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Abstract. Let R be a ring with identity. Given a positive integer n, a unitary

right R-module X is called n–injective provided, for every n-generated right

ideal A of R, every R-homomorphism φ : A → X can be lifted to R. In

this note we investigate this and related injectivity conditions and show that

there are many rings R which have an n–injective module which is not (n+1)–

injective.
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1. Introduction

In this paper all rings have an identity element and all modules are unitary

right modules, unless stated otherwise. Let R be a ring. Recall that the Injective

Test Lemma (see [1, 18.3]) states that an R-module X is injective if and only if

for each right ideal E of R, every R-homomorphism φ : E → X can be lifted

to R, equivalently, there exists x ∈ X such that φ(e) = xe (e ∈ E). Given a

positive integer n, following [7, p. 103] (see also [10]), we call an R-module X

n–injective provided, for each n-generated right ideal A of R, every homomorphism

θ : A → X lifts to R. Note that in [7], 1-injective modules are also called principally

injective or simply P-injective. For information about n-injective modules see, for

example, [8], [9], [10] and [11]. In addition, an R-module X is called F–injective

if, for each finitely generated right ideal B of R, every homomorphism χ : B → X

lifts to R. Clearly a module is F–injective if and only if it is n-injective for every

positive integer n. Next an R-module X will be called C–injective provided, for

each countably generated right ideal C of R every homomorphism µ : C → X can

be lifted to R. It is clear that the following implications hold for a module X:

X is injective ⇒ X is C–injective ⇒ X is F–injective ⇒ X is n–injective,

and X is (n + 1)–injective ⇒ X is n–injective,
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for every positive integer n.

Note the following simple fact.

Lemma 1.1. Let R be a ring, let X be an R-module, let G be a finitely generated

submodule of a free R-module F and let φ : G → X be a homomorphism. Then φ

lifts to F if and only if φ lifts to H for every finitely generated (free) submodule H

of F containing G.

Proof. The necessity is clear. Conversely, suppose that φ lifts to H for every

finitely generated free submodule H of F containing G. Because G is finitely

generated there exists a finite subset of any basis of F such that every generator can

be written in terms of this finite subset. In other words, there exist free submodules

F1 and F2 of F such that F1 ∩ F2 = 0, F = F1 ⊕ F2, F1 is finitely generated and

G ⊆ F1. By hypothesis, φ lifts to F1 and hence also to F . �

Following [7, p. 110], a module M over a ring R is called finitely presented

provided there exists a finitely generated free R-module F and a finitely generated

submodule K of F such that M ∼= F/K. In addition, an R-module X is called

FP–injective (or absolutely pure) if, for every finitely generated free R-module F

and finitely generated submodule K of F , every homomorphism φ : K → X can be

lifted to F . (Note that Lemma 1.1 gives that F need not be finitely generated in

the definition of an FP–injective module.) It is proved in [7, Theorem 5.39] that an

R-module X is FP–injective if and only if for every R-module M and submodule

L of M such that the module M/L is finitely presented, every homomorphism

α : L → X can be lifted to M . Clearly the following implications hold for a module

X:

X is injective ⇒ X is FP–injective ⇒ X is F–injective.

Let n be a positive integer. We shall call a module X over a ring R nP–injective

provided for every free R-module F and n-generated submodule G of F , every

homomorphism φ : G → X can be lifted to F . Clearly a module is FP–injective

if and only if it is nP –injective for every positive integer n. Moreover, for any

module X we have the implications:

X is FP–injective ⇒ X is (n+1)P-injective ⇒ X is nP–injective,

and

X is nP–injective ⇒ X is n-injective,

for every positive integer n.

The next result contains elementary facts that are proved by standard techniques.
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Proposition 1.2. Let R be any ring and n any positive integer. Then

(i) Every direct summand of a C–injective (respectively, FP–injective, nP–

injective, F–injective, n–injective) R-module is C–injective (respectively,

FP–injective, nP–injective, F–injective, n–injective).

