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Abstract. A subgroup H of G is said to be S-quasinormal in G if H permutes

with every Sylow subgroup of G. This concept was introduced by Kegel in

1962 and has been investigated by many authors. A subgroup H is called

S-semipermutable in G if H permutes with every Sylow p-subgroup of G for

which (p, |H|) = 1. A subgroup H of the group G is said to be c-normal in G

if there is a normal subgroup B of G such that HB = G and H ∩B is normal

in G. Next, we unify and generalize the above concepts and give the following

concept: A subgroup H of the group G is said to be weakly S-semipermutably

embedded in G if there is a subnormal subgroup B of G such that HB = G

and H ∩ B is S-semipermutable or S-quasinormally embedded in G. Groups

with certain weakly S-semipermutably embedded subgroups of prime power

order are studied.

Mathematics Subject Classification (2010): 20D10, 20D20

Keywords: weakly S-semipermutably embedded subgroup, p-nilpotent group,

supersolvable group, formation

1. Introduction

All groups considered in this paper will be finite, the notation and terminology

used in this paper are standard, as in [14-16]. In particular, let G be a finite group,

we denote F (G) the Fitting subgroup of G, F ∗(G) the generalized Fitting subgroup

of G, Φ(G) the Frattini subgroup of G. Given a group G, two subgroups H and K

of G are said to permute if HK = KH, that is, HK is a subgroup of G. About

the generalizing permutability, Foguel in [4] introduced the following concept: For

a group G, a subgroup H of G is said to be conjugate permutable if HHx = HxH

for any x ∈ G. A subgroup H of G is said to be S-quasinormal in G if it permutes
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with every Sylow subgroup of G. This concept was introduced by Kegel in 1962

and has been investigated by many authors, for example, see [1-8, 10-13, 15-18].

In 1998, Ballester-Bolinches and Pedraza-Aguilera extended this concept to S-

quasinormally embedded subgroups.

Definition 1.1. A subgroup H of G is S-quasinormally embedded in G if for every

Sylow subgroup P of H, there is a S-quasinormal subgroup K in G such that P is

also a Sylow subgroup of K.

Recently, Chen introduced the following concept.

Definition 1.2. A subgroup H is called S-semipermutable in G if H permutes with

every Sylow p-subgroup of G for which (p, |H|) = 1.

In 1996, Wang introduced the concept of c-normal subgroup.

Definition 1.3. Let G be a group. A subgroup H of the group G is said to

be c-normal in G if there is a normal subgroup B of G such that HB = G and

H ∩B ≤ HG.

In this paper, we unify and generalize S-semipermutable, c-normal and S-quasi-

normally embedded subgroups, and give the following definition:

Definition 1.4. Let G be a group. A subgroup H of the group G is said to be

weakly S-semipermutably embedded in G if there is a subnormal subgroup B of G

such that HB = G and H ∩ B is S-semipermutable or S-quasinormally embedded

in G.

Obviously, every S-semipermutable subgroup, c-normal subgroup of G is weakly

S-semipermutably embedded. In general, a weakly S-semipermutablly embedded

subgroup need not be S-semipermutable subgroup, or c-normal subgroup. For

instance, ⟨(34)⟩ is a weakly S-semipermutably embedded subgroup of S4, because

S4 = ⟨(34)⟩A4 and ⟨(34)⟩ ∩ A4 = 1. However, ⟨(34)⟩ is not S-semipermutable

subgroup of S4, because ⟨(34)⟩⟨(123)⟩ ̸= ⟨(123)⟩⟨(34)⟩.
Recall that a formation is a class F of groups satisfying the following conditions:

(i) if G ∈ F and N E G, then G/N ∈ F , and (ii) if N1, N2 E G are such that

G/N1, G/N2 ∈ F , then G/(N1 ∩N2) ∈ F . A formation F is said to be saturated

if G/Φ(G) ∈ F implies that G ∈ F .

