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1. Introduction

Maltsev algebras were introduced by Maltsev [20], who called these objects

Moufang-Lie algebras. A Maltsev algebra is a non-associative algebra A with an

anti-symmetric multiplication [−,−] that satisfies the Maltsev identity

J(x, y, [x, z]) = [J(x, y, z), x] (1)

for all x, y, z ∈ A, where J(x, y, z) = [[x, y], z]+ [[z, x], y]+ [[y, z], x] is the Jacobian.

In particular, Lie algebras are examples of Maltsev algebras. Maltsev algebras play

an important role in the geometry of smooth loops. Just as the tangent algebra of a

Lie group is a Lie algebra, the tangent algebra of a locally analytic Moufang loop is a

Maltsev algebra [14,15,20,23,26]. The reader is referred to [10,22,24] for discussions

about the relationships between Maltsev algebras, exceptional Lie algebras, and

physics.

Closely related to Maltsev algebras are alternative algebras. An alternative al-

gebra is an algebra whose associator is an alternating function. In particular, all

associative algebras are alternative, but there are plenty of non-associative alter-

native algebras, such as the octonions. Roughly speaking, alternative algebras are

related to Maltsev algebras as associative algebras are related to Lie algebras. In-

deed, as Maltsev observed in [20], every alternative algebra A is Maltsev-admissible,

i.e., the commutator algebra A− is a Maltsev algebra. There are many Maltsev-

admissible algebras that are not alternative; see, e.g., [22]. The reader is referred to

[30] for applications of alternative algebras to projective geometry, buildings, and

algebraic groups.
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Instead of the commutator, the anti-commutator also gives rise to interesting

structures. A Jordan algebra is a commutative algebra that satisfies the Jordan

identity

(x2y)x = x2(yx). (2)

Starting with an alternative algebra A, it is known that the Jordan product

x ∗ y =
1

2
(xy + yx)

gives a Jordan algebra A+ = (A, ∗). In other words, alternative algebras are Jordan-

admissible. The reader is referred to [10,13,24,29] for discussions about the impor-

tant roles of Jordan algebras in physics, especially quantum mechanics.

The purpose of this paper is to study Hom-type generalizations of Maltsev(-

admissible) algebras, alternative algebras, and Jordan(-admissible) algebras. The

reader is referred to the survey article [17] for discussions about other Hom-type

algebras and to [33]-[42] for Hom-type analogues of Novikov algebras, quantum

groups, and the Yang-Baxter equations. Roughly speaking, a Hom-type generaliza-

tion of a kind of algebras is defined by twisting the defining identities by a self-map,

called the twisting map. When the twisting map is the identity map, one recovers

the original kind of algebras.

Below is a description of the rest of this paper.

In section 2 we define Hom-Maltsev algebras and prove two construction results,

Theorems 2.10 and 2.12. Hom-Maltsev algebras include Maltsev algebras and Hom-

Lie algebras as examples. Theorem 2.10 says that the class of Hom-Maltsev algebras

is closed under the process of taking derived Hom-algebras (Definition 2.8), in

which the structure maps are suitably twisted by the twisting map. Theorem 2.12

says that a Maltsev algebra (A, [−,−]) can be twisted into a Hom-Maltsev algebra

Aα = (A, [−,−]α = α ◦ [−,−], α) along any algebra self-map α of A. In Examples

2.13 and 2.14, we show that, using Theorem 2.12 with different algebra self-maps,

it is possible to twist a Maltsev algebra into a non-Hom-Lie Hom-Maltsev algebra,

a Hom-Lie algebra, or a Lie algebra.

The Hom-type analogue of an alternative algebra is called a Hom-alternative

algebra, in which the Hom-associator (3) is alternating. Hom-alternative algebras

were introduced by Makhlouf in [16]. In section 3 we show that Hom-alternative

algebras are Hom-Maltsev admissible (Theorem 3.8). That is, the commutator

Hom-algebra (Definition 3.5) of a Hom-alternative algebra is a Hom-Maltsev alge-

bra, generalizing the fact that alternative algebras are Maltsev-admissible. Hom-

Lie admissible algebras [18] and Maltsev-admissible algebras are obvious examples

of Hom-Maltsev admissible algebras. The proof of the Hom-Maltsev-admissibility

of Hom-alternative algebras involves the Hom-type analogues of certain identities

that hold in alternative algebras and of the Bruck-Kleinfeld function (Definition

3.11). In Example 3.19, starting with the octonions, we construct (non-Hom-Lie)

Hom-Maltsev algebras using Theorem 3.8.