(ii) Every direct product of C–injective (respectively, FP–injective, nP–injective,

F–injective, n–injective) R-modules is C–injective (respectively, FP–injective,

nP–injective, F–injective, n–injective).

(iii) Every direct sum of FP–injective (respectively, nP–injective, F–injective, n–

injective) R-modules is FP–injective (respectively, nP–injective, F–injective,

n-injective).

Corollary 1.3. The following statements are equivalent for a ring R and a positive

integer n.

(i) R is right FP–injective (respectively, nP–injective, F–injective, n–injective).

(ii) Every projective right R-module is FP–injective (respectively, nP–injective,

F–injective, n–injective).

Proof. By Proposition 1.2. �

Lemma 1.4. Let R be a ring and n any positive integer. Then

(a) An R-module X is n-injective if and only if for every n-generated R-module

M such that there exists a monomorphism α : M → R and every homo-

morphism φ : M → X there exists a homomorphism θ : R → X such that

φ = θα.

(b) An R-module Y is nP -injective if and only if for every n-generated R-

module N such that there exists a monomorphism λ : N → F , for some

free R-module F , and every homomorphism µ : N → X there exists a

homomorphism ν : F → X such that µ = νλ.

Proof. Straightforward. �

Next note the following simple facts.

Lemma 1.5. Let R be a ring and X an R-module. Then

(a) X is n-injective, for some positive integer n, if and only if for all ai ∈
R (1 ≤ i ≤ n) and every homomorphism φ :

∑n
i=1 aiR → X there exists

x ∈ X such that φ(ai) = xai (1 ≤ i ≤ n).

(b) X is C-injective if and only if for all ai ∈ R (i ∈ N) and every homomor-

phism φ :
∑

i∈N aiR → X there exists x ∈ X such that φ(ai) = xai (i ∈ N).
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Proof. Elementary. �

Given a non-empty subset T of a ring R, r(T ) will denote the set of elements

r ∈ R such that tr = 0 for all t ∈ T . In case T = {t}, for some element t ∈ R, we

write r(T ) simply as r(t). Note that r(T ) is a right ideal of R for every non-empty

subset T of R. Let M be an R-module. Then annM (T ) will denote the set of

elements m ∈ M such that mt = 0 for all t ∈ T . Note that annM (T ) is a subgroup

of the Abelian group (M,+). If a is an element of R then we shall denote by Ma

the set of elements of the form ma (m ∈ M) of M . Note the following result (see

[10, Corollary 2.3]).

Lemma 1.6. A module X over a ring R is 1-injective if and only if Xa =

annX(r(a)) for all a ∈ R.

Combining Lemma 1.6 with [6, Theorem 3.3] we have the following result.

Proposition 1.7. Let R be a semiprime right Goldie ring. Then every torsion-free

1-injective R-module is injective.

A ring R is called right semihereditary provided every finitely generated right

ideal is projective. Following [12], given a positive integer n, a ring R will be called

right n-semihereditary in case every n-generated right ideal is projective. Clearly

a ring R is right semihereditary if and only if R is right n-semihereditary for every

positive integer n. It is also clear that every right (n+1)-semihereditary ring is

right n-semihereditary for every positive integer n. Camillo [3] proved that if a

commutative ring R is 2-semihereditary then R is semihereditary. Later, for every

positive integer n, we shall give examples of rings that are right n-semihereditary

but not right (n+1)-semihereditary. Note the following fact. The proof is standard

but we include it for completeness.

Lemma 1.8. Let R be a right n-semihereditary ring and let F be a non-zero free R-

module with basis f1, . . . , fk, for some positive integer k. Let M be any n-generated

submodule of F . Then there exist n-generated right ideals Ai (1 ≤ i ≤ k) of R

such that M ∼= A1 ⊕ · · · ⊕ Ak
∼= f1A1 ⊕ · · · ⊕ fkAk. Moreover the R-module M is

projective.