We study the influence of weakly S-semipermutably embedded subgroups on the

structure of group G. The main results are as follows:
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Theorem 1.1. Let p be the smallest prime divisor dividing the order of a group G

and P a Sylow p-subgroup of G. Then the following two statements are equivalent:

(i) G is p-nilpotent;

(ii) P has a subgroup D such that 1 < |D| < |P | and all subgroups H of P

with order |H| = |D| and with order 2|D| (if P is a non-abelian 2-group

and |P : D| > 2) are weakly S-semipermutably embedded in G.

Theorem 1.2. Let F be a saturated formation containing all supersolvable groups

and G a group with a normal subgroup E such that G/E ∈ F . Suppose that every

non-cyclic Sylow subgroup P of F ∗(E) has a subgroup D such that 1 < |D| < |P |
and all subgroups H of P with order |H| = |D| and with order 2|D| (if P is a

non-abelian 2-group and |P : D| > 2) are weakly S-semipermutably embedded in

G. Then G ∈ F .

2. Preliminaries

Our first result is very useful in proofs using induction arguments. Its proof is a

routine checking.

Lemma 2.1. Suppose that H is weakly S-semipermutable embedded in a group G,

K ≤ G and N a normal subgroup of G. We have:

(i) If H ≤ K, then H is weakly S-semipermutably embedded in K;

(ii) HN/N is weakly S-semipermutably embedded in G/N satisfying (|H|, |N |) =
1;

(iii) If N ≤ K and K/N is weakly S-semipermutably embedded in G/N if and

only of K is weakly S-semipermutably embedded in G.

We will use the following result, which comes from [20, Property 2].

Lemma 2.2. Suppose that H is an S-semipermutable subgroup of G. Let N be a

normal subgroup of G. If H is a p-group for some prime p ∈ π(G), then HN/N is

S-semipermutable in G/N .

Lemma 2.3. ([12, Lemma 2.3]) Suppose that H is S-quasinormal in G, P is a

Sylow p-subgroup of H. If HG = 1, then P is S-quasinormal in G.

Lemma 2.4. Suppose that H is a p-subgroup for some prime p and H is not

S-semipermutable, or S-quasinormally embedded in G. Assume that H is weakly

S-semipermutably embedded in G. Then G has a normal subgroup M such that

|G : M | = p and G = HM .
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Proof. By the hypothesis, G has a subnormal subgroup T such that HT = G and

T ∩ H < H. Hence G has a proper normal subgroup K such that T ≤ K. Since

G/K is a p-group, G has a normal maximal subgroup M such that HM = G and

|G : M | = p. �

Lemma 2.5. ([11, Lemma 2.2]) Let H be a p-subgroup of G. Then the following

statements are equivalent:

(i) H is S-quasinormal in G;

(ii) H ≤ Op(G) and H is S-quasinormal embedded in G.

Lemma 2.6. Suppose that H ≤ Op(G) and that H is weakly S-semipermutably

embedded in G. Then H is weakly S-permutable in G.

Proof. By the hypothesis, G has a subnormal subgroup B such that HB = G and

H ∩B is S-semipermutable or S-quasinormally embedded in G.

Assume that H ∩B is S-semipermutable in G. Note that H ∩B ≤ H ≤ Op(G),

then H ∩ B is S-permutable in G, and thus H ∩ B ≤ HsG. Hence H is weakly

S-permutable in G.

Assume that H ∩B is S-quasinormally embedded in G. Note that H ∩B ≤ H ≤
Op(G), then by Lemma 2.5 H ∩B is S-quasinormal in G, and thus H ∩B ≤ HsG.

Hence H is weakly S-permutable in G. �

By Lemma 2.11 of [16] and Lemma 2.6, we have the following.

Lemma 2.7. Let N be an elementary abelian normal subgroup of a group G. As-

sume that N has a subgroup D such that 1 < |D| < |N | and every subgroup H

of N satisfying |H| = |D| is weakly S-semipermutably embedded in G. Then some

maximal subgroup of N is normal in G.