In section 4 we consider the class of Hom-Maltsev admissible algebras. In Propo-

sition 4.3 we give several characterizations of Hom-Maltsev admissible algebras that
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are also Hom-flexible [18]. In Theorems 4.4 and 4.5 we prove construction results

for Hom-flexible and Hom-Maltsev admissible algebras. Hom-alternative algebras

are Hom-flexible [16], so by Theorem 3.8 Hom-alternative algebras are both Hom-

flexible and Hom-Maltsev admissible. In Examples 4.6, 4.7, and 4.8, we construct

Hom-flexible, Hom-Maltsev admissible algebras that are not Hom-alternative, not

Hom-Lie admissible, and not Maltsev-admissible.

In section 5 we study Hom-Jordan(-admissible) algebras, which are the Hom-

type generalizations of Jordan(-admissible) algebras. The first definition of a Hom-

Jordan algebra was given by Makhlouf in [16]. Hom-alternative algebras are not

Hom-Jordan-admissible under that definition. We introduce a different definition

of a Hom-Jordan algebra and show that Hom-alternative algebras are Hom-Jordan-

admissible under this new definition (Theorem 5.6). In other words, the plus Hom-

algebra (Definition 5.1) of any Hom-alternative algebra is a Hom-Jordan algebra,

generalizing the Jordan-admissibility of alternative algebras. Construction results

analogous to Theorems 2.10 and 2.12 are proved for Hom-Jordan(-admissible) al-

gebras (Theorems 5.8 and 5.9). In Example 5.10, we construct (non-Jordan) Hom-

Jordan algebras using the 27-dimensional exceptional simple Jordan algebra of 3×3

Hermitian octonionic matrices.

In section 6 we provide further properties for Hom-alternative algebras. First

we observe that a Hom-algebra is Hom-associative if and only if it is both Hom-

alternative and Hom-Lie admissible (Proposition 6.1). Then we show that the class

of Hom-alternative algebras is closed under taking derived Hom-algebras (Propo-

sition 6.2). In Propositions 6.3 and 6.5 we provide further properties of the Hom-

Bruck-Kleinfeld function in Hom-alternative algebras. It is well-known that the

Moufang identities (72) hold in alternative algebras. In Theorem 6.8 we show that

there are Hom-type generalizations of the Moufang identities in Hom-alternative

algebras.

2. Hom-Maltsev algebras

In this section we define Hom-Maltsev algebras and study their general proper-

ties. Other characterizations of the Hom-Maltsev identity are given (Proposition

2.7). We prove some construction results for Hom-Maltsev algebras (Theorems 2.10

and 2.12). Using Theorem 2.12, we demonstrate in Examples 2.13 and 2.14 that it

is possible to twist a Maltsev algebra into a non-Hom-Lie Hom-Maltsev algebra or

a Hom-Lie (or even Lie) algebra using different algebra morphisms.

2.1. Conventions. Throughout the rest of this paper, we work over a fixed field k

of characteristic 0. Modules, tensor products, linearity, and Hom are all meant over

k. If f : V → V is a linear self-map on a vector space V , then fn : V → V denotes

the composition f ◦ · · · ◦ f of n copies of f , with f0 = Id. For a map µ : V ⊗2 → V ,

we sometimes write µ(a, b) as ab for a, b ∈ V . If W is another vector space, then

τ : V ⊗W ∼= W⊗V denotes the twist isomorphism, τ(v⊗w) = w⊗v. More generally,
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we do not distinguish between a permutation θ on n letters and its induced linear

isomorphism θ : V ⊗n → V ⊗n given by θ(v1 ⊗ · · · ⊗ vn) = vθ(1) ⊗ · · · ⊗ vθ(n).

Let us give the definitions regarding Hom-algebras.

Definition 2.1. By a Hom-algebra we mean a triple (A,µ, α) in which A is a

k-module, µ : A⊗2 → A is a bilinear map (the multiplication), and α : A → A is a

linear map (the twisting map) such that α◦µ = µ◦α⊗2 (multiplicativity). A Hom-

algebra (A,µ, α) is usually denoted simply by A. A morphism f : A → B of Hom-

algebras is a linear map f of the underlying k-modules such that f ◦ αA = αB ◦ f
and µB ◦ f⊗2 = f ◦ µA.

Remark 2.2. If (A,µ) is a not-necessarily associative algebra in the usual sense, we

also regard it as the Hom-algebra (A,µ, Id) with identity twisting map. This defines

a fully faithful embedding from the category of algebras into the category of Hom-

algebras. With this convention, the notion of a morphism between Hom-algebras

with identity twisting maps reduces to the usual notion of an algebra morphism.