Proof. If k = 1 then there is nothing to prove. Suppose that k ≥ 2. Let π : F →
fkR denote the canonical projection. Then π(M) = fkAk for some n-generated

right ideal Ak of R and hence is projective by assumption. It follows that there

exists a submodule K of M such that K ∼= fkAk and M = (M ∩ G) ⊕ K where
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G is the free R-module f1R ⊕ · · · ⊕ fk−1R. By induction on k, the n-generated

submodule M ∩ G of the free module G is isomorphic to f1A1 ⊕ · · · ⊕ fk−1Ak−1,

for some n-generated right ideals Ai (1 ≤ i ≤ k − 1), and is projective. Thus

M ∼= f1A1 ⊕ · · · ⊕ fkAk. Clearly M ∼= A1 ⊕ · · · ⊕Ak and is projective. �

Corollary 1.9. Let n be a positive integer. Then a ring R is right n-semihereditary

if and only if every n-generated submodule of every free right R-module is isomor-

phic to a direct sum of n-generated right ideals of R and is projective.

Proof. By Lemma 1.8. �

Corollary 1.10. Let n be a positive integer and let R be a right n-semihereditary

ring. Then a right R-module X is n–injective if and only if it is nP–injective.

Proof. The sufficiency is clear. Conversely, suppose that X is n-injective. Let

G be any n-generated submodule of a non-zero free R-module F . By Lemma

1.1 we can suppose without loss of generality that F is finitely generated. Let

f1, . . . , fk be a basis of F , for some positive integer k. By Lemmas 1.4 and 1.8 we

can suppose without loss of generality that G = f1G1 ⊕ · · · ⊕ fkGk for some n-

generated right ideals Gi (1 ≤ i ≤ k) of R. Let φ : G → X be any homomorphism.

For each 1 ≤ i ≤ k, φ induces a homomorphism φi : fiGi → X which lifts to

a homomorphism θi : fiR → X, because X is n-injective. Thus the mapping

θ : F → X defined by θ(f1r1 + · · · + fkrk) = θ1(f1r1) + · · · + θk(fkrk) for all

ri ∈ R (1 ≤ i ≤ k) lifts φ to F . It follows that X is nP-injective. �

Corollary 1.11. Let R be a right semihereditary ring. Then a right R-module X

is F–injective if and only if it is FP–injective.

Proof. By Corollary 1.10. �

2. 1-injective Modules

In this section we shall consider some properties of 1–injective modules. The

first result generalizes [7, Lemma 5.1].

Theorem 2.1. Let R be any ring. Then the following statements are equivalent

for an R-module X.

(i) XR is 1–injective.

(ii) x ∈ Xa for all a ∈ R, x ∈ X with r(a) ⊆ annR(x).

(iii) annX(bR ∩ r(a)) = annX(b) +Xa for all a, b ∈ R.
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Proof. (i) ⇒ (ii) Suppose that r(a) ⊆ annR(x) for some a ∈ R, x ∈ X. Then

xr(a) = 0 and hence x ∈ annX(r(a)) = Xa, by Lemma 1.6.

(ii) ⇒ (iii) Let a, b ∈ R. Clearly annX(b) + Xa ⊆ annX(bR ∩ r(a)). Let

x ∈ annX(bR∩r(a)). Note that r(ab) ⊆ annR(xb) and that (ii) gives that xb = x′ab

for some x′ ∈ X. It follows that x−x′a ∈ annX(b) and therefore x ∈ annX(b)+Xa.

(iii) ⇒ (i) By (iii) with b = 1 and by Lemma 1.6, X is 1-injective. �

It is clear that if a and b are elements of a ring R and X is a faithful R-

module such that Xb ⊆ Xa then r(a) ⊆ r(b). Now note the following immediate

consequence of Lemma 1.6.

Corollary 2.2. Let a and b be elements of a ring R such that r(a) ⊆ r(b). Then

Xb ⊆ Xa for every 1-injective right R-module X.

Compare the next result with [7, Proposition 5.9].

