≤ n.
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Hence | [0, C] |=2n, and the ascending chain

ξconat (M/K1) ⊆ ... ⊆ ξconat (M/Ki) ⊆ ξconat (M/Ki+1) ⊆ ...

of conatural subclasses of C is stationary. Since for i ≥ 1, Ki is minimal with

respect to M/Ki ∈ ξconat (M/K
i
), the descending chain K1 ≥ ... ≥ Ki ≥ Ki+1 ≥ ...

is stationary too.

2) ⇒ 1) First we show that C = ξconat (M) contains only a finite number of

atoms. Assume on the contrary that {Ci}i∈N is an infinite family of disjoint atoms

contained in C. Then we have a strictly ascending chain C1 ⊂ C1∨C2 ⊂ C1∨C2∨C3 ⊂
... of conatural classes contained in C. For i ∈ N, let M/Ki be of cotype Ci. Then

Ci = ξconat (M/Ki) and M/Ki ⊥c
M/Kj for i ̸= j.

We get the strictly descending chain of submodules of M :

K1 > K1 ∩K2 > K1 ∩K2 ∩K3 > ... (1)

Consider the following exact sequence

0 → K2/K1∩K2 → M/K1∩K2 → M/K2 → 0

Since K2/K1∩K2
∼= K1+K2/K1 = M/K1, M/K1∩K2 ∈ C1 ∨C2 and so ξconat (M/K1∩K2) ⊂

C1 ∨ C2. As there are epimorphisms M/K1∩K2 � M/Ki for i = 1, 2, C1, C2 ⊂
ξconat (M/K1∩K2) and thus ξconat (M/K1∩K2) = C1 ∨ C2.

Let J1 = K1 and J2 be a cotype interior of K1 ∩ K2. Then M/J2 is a cotype

quotient of cotype C1∨C2. In the descending chain (1), we can then replace K1∩K2

by J2 and consider the following exact sequence

0 → J2/J2∩K3 → M/J2∩K3 → M/J2 → 0

Since M/J2+K3 ∈ (C1 ∨ C2) ∧ C3 = 0, we get that J2/J2∩K3
∼= J2+K3/K3 = M/K3.

Then, as above, ξconat (M/J2∩K3) = C1 ∨C2 ∨C3. Now we let J3 be a cotype interior

of J2 ∩K3, and repeat the above argument.

In this way we obtain a strictly descending chain J1 > J2 > ... > Jn > Jn+1 > ...

of cotype submodules of M , where M/Jn is of cotype
n∨

i=1

Ci for all n ∈ N. This

contradiction shows that there is only a finite number of disjoint atoms C1, ..., Cn
contained in C.

Now we show that C =
n∨

i=1

Ci. If not, C =
n∨

i=1

Ci ∨ D for some conatural class,

0 ̸= D such that D ∧
n∨

i=1

Ci = 0. Since the interval [0,D] contains neither atoms

nor coatoms, we obtain a strictly ascending chain D1 ⊂ D2 ⊂ ... ⊂ Dn ⊂ ... ⊂ D
of nonzero conatural classes contained in D. Note that M has nonzero quotients

in each Dn. Hence we can take K1 ≤ M such that M/K1 is of cotype D1. Now,
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D2 = D1 ∨ (D2 ∧ Dc
1), and as 0 ̸= D2 ∧ Dc

1 ⊂ C, M has a nonzero quotient M/L ∈
D2 ∧ Dc

1. Since M/L ⊥c
M/K1, M/L turns out to be a quotient of K1, and we can

take K2 < K1 such that K1/K2 is of cotype D2. By Lemma 3.6, K2 is a cotype

submodule of M . The exact sequence

0 → K1/K2 → M/K2 → M/K1 → 0

shows that M/K2 ∈ D2.

Now we can repeat the argument above in order to obtain K3 < K2 such that

K2/K3 is of cotype D3, and Lemma 3.6 shows that K3 is a cotype submodule of M .

Proceeding this way, we obtain a strictly descending chainK1 > K2 > ... > Kn > ...

of cotype submodules of M , contradicting 2). �

We note that statement 1) of the above theorem implies that M has ACC on

cotype submodules (the proof is similar to that of 1) ⇒ 2)).
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Acad. Ştiinte Repub. Mold. Mat., 2(45) (2004), 95-101.

[10] A. I. Kashu, On the lattice of closed classes of modules, Bul. Acad. Ştiinte
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Alejandro Alvarado-Garćıa, Hugo Alberto Rincón-Mej́ıa, Bertha Tomé-Arreola
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04510 México D.F.

e-mail: jrios@matem.unam.mx