Remark 2.3. The multiplicativity of the twisting map α is built into our definition

of a Hom-algebra. Some authors (see, e.g., [16,17,18]) do not make this assumption.

We chose to impose multiplicativity because many of our results depend on it and

all of our concrete examples of Hom-Maltsev(-admissible), Hom-alternative, and

Hom-Jordan(-admissible) algebras have this property.

The algebraic structures studied in this paper are all defined using the Hom-

versions of the associator and the Jacobian, which we now define.

Definition 2.4. Let (A,µ, α) be a Hom-algebra.

(1) The Hom-associator of A [18] is the trilinear map asA : A⊗3 → A defined

as

asA = µ ◦ (µ⊗ α− α⊗ µ). (3)

(2) The Hom-Jacobian of A [18] is the trilinear map JA : A⊗3 → A defined

as

JA = µ ◦ (µ⊗ α) ◦ (Id+ σ + σ2), (4)

where σ : A⊗3 → A⊗3 is the cyclic permutation σ(x⊗ y ⊗ z) = z ⊗ x⊗ y.

If there is only one Hom-algebra under consideration, we will sometimes omit the

subscript in the Hom-associator and the Hom-Jacobian

Note that when (A,µ) is an algebra (with α = Id), its Hom-associator and

Hom-Jacobian coincide with its usual associator and Jacobian, respectively.

Since Hom-Maltsev algebras generalize Hom-Lie algebras (as we will see shortly),

which in turn generalize Lie algebras, we use the bracket notation [−,−] to denote

their multiplications.
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Definition 2.5. (1) A Hom-Lie algebra is a Hom-algebra (A, [−,−], α) such

that [−,−] is anti-symmetric (i.e., [−,−]◦(Id+τ) = 0) and that the Hom-

Jacobi identity

JA = 0 (5)

is satisfied, where JA is the Hom-Jacobian of A (4) [11,18].

(2) A Hom-Maltsev algebra is a Hom-algebra (A, [−,−], α) such that [−,−]

is anti-symmetric and that the Hom-Maltsev identity

JA(α(x), α(y), [x, z]) = [JA(x, y, z), α
2(x)] (6)

is satisfied for all x, y, z ∈ A.

Observe that when α = Id, the Hom-Jacobi identity reduces to the usual Jacobi

identity

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0

for all x, y, z ∈ A. Likewise, when α = Id, by the anti-symmetry of [−,−], the

Hom-Maltsev identity reduces to the Maltsev identity (1) or equivalently,

[[x, y], [x, z]] = [[[x, y], z], x] + [[[y, z], x], x] + [[[z, x], x], y] (7)

for all x, y, z ∈ A.

Example 2.6. A Lie (resp., Maltsev [20]) algebra (A, [−,−]) is a Hom-Lie (resp.,

Hom-Maltsev) algebra with α = Id, since the Hom-Jacobi identity (5) (resp., the

Hom-Maltsev identity (6)) reduces to the usual Jacobi (resp., Maltsev) identity when

α = Id. Moreover, every Hom-Lie algebra is also a Hom-Maltsev algebra because

the Hom-Jacobi identity JA = 0 clearly implies the Hom-Maltsev identity. �

Before we give more examples of Hom-Maltsev algebras, let us give some other

characterizations of the Hom-Maltsev identity.

Proposition 2.7. Let (A, [−,−], α) be a Hom-algebra with [−,−] anti-symmetric.

Then the following statements are equivalent.

(1) A is a Hom-Maltsev algebra, i.e., the Hom-Maltsev identity (6) holds.

(2) The condition

J(α(w), α(y), [x, z]) + J(α(x), α(y), [w, z])

= [J(w, y, z), α2(x)] + [J(x, y, z), α2(w)]
(8)

holds for all w, x, y, z ∈ A.

(3) The condition

α([[x, y], [x, z]]) = [[[x, y], α(z)], α2(x)] + [[[y, z], α(x)], α2(x)]

+ [[[z, x], α(x)], α2(y)]
(9)

holds for all x, y, z ∈ A.
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(4) The condition

α([[w, y], [x, z]]) + α([[x, y], [w, z]])

= [[[w, y], α(z)], α2(x)] + [[[x, y], α(z)], α2(w)]

+ [[[y, z], α(w)], α2(x)] + [[[y, z], α(x)], α2(w)]

+ [[[z, w], α(x)], α2(y)] + [[[z, x], α(w)], α2(y)]

(10)

holds for all w, x, y, z ∈ A.