Corollary 2.3. Let S and R be rings and let X be a left S-, right R-bimodule such

that the right R-module X is 1–injective and let a and b be elements of R. Then for

any homomorphism α : bR → aR there exists an S-homomorphism φ : Xa → Xb

such that

(i) α is a monomorphism implies that φ is an epimorphism,

(ii) α is an epimorphism implies that φ is a monomorphism, and

(iii) α is an isomorphism implies that φ is an isomorphism.

Proof. Let α : bR → aR be any homomorphism. There exists an element c ∈ R

such that α(b) = ac. By Lemma 1.6 Xac ⊆ Xb. Then define a mapping φ : Xa →
Xb by φ(xa) = xac (x ∈ X). It is easy to check that φ is an S-homomorphism

from the left S-module Xa to the left S-module Xb.

(i) Suppose that α is a monomorphism. Then r(b) = r(ac). By Corollary 2.2,

Xac = Xb and hence φ : Xa → Xb is an epimorphism.

(ii) Suppose that α is an epimorphism. Then a = acd for some element d ∈ R.

Clearly this implies that φ is a monomorphism.

(iii) By (i), (ii). �

Theorem 2.4. Let R be a commutative ring. Then every 1-injective simple R-

module is injective.

Proof. Let U be any 1-injective simple R-module. Let A be an ideal of R and

φ : A → U be a non-zero homomorphism. There exists a ∈ A such that φ(a) ̸= 0.

Because U is 1-injective, the homomorphism φ|aR : aR → U lifts to R and hence
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φ(a) = ua for some u ∈ U . Let P = annR(u) = annR(U) which is a maximal ideal

of R. Note that a /∈ P and hence R = A+ P . Now

A ∩ P = (A ∩ P )A+ (A ∩ P )P = AP ⊆ kerφ,

because A/kerφ ∼= U . Define a mapping α : R → U by α(b + p) = φ(b) for

all b ∈ A, p ∈ P . Note that α is well defined because b + p = 0 implies that

b = −p ∈ A ∩ P ⊆ kerφ which gives that φ(b) = 0. Thus α is a homomorphism

which lifts φ to R. Therefore UR is injective. �

We do not know if Theorem 2.4 is true without the hypothesis of R being a

commutative ring.

3. Modules Over Certain Subrings

Let R be a ring and let e be any idempotent element of R. Note that eRe is

a subring of R with identity element e. (Note that we do not insist that subrings

of rings have the same identity element.) Given any right R-module M it is clear

that Me is a unitary right module over the ring eRe. In [7, Proposition 5.35] it is

proved that if a ring R is right P-injective then so too is any subring of the form

eRe where e is an idempotent such that R = ReR. We shall generalize this result.

Theorem 3.1. Let e be an idempotent in a ring R such that R = ReR, let S denote

the subring eRe of R and let X be an n–injective (respectively, nP–injective) right

R-module, for some positive integer n. Then the right S-module Xe is n–injective

(respectively, nP–injective).

Proof. Suppose first that X is nP–injective. There exist a positive integer k and

elements pi, qi ∈ R (1 ≤ i ≤ k) such that 1 =
∑k

i=1 pieqi. Let L be any n-

generated submodule of the free S-module S
(m)
S , for some positive integer m, and

let φ : L → Xe be any S-homomorphism. Note that S
(m)
S is an S-submodule

of the free R-module R
(m)
R . There exist elements aj ∈ L (1 ≤ j ≤ n) such that

L = a1S + · · · + anS. Note that in this case the submodule LR of R
(m)
R satisfies

LR = a1R + · · · + anR. Now define a mapping φ : LR → X by φ(
∑n

i=1 airi) =∑n
i=1 φ(ai)ri for all ri ∈ R (1 ≤ i ≤ n). Suppose that

∑n
i=1 airi = 0, for some

ri ∈ R (1 ≤ i ≤ n). Then

n∑
i=1

φ(ai)ri =
n∑

i=1

φ(aie)ri

k∑
j=1

pjeqj =
n∑

i=1

k∑
j=1

φ(ai)eripjeqj =

n∑
i=1

k∑
j=1

φ(aieripje)qj =
k∑

j=1

φ(
n∑

i=1

airipje)qj =
k∑

j=1

φ(0pje)qj = 0,
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so that φ is well-defined. It is easy to check that φ is an R-homomorphism.