By Lemma 2.12 of [16] and Lemma 2.6, we have the following.

Lemma 2.8. Let F be a saturated formation containing all nilpotent groups and

let G be a group with solvable F-residual P = GF . Suppose that every maximal

subgroup of G not containing P belongs to F . Then P is a p-group for some

prime p. In addition, if every cyclic subgroup of P with prime order or order 4 (if

p = 2 and P is non-abelian) not having a supersolvable supplement in G is weakly

S-semipermutably embedded in G, then |P/Φ(P )| = p.

Lemma 2.9. ([16, Lemma 2.17]) Let G be a group and M a subgroup of G.

(i) If M is normal in G, then F ∗(M) ≤ F ∗(G).

(ii) F ∗(G) ̸= 1 if G ̸= 1; in fact, F ∗(G)/F (G) = soc(F (G)CG(F (G))/F (G)).
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(iii) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

(iv) Suppose K is a subgroup of G contained in Z(G), then F ∗(G/K) = F ∗(G)/K.

Let N be an elementary abelian normal subgroup of a group G. Assume that

N has a subgroup D such that 1 < |D| < |N | and every subgroup H of N

satisfying |H| = |D| is weakly S-semipermutably embedded in G. Then some

maximal subgroup of N is normal in G.

Lemma 2.10. ([8, Theorem 4.10]) Let A and B be subgroups of G satisfying G ̸=
AB, if ABg = BgA holds for all g ∈ G, then A or B is contained in a proper

normal subgroups of G.Let N be an elementary abelian normal subgroup of a group

G. Assume that N has a subgroup D such that 1 < |D| < |N | and every subgroup

H of N satisfying |H| = |D| is weakly S-semipermutably embedded in G. Then

some maximal subgroup of N is normal in G.

Lemma 2.11. ([3, A, 1.2]) Let U , V , and W be subgroups of a group G. Then the

following statements are equivalent:

(i) U ∩ VW = (U ∩ V )(U ∩W );

(ii) UV ∩ UW = U(V ∩W ).

3. Proofs of main Theorems

Theorem 3.1. Let p be the smallest prime divisor dividing the order of a group G

and P a Sylow p-subgroup of G. Then the following two statements are equivalent:

(i) G is p-nilpotent;

(ii) All maximal subgroups of P are weakly S-semipermutably embedded in G.

Proof. We only need to prove that (ii) implies (i). Suppose that the theorem

is false and that G is a counter-example with minimal order. We will derive a

contradiction in several steps.

(1) G has the unique minimal normal subgroup N such that G/N is p-nilpotent

and Φ(G)=1.

Let N be a minimal normal subgroup of G. Consider the group G/N , we will

show that G/N satisfies the hypothesis of the theorem. Let M/N be a maximal

subgroup of PN/N . It is easy to see that M = P1N for some maximal subgroup

P1 of P . It follows that P ∩ N = P1 ∩ N is a Sylow subgroup of N . By the

hypothesis, there is a subnormal subgroup K1 of G such that G = P1K1 and that

P1 ∩ K1 is S-semipermutable or S-quasinormally embedded in G. Then G/N =

(M/N)(K1N/N) = (P1N/N)(K1N/N). It is easy to see that K1N/N is a subnor-

mal subgroup of G/N . Since (|N/P1 ∩N |, |N/N ∩K1|) = 1. (P1 ∩N)(K1 ∩N) =
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N = N ∩G = N ∩P1K1. By Lemma 2.11, (P1N)∩(K1N) = (P1∩K1)N . It follows

from Lemma 2.2 and [1, Lemma 1] that (P1N/N) ∩ (K1N/N) = (P1 ∩ K1)N/N

is S-semipermutable or S-quasinormally embedded in G/N . Hence M/N is weakly

S-semipermutably embedded in G/N . Therefore, G/N satisfies the hypothesis of

the theorem. The choice of G yields that G/N is p-nilpotent. By the uniqueness of

N , Φ(G) = 1.