Proof. The equivalence between the Hom-Maltsev identity (6) and (8) follows from

linearization: To get the latter, replace x with w+x in the former. Conversely, (8)

yields (6) by setting w = x. Similarly, linearization implies the equivalence between

(9) and (10).

To prove the equivalence between the Hom-Maltsev identity and (9), observe

that the left-hand side of the Hom-Maltsev identity (6) is:

J(α(x), α(y), [x, z]) = [[α(x), α(y)], α([x, z])] + [[[x, z], α(x)], α2(y)]

+ [[α(y), [x, z]], α2(x)]

= α([[x, y], [x, z]])− [[[z, x], α(x)], α2(y)] + [[[z, x], α(y)], α2(x)].

In the last equality above, we used the multiplicativity of α and the anti-symmetry

of [−,−]. Likewise, the right-hand side of the Hom-Maltsev identity (6) is:

[J(x, y, z), α2(x)] = [[[x, y], α(z)], α2(x)]+[[[z, x], α(y)], α2(x)]+[[[y, z], α(x)], α2(x)].

Since the summand [[[z, x], α(y)], α2(x)] appears on both sides of (6), the above

calculation and a rearrangement of terms imply the equivalence between the Hom-

Maltsev identity and (9). �

To state our next result, we need the following definition.

Definition 2.8. Let (A,µ, α) be a Hom-algebra and n ≥ 0. Define the nth derived

Hom-algebra of A by

An = (A,µ(n) = α2n−1 ◦ µ, α2n).

Note that A0 = A, A1 = (A,µ(1) = α ◦ µ, α2), and An+1 = (An)1.

The following elementary observations are used in the next result.

Lemma 2.9. Let (A,µ, α) be a Hom-algebra. Then we have

JA ◦ α⊗3 = α ◦ JA (11)

and

JAn = α2(2n−1) ◦ JA (12)

for all n ≥ 0
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Proof. The condition (11) holds because α⊗3 commutes with the cyclic permuta-

tion σ and α is multiplicative. For (12), observe that:

µ(n) ◦ (µ(n) ⊗ α2n) = α2n−1 ◦ µ ◦ ((α2n−1 ◦ µ)⊗ α2n)

= α2n−1 ◦ µ ◦ (α2n−1)⊗2 ◦ (µ⊗ α)

= α2(2n−1) ◦ µ ◦ (µ⊗ α),

(13)

where the last equality follows from the multiplicativity of α with respect to µ.

Pre-composing (13) with the cyclic sum (Id+ σ + σ2), we obtain (12). �

The following result shows that the category of Hom-Maltsev algebras is closed

under taking derived Hom-algebras.

Theorem 2.10. Let (A, [−,−], α) be a Hom-Maltsev algebra. Then the nth derived

Hom-algebra

An = (A, [−,−](n) = α2n−1 ◦ [−,−], α2n)

is also a Hom-Maltsev algebra for each n ≥ 0.

Proof. Since A0 = A, A1 = (A, [−,−](1) = α ◦ [−,−], α2), and An+1 = (An)1, by

an induction argument it suffices to prove the case n = 1.

To show that A1 is a Hom-Maltsev algebra, first note that [−,−](1) is anti-

symmetric because [−,−] is anti-symmetric and α is linear. Since α2 is multiplica-

tive with respect to [−,−](1), it remains to show the Hom-Maltsev identity (6) for

A1. For x, y, z ∈ A, we compute as follows:

JA1(α2(x), α2(y), [x, z](1)) = JA1(α2(x), α2(y), α([x, z]))

= α2
(
JA(α

2(x), α2(y), α([x, z]))
)

(by (12))

= α3 (JA(α(x), α(y), [x, z])) (by (11))

= α3
(
[JA(x, y, z), α

2(x)]
)

(by (6) in A)

= [α2(JA(x, y, z)), (α
2)2(x)](1) (by multiplicativity of α)

= [JA1(x, y, z), (α2)2(x)](1) (by (12)).

This establishes the Hom-Maltsev identity in A1 and finishes the proof. �

To state our next result, we need the following definition.

Definition 2.11. Let (A,µ) be any algebra and α : A → A be an algebra morphism.

Define the Hom-algebra induced by α as

Aα = (A,µα, α),

where µα = α ◦ µ.