BecauseX is nP–injective, φ can be lifted to an R-homomorphism θ : R
(m)
R → X.

Note that, for each element s ∈ S
(m)
S , θ(s) = θ(se) = θ(s)e ∈ Xe. Let χ : S

(m)
S →

Xe be the mapping defined by χ(s) = θ(s) for all s ∈ S
(m)
S and note that χ is an S-

homomorphism. Moreover, for each 1 ≤ i ≤ n, χ(ai) = θ(ai) = φ(ai) = φ(ai) and

hence χ(b) = φ(b) for all b ∈ L. It follows that the S-module Xe is nP–injective.

Now suppose that X is an n-injective R-module. Then the above proof with

m = 1 gives that the S-module Xe is n-injective. �

Corollary 3.2. Let e be an idempotent in a ring R such that R = ReR and let S

denote the subring eRe of R. Let X be an F–injective (respectively, FP–injective)

right R-module for some positive integer n. Then the right S-module Xe is F–

injective (respectively, FP–injective).

Proof. By Theorem 3.1. �

By adapting the proof of Theorem 3.1 we have the following result.

Proposition 3.3. Let e be an idempotent in a ring R such that R = ReR and let

S denote the subring eRe of R. Let X be a C–injective right R-module for some

positive integer n. Then the right S-module Xe is C–injective.

Let R be a ring and n a positive integer. Again we consider a subring S of R of

the form eRe for some idempotent e in R such that R = ReR. It might be tempting

to think that if Y is an n–injective right S-module then the right R-module Y ⊗SR

is also n–injective but this is not the case, as we shall show in the next section.

4. Examples

Note that for any ring R every direct sum ⊕i∈I Xi of injective R-modules is FP–

injective and hence also F–injective. In fact, more is true, namely if N is any finitely

generated submodule of an arbitrary R-module M then every homomorphism φ :

N → X, where X denotes the module ⊕i∈I Xi, lifts to M . For, in this case, there

exists a finite subset J of I such that φ(N) ⊆ ⊕j∈J Xj which is an injective module.

It follows that φ lifts toM . For any module U let E(U) denote the injective envelope

of U . The following result is essentially [1, Proposition 18.13] but we include a proof

for completeness.

Lemma 4.1. The following statements are equivalent for a ring R.

(i) R is right Noetherian.

(ii) Every direct sum of C–injective R-modules is C–injective.

(iii) Every direct sum of injective R-modules is C–injective.
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Proof. (i) ⇒ (ii) ⇒ (iii) Clear.

(iii) ⇒ (i) Suppose that R is not right Noetherian. Let A1 ⊂ A2 ⊂ . . . be

any properly ascending chain of right ideals of R. For every positive integer n let

an ∈ An+1\An. Let A = a1R+a2R+. . . . Define a mapping φ : A → ⊕n≥1 E(R/An)

by

φ(r) = (r +A1, r +A2, . . . ) (r ∈ A).

Note that φ is well-defined because A ⊆ ∪n≥1 An. If φ lifts to R then the proof of

[1, Proposition 18.13 (a) ⇒ (c)] can be modified to show that am ∈ Am for some

positive integer m, a contradiction. Thus φ does not lift to R. It follows that the

module ⊕n≥1 E(R/An) is not C–injective. �

It is easy to give examples of FP–injective (and hence also F–injective) modules

which are not C–injective. LetR be a ring which is not right Noetherian. By Lemma

4.1 there exists a direct sum X of injective R-modules which is not C–injective and

the above remarks show that X is FP–injective.

In [8], it is proved that if R is a domain such that every one-sided ideal is two-

sided then the following statements are equivalent:

(i) R is semihereditary.

(ii) Every 1-injective right R-module is 2-injective.

(iii) Every 1-injective right R-module is FP-injective.