(2) Op′(G)=1.

If Op′(G) ̸= 1, then N ≤ Op′(G) by (1). Now the p-nilpotency of G/N implies

that G is p-nilpotent, a contradiction.

(3) Op(G)=1.

If Op(G) ̸= 1, then N ≤ Op(G) by (1). Therefore, G has a maximal subgroup

M such that G = MN and M ∩ N = 1. Since Op(G) ∩ M is normalized by N

and M , hence by the uniqueness of N yields N = Op(G). Clearly, P = N(P ∩M).

Since P ∩M < P , there exists a maximal subgroup P1 of P such that P ∩M ≤ P1.

Then P = NP1. By the hypothesis, there is a subnormal subgroup T of G such

that G = P1T and P1 ∩ T is S-semipermutable or S-quasinormally embedded in G.

Case 1. If P1∩T is S-semipermutable in G, then (P1∩T )Gq is a subgroup, where

q ̸= p and Gq ∈ Slyq(G). Since (P1 ∩ T ) ∩N = ((P1 ∩ T )Gq) ∩N E ((P1 ∩ T )Gq),

Gq ≤ NG((P1 ∩ T ) ∩ N). On the other hand, Since N ≤ Op(G) ≤ T , P1 ∩ N =

(P1 ∩ T )∩N . Moreover, P1 ∩N EP . Therefore P1 ∩N EG. By the uniqueness of

N , P1∩N = 1 and so |N | = p. The p-nilpotenty of M implies that G is p-nilpotent,

a contradiction.

Case 2. If P1 ∩ T is S-quasinormally embedded in G, then there is an S-

quasinormal subgroup K of G such that P1 ∩ T ∈ Sylp(K). Assume KG ̸= 1, then

N ≤ KG ≤ K. It follows that N ≤ P1 ∩ T , and so P = NP1 = P1, a contradiction.

So KG = 1. Then by Lemma 2.3, P1 ∩ T is S-quasinormal in G. By Case 1, G is

p-nilpotent, a contradiction. Thus (3) holds.

(4) G is non-solvable and hence N is a direction production of some non-abelian

simple groups.

By (2) and (3).

(5) The final contradiction.

If N ∩P ≤ Φ(P ), then N is p-nilpotent by Tate’s theorem (Huppert, 1967, Satz

4.7, p. 431), contrary to (4). Consequently, there is a maximal subgroup P1 of

P such that P = (N ∩ P )P1. By the hypothesis, P1 is weakly S-semipermutably

embedded in G and so there is a subnormal subgroup T of G such that G = P1T
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and P1 ∩ T is S-semipermutable or S-quasinormally embedded in G. If P1 ∩ T is

S-quasinormally embedded in G, then there is an S-quasinormal subgroup K of G

such that P1∩T ∈Slyp(K). If KG ̸= 1, then N ≤ KG ≤ K. Since P1∩T ∈Slyp(K),

(P1 ∩ T )∩N ∈ Slyp(N). Moreover, P ∩N ∈ Slyp(N), so (P1 ∩ T )∩N = P1 ∩N =

P ∩N . Consequently, P = (P1 ∩N)P1 = P1, a contradiction. Therefore, KG = 1.

Then by Lemma 2.3, P1∩T is S-quasinormal in G. Thus (P1∩T )Gq is a subgroup,

where q ̸= p and Gq ∈ Slyq(G). Since (P1∩T )∩N = ((P1∩T )Gq)∩NE((P1∩T )Gq),

Gq ≤ NG((P1 ∩ T ) ∩ N). On the other hand, Since N ≤ Op(G) ≤ T , P1 ∩ N =

(P1 ∩ T )∩N . Note that P = (N ∩ P )P1, thus P1 ∩N E P . Therefore P1 ∩N EG.

By the uniqueness of N , P1 ∩ N = 1 and so |P ∩ N | = p. Recall that P ∩ N ∈
Slyp(N), then N is p-nilpotent, contrary to (4). The contradiction completes the

proof of the theorem. �

Now we are ready to prove Theorem 1.1.

Proof. Assume that the theorem is not true and let G be a counter-example of

minimal order. We prove the theorem by the following several of steps.

(1) Op′(G) = 1.

In fact, ifOp′(G) ̸= 1, then we consider the quotient groupG/Op′(G). By Lemma

2.1, G/Op′(G) satisfies the hypotheses of the theorem, it follows that G/Op′(G) is

p-nilpotent by the choice of G. Hence G is p-nilpotent, a contradiction.

(2) |D| > p.

If |D| = p, then by Lemma 2.1, G is a minimal non-p-nilpotent group, so G =

[P ]Q, where P , Q are Sylow p-subgroup and Sylow q-subgroup of G, respectively.

Set Φ = Φ(P ) and let X/Φ be subgroup of P/Φ of order p, x ∈ X \Φ and L = ⟨x⟩.
Then L is order p or 4. L is weakly S-semipermutably embedded in G. Lemma 2.8

implies that |P/Φ| = p, it follows that G is p-nilpotent.

(3) |P : D| > p.

By Theorem 3.1.

(4) If N ≤ P and N is minimal normal subgroup of G, then |N | ≤ |D|.
Assume that |N | > |D|. It follows by the hypothesis that all subgroups of N of

order |D| are weakly S-semipermutably embedded subgroups. Since N ≤ Op(G),

N is an elementary abelian group. Then by Lemma 2.7, some maximal subgroup

N1 of N is normal in G. It follows from the minimality of N that N1 = 1, thus

|N | = |D| = p, a contradiction.
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(5) If N ≤ P and N is minimal normal subgroup of G, then G/N is p-nilpotent.

If |N | < |D|, then it follows by Lemma 2.1 that G/N is p-nilpotent. By (4),

we may assume that |N | = |D|. Let N ≤ K ≤ P such that |K/N | = p. By

(2), N is non-cyclic, so K is also non-cyclic, it follows that K has a maximal

subgroup L ̸= N and K = LN . So L is weakly S-semipermutably embedded in G

(note that |L| = |D|), it follows that K/N = LN/N is weakly S-semipermutably

embedded in G/N . If P/N is abelian, then G/N satisfies hypothesis. Next suppose

that that P/N is a non-abelian 2-group. So every subgroup of P of order 2|D|
is weakly S-semipermutablly embedded in G. In this case one can show as above

that every subgroup X of P containing N and such that |X : N | = 4 is weakly

S-semipermutably embedded in G. Therefore G/N also satisfies the hypothesis.

(6) Op(G) = 1.

If Op(G) ̸= 1, then we can find a minimal normal subgroup N of G contained in

Op(G). Note that N ̸≤ Φ(G), thus there is a maximal subgroup M of G such that

G = NM and M ∩N = 1.

By (5), M is p-nilpotent. So M = MpOp′(M) and G = NMpOp′(M). Let M0

be a maximal subgroup of Mp. Then |G : (NM0Op′(M))| = p. Since p is the

smallest prime, NM0Op′(M)EG, and so P ∩ (NM0Op′(M)) is a Sylow p-subgroup

of NM0Op′(M). Moreover, 1 < |D| < |P ∩ (NM0Op′(M))| by (3). Then the group

NM0Op′(M) also satisfies the hypothesis. Hence by induction, NM0Op′(M) is

p-nilpotent and so Op′(M)EG. Hence G is p-nilpotent. Thus we have (6).

(7) G is non-abelian simple.