The above result was generalized by Tuganbaev [11, Theorem 1] to rings R which,

instead of being a domain, are either right or left 1-semihereditary. Thus if R is a

commutative domain which is not Prüfer (i.e. not semihereditary) then there exists

a 1-injective R-module which is not 2-injective.

Recall that a ring R is right self-injective in case the module RR is injective.

Now we shall call a ring R a right P-injective ring if RR is 1–injective. In addition,

for any positive integer n ≥ 2 we shall call a ring R right n–injective provided

RR is n-injective. We shall use ”right P–injective” instead of ”right 1-injective”

to be consistent with the usual terminology in the literature. The next example is

essentially due to Björk [2].

Example 4.2. Let F be a field such that there exists an isomorphism a → a from

F to a proper subfield F of F . Let n be any integer with n ≥ 2. Let R denote the

left vector space over F with basis {1, t, . . . , tn−1} and make R into an F -algebra

by defining tn = 0 and ta = at (a ∈ F ). Then

(i) The Jacobson radical J of R is given by J = Rt.

(ii) R/J ∼= F .
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(iii) The only left ideals of R are R ⊃ J ⊃ J2 ⊃ · · · ⊃ Jn−1 ⊃ 0.

(iv) R is right P–injective but not right 2-injective.

(v) R is not left P–injective.

Proof. See [7, Example 2.5]. �

Let R be the ring in Example 4.2 and let A be the ring of 2 × 2 matrices with

entries in R. If e is the matrix [
1 0

0 0

]
,

then e is an idempotent in A such that A = AeA. Moreover B = eAe is the subring

of A consisting of all matrices of the form[
r 0

0 0

]
,

for all r ∈ R, and B is isomorphic to R. By Example 4.2, the right B-module B

is 1–injective. Moreover, B ⊗B A ∼= A as right A-modules. However the right A-

module A is not 1–injective as Nicholson and Yousif point out (see [7, Proposition

5.36 and Example 5.37]).

In view of Björk’s example we ask the following question:

If n is any positive integer does there exist a ring R such that R is right n–injective

but not right (n+1)–injective?

When we pass to non-commutative rings it turns out that, for any positive integer

n, there exist rings R and n–injective R-modules which are not (n+1)–injective and

hence not F-injective. To see why this is the case we first note the following fact

which is due to Tuganbaev [11, Lemma 1].

Lemma 4.3. Let n be a positive integer. Then a ring R is right n-semihereditary

if and only if every homomorphic image of every n–injective right R-module is

n–injective.

Corollary 4.4. Let n be a positive integer and let R be a right n-semihereditary ring

such that every n-injective R-module is (n+1)-injective. Then R is right (n+1)-

semihereditary.

Proof. Let X be any (n+1)–injective R-module and let Y be any submodule of X.

Clearly X is n–injective and hence so too is X/Y by Lemma 4.3. By hypothesis,

X/Y is (n+1)–injective. Thus every homomorphic image of an (n+1)–injective R-

module is (n+1)-injective. Again applying Lemma 4.3 we conclude that R is right

(n+1)-semihereditary. �
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Proposition 4.5. Let R be any ring and let n be a positive integer.

(a) Let A be an n-generated right ideal of R such that for some free R-module F

and submodule K of F with A ∼= F/K the module E(F )/K is n–injective.

Then the right R-module A is projective

(b) Let M be an n-generated submodule of a projective R-module P such that

for some free R-module G and submodule L of G with M ∼= G/L the module

E(G)/L is nP–injective. Then the R-module M is projective.

Proof. We shall prove statement (b); the proof of (a) is similar. Let α : M → G/L

be an isomorphism. Let ι1 : M → P and ι2 : G/L → E(G)/L denote the inclusion

mappings and let π1 : G → G/L and π2 : E(G) → E(G)/L denote the canonical

projections. Because E(G)/L is nP–injective, there exists a homomorphism β :

P → E(G)/L such that βι1 = ι2α. Next P projective implies that there exists a

homomorphism γ : P → E(G) such that β = π2γ. Note that

π2γι1 = βι1 = ι2α,

and hence γι1(M) ⊆ G. Let δ : M → G be the homomorphism defined by δ(m) =

γι1(m) for all m ∈ M . For each g ∈ G there exists m ∈ M such that g + L =

α(m) = δ(m) + L. It follows that G = L + δ(M). Moreover, if m1 ∈ L ∩ δ(M)

then m1 = δ(m2) ∈ L and hence α(m2) = π1δ(m2) = 0. This implies that m2 = 0

and hence m1 = 0. Thus L ∩ δ(M) = 0 and G = L ⊕ δ(M). It follows that M is

projective. �

Combining these facts together we have the following result.