If G is not simple, then there exists a minimal normal subgroup L. If |Lp| > |D|,
then L satisfies the hypothesis. Hence by induction, L is p-nilpotent. By (1),

Op′(G) = 1, so L is a p-group. (6) implies L = 1, this is a contradiction. Therefore,

|Lp| ≤ |D|. So there exists a subgroup P0 such that L∩P ≤ P0 ≤ P and |P0| = p|D|.
Moreover, we have that P0 is Sylow p-subgroup P0L. By (3), P0 is a proper subgroup

of P and thus P0L is also a proper subgroup of G. Note that P0L also satisfies

the hypothesis. Hence by induction, P0L is p-nilpotent. Hence L is p-nilpotent, a

contradiction.

(8) All subgroups of P of order |D| and 2|D| (if P is a non-abelian 2-group and

|P : D| > 2) are S-semipermutable or S-quasinormally embedded in G.

LetH ≤ P and |H| = |D| or 2|D|. IfH isn’t S-semipermutable or S-quasinormally

embedded in G, by Lemma 2.4, there is a normal subgroup M of G such that
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|G : M | = p. By (3), M is p-nilpotent, it follows that G is p-nilpotent, a contradic-

tion.

(9) The final contradiction.

Let H be a subgroup of P of order |D|. If H is S-semipermutable, then there

exists a Sylow q-subgroup Q of G, such that HQg = QgH, where q ̸= p and g ∈ G.

Note that G is a non-abelian simple group, then it follows by Lemma 2.10 that

G = HQ, thus G is solvable, a contradiction. If H is S-quasinormally embedded in

G, then there exists a S-quasinormal subgroup R such that H is Sylow p-subgroup

of R. Since a S-quasinormal subgroup is subnormal subgroup, it follows by (7) that

R = G. Hence H is Sylow p-subgroup of G, a contradiction. The contradiction

completes the proof. �

Applying Theorem 1.1, we easily get the following three results.

Corollary 3.1. Let G be a group. If, for every prime p dividing the order of G

and P ∈ Sylp(G), P has a subgroup D such that 1 < |D| < |P | and all subgroups

H of P with order |H| = |D| and with order 2|D| (if P is a non-abelian 2-group

and |P : D| > 2) are weakly S-semipermutablly embedded in G, then G has the

Sylow tower property of supersolvable type.

Corollary 3.2. Let p be the smallest prime dividing the order of a group G

and P a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P |
and all subgroups H of P with order |H| = |D| and with order 2|D| (if P is a non-

abelian 2-group and |P : D| > 2) are S-semipermutable in G, then G is p-nilpotent.

Corollary 3.3. Let p be the smallest prime dividing the order of a group G

and P a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P |
and all subgroups H of P with order |H| = |D| and with order 2|D| (if P is a

non-abelian 2-group and |P : D| > 2) are S-permutable in G, then G is p-nilpotent.

Theorem 3.4. Let F be a saturated formation containing all supersolvable groups

and G a group with a normal subgroup E such that G/E ∈ F . Suppose that every

non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P |
and all subgroups H of P with order |H| = |D| and with order 2|D| (if P is a

non-abelian 2-group and |P : D| > 2) are weakly S-semipermutably embedded in

G. Then G ∈ F .
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Proof. Suppose that the theorem is not true and let G be a counter-example of

minimal order. We have the following claims:

(1) Claim that G/Q ∈ F , where Q is a Sylow q-subgroup of E and q is the

largest prime dividing |E|.
By Corollary 3.1, E has the Sylow Tower property. Let q be the largest prime

dividing |E| and Q a Sylow q-subgroup of E. The fact that E possesses Sylow

Tower property implies that Q is normal in E. Now Q is characteristic in E and

E EG, so QEG. Furthermore, (G/Q)/(E/Q) ∼= G/E ∈ F and Lemma 2.1 shows

that G/Q satisfies the conditions of the theorem, thus by the choice of G, G/Q ∈ F .

(2) Every subgroup H of Q with order |H| = |D| is weakly S-permutable in G.

By lemma 2.6, we have (2).

(3) If N ≤ Q and N is minimal normal subgroup of G, then G/N ∈ F .

If either |N | < |D| or |Q : D| = q, then it is clear. So let |N | = |D| and
|Q : D| > q. Let N ≤ K ≤ P with |K/N | = p. By Lemma 2.7, |D| > q, it

follows that N is non-cyclic, so K is also non-cyclic. Hence K has a maximal

subgroup L ̸= N and K = LN . So L is weakly S-permutable in G, it follows

that K/N = LN/N is weakly S-permutable in G/N . Therefore G/N satisfies the

hypothesis, as desired.

(4) Final contradiction.

Let N be a minimal normal subgroup of G contained in Q. Then by (3), N is

the only minimal normal subgroup of G contained in Q and so N = Q. But by

Lemma 2.7 it is impossible, because Q is a minimal normal subgroup of G. This

contradiction completes the proof of this theorem. �

By Theorem 1.3 of [16] and Lemma 2.6, we have the following.

Corollary 3.5. Let F be a saturated formation containing all supersoluble groups

and G a group with a solvable normal subgroup E such that G/E ∈ F Suppose

that every non-cyclic Sylow subgroup P of F (E) has a subgroup D such that

1 < |D| < |P | and all subgroups H of P with order |H| = |D| and with order

2|D| (if P is a non-abelian 2-group and |P : D| > 2) are weakly S-semipermutably

embedded in G. Then G ∈ F .

Theorem 3.6. G a group with a normal subgroup E such that G/E is super-

solvable, Suppose that every non-cyclic Sylow subgroup P of F ∗(E) has a sub-

group D such that 1 < |D| < |P | and all subgroups H of P with order |H| = |D|
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and with order 2|D| (if P is a non-abelian 2-group and |P : D| > 2) are weakly

S-semipermutably embedded in G. Then G is supersolvable.

Proof. Suppose that the theorem is false and let G be a counterexample of smallest

order, then we have:

(1) Every proper normal subgroup of G containing F ∗(E) is supersolvable.

If N is a proper normal subgroup ofG containing F ∗(E), we have thatN/N∩E =

NE/E is supersolvable. By Lemma 2.9, F ∗(E) = F ∗(F ∗(E)) ≤ F ∗(E ∩ N) ≤
F ∗(E), so F ∗(E ∩N) = F ∗(E). By Lemma 2.1, (N,N ∩E) satisfy the hypotheses

of the theorem, thus the minimal choice of G implies that N is supersolvable.

(2) E = G, and F ∗(E) = F (G) < G.

If E < G, then E is supersolvable by (1). In particular, E is solvable, so G

is solvable and F ∗(E) = F (E), it follows that G is supersolvable by applying

Corollary 3.5, a contradiction. If F ∗(G) = G, then G is supersolvable by Theorem

3.4, a contradiction. Thus F ∗(G) < G and F ∗(G) is supersolvable by (1), it follows

by Lemma 2.9 that F ∗(E) = F ∗(G) = F (G).

(3) Final contradiction.

Applying Corollary 3.5, G is supersolvable, the final contradiction. �

Proof of Theorem 1.2. By Lemma 2.1, we have that all subgroups of any Sylow

subgroup of order |D| of F ∗(E) are Weakly S-semipermutably embedded in E, so

Theorem 3.6 implies that E is supersolvable. Hence F ∗(E) = F (E). Let P be a

Sylow p-subgroup of F (E), for some prime p, and let H be an arbitrary subgroup

of order |D| of P . Since P is normal in G, it follows that H is subnormal in G. By

the hypotheses, H is Weakly S-semipermutably embedded in G. So H is Weakly

S-permutable in G by Lemma 2.6. Thus all subgroups of P of order |D| are Weakly

S-permutable in G. Applying Corollary 3.5, G belongs to F . �

4. Application

Corollary 4.1. Let p be the smallest prime dividing the order of a group G and P

a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P | and all

subgroups H of P with order |H| = |D| and with order 2|D| (if P is a non-abelian

2-group and |P : D| > 2) are Weakly s-permutable in G, then G is p-nilpotent.