Theorem 4.6. Let R be a ring such that R is right n-semihereditary but not right

(n+1)-semihereditary, for some positive integer n. Let A be any (n+1)-generated

right ideal of R such that A is not a projective R-module and A ∼= F/K for some free

R-module F and submodule K of F . Then the R-module E(F )/K is nP -injective

but not (n+1)-injective.

Proof. By Proposition 4.5, the module Y = E(F )/K is not (n+1)–injective. How-

ever, Y is an n–injective module by Lemma 4.3. Moreover, by Corollary 1.10, Y is

an nP–injective module. �

In view of Theorem 4.6 to find examples of n-injective (even, nP-injective) mod-

ules which are not (n+1)-injective it is sufficient to find rings R which are right

n-semihereditary but not right (n+1)-semihereditary and this we do next. First

we shall show that for every field F and positive integer n there exists an algebra
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R over F which is right n-semihereditary but not right (n+1)-semihereditary and

then we shall show how to use such a ring to produce others of the same type.

Lemma 4.7. For every field F and positive integer n there exists an F -algebra A

which is a right n-semihereditary domain but is not right (n+1)-semihereditary.

Proof. Let F be any field and let n be any positive integer. Let A denote the

F -algebra on the 2(n+1) generators xi, yi (1 ≤ i ≤ n+ 1) subject to the relation

n+1∑
i=1

xiyi = 0.

It is proved in [5, Theorem 2.3] that A is a right n-semihereditary domain (in

fact, every n-generated right or left ideal is free) but A is not a right (n+1)-

semihereditary ring. �

Before we proceed we prove an elementary result whose proof is given for com-

pleteness.

Lemma 4.8. Let e be an idempotent of a ring R such that eR(1 − e) = 0 and let

T be the subring eRe of R. Let X be a right R-module such that X(1− e) = 0 and

the right T -module Xe is projective. Then the right R-module X is projective.

Proof. Note that T = eR and hence T is a projective right R-module. Note also

that X = Xe. Because XT is projective, there exist an index set I and a T -

epimorphism π : T (I) → X such that π = π2. Note that for all u ∈ T (I), r ∈ R, we

have:

π(ur) = π((ue)r) = π(u(er)) = π(u)(er) = (π(u)e)r = π(u)r.

Thus π is an idempotent R-homomorphism. It follows that X is a direct summand

of the projective R-module T (I) and hence X is a projective R-module. �

Let S and T be rings and let M be a left S-, right T -bimodule. Then [s,m : 0, t]

will denote the ”matrix” [
s m

0 t

]
,

with s ∈ S, t ∈ T and m ∈ M . The collection of all such matrices will be denoted

by [S,M : 0, T ] and forms a ring with respect to matrix addition and multiplication

in the usual way. Using Lemma 4.7 the next result can be used to produce many

examples of the required type.
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Theorem 4.9. Let F be a field and let n be any positive integer. Let T be an algebra

over F such that T is right n-semihereditary but not right (n+1)-semihereditary and

let P be any submodule of a free right T -module. Then the F -algebra R = [F, P :

0, T ] is right n-semihereditary but not right (n+1)-semihereditary.