Corollary 4.2. ([16, Theorem 1.3]) Let F be a saturated formation containing all

supersolvable groups and G a group with a normal subgroup E such that G/E ∈ F
Suppose that every non-cyclic Sylow subgroup P of F ∗(E) has a subgroup D such
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that 1 < |D| < |P | and all subgroups H of P with order |H| = |D| and with order

2|D| (if P is a non-abelian 2-group and |P : D| > 2) are weakly s-permutable in G.

Then G ∈ F .

Corollary 4.3. ([19, Theorem 4.2]) Let F be a saturated formation containing all

supersolvable groups and G a group. Then G ∈ F if and only if there exists a

normal subgroup E such that G/E ∈ F and all maximal subgroups of any Sylow

subgroup of F (E) are c-normal in G.

Corollary 4.4. ([19, Theorem 4.1]) Let F be a saturated formation containing all

supersolvable groups and G a group. Then G ∈ F if and only if there exists a

normal subgroup E such that G/E ∈ F and all maximal subgroups of any Sylow

subgroup of F ∗(E) are c-normal in G.

Corollary 4.5. ([13, Theorem 2.3]) Let p be the smallest prime dividing |G| and
let P be a Sylow p-subgroup of G of exponent pe where e > 1. Suppose that all

members of the family {H|H < P,H ′ = 1, Exp(H) = pe} are S-quasinormal in G.

Then G has a normal p-complement.

Corollary 4.6. Let p be the smallest prime dividing the order of a group G and P

a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P | and all

subgroups H of P with order |H| = |D| and with order 2|D| (if P is a non-abelian

2-group and |P : D| > 2) are SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.7. ([11, Theorem 3.1]) Let G be a group and P a Sylow p-subgroup of

G, where p is the minimal prime divisor of |G|. If every maximal subgroup of P is

SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.8. ([11, Theorem 3.2]) Let F be a saturated formation containing all

supersolvable groups and G a group. Then G ∈ F if and only if there exists a

normal subgroup E such that G/E ∈ F and all maximal subgroups of any Sylow

subgroup of F (E) are SS-quasinormal in G.

Corollary 4.9. ([11, Theorem 3.3]) Let F be a saturated formation containing all

supersolvable groups and G a group. Then G ∈ F if and only if there exists a

normal subgroup E such that G/E ∈ F and all maximal subgroups of any Sylow

subgroup of F ∗(E) are SS-quasinormal in G.

Corollary 4.10. ([11, Theorem 3.4]) Let F be a saturated formation containing

all supersolvable groups and G a group. Then G ∈ F if and only if there exists a

normal subgroup E such that G/E ∈ F and the cyclic subgroups of prime order or

order 4 of F (E) are SS-quasinormal in G.
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Corollary 4.11. ([11, Theorem 3.5]) Let F be a saturated formation containing

all supersolvable groups and G a group. Then G ∈ F if and only if there exists a

normal subgroup E such that G/E ∈ F and the cyclic subgroups of prime order or

order 4 of F ∗(E) are SS-quasinormal in G.

Corollary 4.12. Let F be a saturated formation containing all supersolvable groups

and G a group. Then G ∈ F if and only if there exists a normal subgroup E such

that G/E ∈ F and the cyclic subgroups of prime order or order 4 of F (E) are

c-normal in G.

Corollary 4.13. Let F be a saturated formation containing all supersolvable groups

and G a group. Then G ∈ F if and only if there exists a normal subgroup E such

that G/E ∈ F and the cyclic subgroups of prime order or order 4 of F ∗(E) are

c-normal in G.
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