Proof. Let A be any n-generated right ideal of R. Let e be the idempotent element

[1,0:0,0] of R. Note that 1− e = [0, 0 : 0, 1] is an idempotent in R, (1− e)Re = 0,

(1−e)R(1−e) is the subring of R consisting of all matrices of the form [0, 0 : 0, t] (t ∈
T ) and that (1−e)R(1−e) ∼= T . Next, eR = [F, P : 0, 0] and (1−e)R = [0, 0 : 0, T ]

are both projective right ideals of R. Suppose that there exists an element [f, p : 0, t]

in A with f ̸= 0. Then A = eR ⊕ B where B = [0, 0 : 0, C] for some (clearly) n-

generated right ideal C of T . By hypothesis, C is a projective right T -module.

By Lemma 4.5, BR is a projective R-module, and hence so too is AR. Otherwise

A = [0, p1 : 0, t1]R + · · · + [0, pn : 0, tn]R for some pi ∈ P, ti ∈ T (1 ≤ i ≤ n). Let

N denote the T -submodule of the projective T -module P ⊕ T generated by the

n elements (pi, ti) (1 ≤ i ≤ n). Since P ⊕ T , and hence also N , is a submodule

of a free T -module it follows that N is a projective T -module by Lemma 1.8. As

T -modules, N ∼= A and hence AT is projective. Now Ae = 0 so that Lemma 4.5

gives that AR is projective. Thus the ring R is right n-semihereditary.

On the other hand, there exists an (n+1)-generated right ideal D of T such that

DT is not projective. Let E denote the right ideal [0, 0 : 0, D] of R. It is easy to

check that E is an (n+1)-generated right ideal of R. Suppose that ER is projective.

Note that eR is an idempotent two-sided ideal of R such that R/eR ∼= T . Moreover

Ee = 0 so that E is a right R/eR-module. By [4, Theorem 1], ER being projective

implies that ER/eR is projective. But this implies that ET is projective and hence

DT is projective. Thus E is not a projective R-module. We have proved that the

ring R is not right (n+1)-semihereditary. �

Rings R such that there exists an n-injective R-module which is not (n+1)-

injective need not be of the type found in Lemma 4.7 or Theorem 4.9, as we show

next.

Proposition 4.10. Let S be any ring and let n be any positive integer. Then there

exists a ring R such that S is a ring direct summand of R and an n-injective right

R-module X which is not (n+1)-injective.

Proof. Let T be any ring which has the property that there exists an n-injective

T -module X which is not (n+1)-injective. Let R denote the ring direct sum S⊕T ,

where we shall think of S and T as ideals of R. We can make X into an R-module
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by defining x(s+ t) = xt for all x ∈ X, s ∈ S and t ∈ T . Let A be any n-generated

right ideal of R and let φ : A → X be an R-homomorphism. Then A = B ⊕ C for

some n-generated right ideal B of S and n-generated right ideal C of T . Clearly

the restriction of φ to C is a T -homomorphism from C to X and can be lifted to a

T -homomorphism θ : T → X. Now define a mapping χ : R → X by χ(s+ t) = θ(t)

for all s ∈ S and t ∈ T . Clearly χ is an R-homomorphism. Let a ∈ A. Then

a = b+ c for some b ∈ B, c ∈ C. Note that

φ(b) ∈ φ(bS) ⊆ φ(b)S ⊆ XS = (XT )S = X(TS) = X0 = 0,

and hence φ(b) = 0. It follows that φ(a) = φ(c) = θ(c) = χ(c). Thus χ lifts φ to

R. It follows that the R-module X is n-injective.

Now suppose that the R-module X is (n+1)-injective. Let D be an (n+1)-

generated right ideal of T and α : D → X be a T -homomorphism. There exist

elements di ∈ D (1 ≤ i ≤ n+1) such thatD = d1T+· · ·+dn+1T = d1R+· · ·+dn+1R.

Since XS = 0 (see above) it follows that α is an R-homomorphism from the (n+1)-

generated right ideal D of R to the R-module X. By hypothesis, α lifts to an

R-homomorphism β : R → X. But this implies that the restriction of β to T

is a T -homomorphism which extends α. It follows that XT is (n+1)-injective, a

contradiction. Thus XR is not (n+1)-injective. �

We do not know an example of a ring R and an F–injective R-module X such

that X is not FP–injective (compare Corollary 1.11).
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