The next result shows that given a Maltsev algebra and an algebra morphism,

the induced Hom-algebra is a Hom-Maltsev algebra. The Hom-Maltsev algebras

constructed using this twisting result are generally not Maltsev algebras, as we

will see in the examples later. Such a twisting result was first used by the author

in [32] (Theorem 2.3) on G-associative algebras (where G is a subgroup of the
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symmetric group on three letters), which include associative, Lie, pre-Lie, and Lie-

admissible algebras as examples. That result has since been employed and extended

by various authors; see [3] (Theorem 2.7), [4] (Theorems 1.7 and 2.6), [8] (Section

2), [9] (Proposition 1), [16] (Theorems 2.1 and 3.5), [17], and [19].

Theorem 2.12. Let (A, [−,−]) be a Maltsev algebra and α : A → A be an algebra

morphism. Then the Hom-algebra Aα = (A, [−,−]α = α ◦ [−,−], α) induced by α

is a Hom-Maltsev algebra.

Proof. Since [−,−]α is clearly anti-symmetric, it remains to prove the Hom-

Maltsev identity (6) for Aα. Here we regard A as the Hom-Maltsev algebra with

identity twisting map. For any algebra (A, [−,−]) (Maltsev or otherwise), by the

multiplicativity of α with respect to [−,−], we have

[−,−]α ◦ ([−,−]α ⊗ α) = α2 ◦ [−,−] ◦ ([−,−]⊗ Id)

and

[−,−] ◦ ([−,−]⊗ Id) ◦ α⊗3 = α ◦ [−,−] ◦ ([−,−]⊗ Id).

Pre-composing these identities with the cyclic sum (Id+σ+σ2) (4) (which commutes

with α⊗3), we obtain

JAα = α2 ◦ JA (14)

and

JA ◦ α⊗3 = α ◦ JA. (15)

To prove the Hom-Maltsev identity for Aα, we compute as follows:

JAα(α(x), α(y), [x, z]α) = α2 (JA(α(x), α(y), [α(x), α(z)])) (by (14))

= α2 ([JA(α(x), α(y), α(z)), α(x)]) (by (6) in A)

= [α(JA(α(x), α(y), α(z)), α
2(x)]α (multiplicativity of α)

= [α2(JA(x, y, z)), α
2(x)]α (by (15))

= [JAα(x, y, z), α
2(x)]α (by (14)).

This shows that the Hom-Maltsev identity holds in Aα. �

We now discuss examples of Hom-Maltsev algebras that can be constructed using

Theorem 2.12.

Example 2.13. There is a four-dimensional non-Lie Maltsev algebra (A, [−,−])

[27] (Example 3.1) with basis {e1, e2, e3, e4} and multiplication table:

[−,−] e1 e2 e3 e4
e1 0 −e2 −e3 e4
e2 e2 0 2e4 0

e3 e3 −2e4 0 0

e4 −e4 0 0 0
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We want to apply Theorem 2.12 to this Maltsev algebra. Using suitable algebra

morphisms, we can twist the Maltsev algebra A into non-Hom-Lie, non-Maltsev

Hom-Maltsev algebras or (Hom-)Lie algebras.

With a bit of computation, one can check that one class of algebra morphisms

α1 : A → A is given by

α1(e1) = e1 + a3e3 + a4e4,

α1(e2) = b2e2 + b3e3 + a3b2e4,

α1(e3) = ce3,

α1(e4) = b2ce4,

where a3, a4, b2, b3, and c are arbitrary scalars in k. By Theorem 2.12 there is a

Hom-Maltsev algebra

Aα1 = (A, [−,−]α1 = α1 ◦ [−,−], α1)

with multiplication table:

[−,−]α1 e1 e2 e3 e4
e1 0 −α1(e2) −ce3 b2ce4
e2 α1(e2) 0 2b2ce4 0

e3 ce3 −2b2ce4 0 0

e4 −b2ce4 0 0 0

Note that Aα1 is in general not a Hom-Lie algebra, i.e., JAα1
̸= 0. Indeed, we have

JA(e1, e2, e3) = −6e4.

Combining this with (14) we obtain

JAα1
(e1, e2, e3) = α2

1(JA(e1, e2, e3))

= α2
1(−6e4)

= −6(b2c)
2e4,

which is not equal to 0 in general.

Also, (A, [−,−]α1) is not a Maltsev algebra in general. Indeed, let J ′ denote the

usual Jacobian of (A, [−,−]α1), i.e.,

J ′(x, y, z) = [[x, y]α, z]α + [[z, x]α, y]α + [[y, z]α, x]α, (16)

where α = α1. To see that the Maltsev identity (1) does not hold in (A, [−,−]α1),

it suffices to show that

J ′(e1, e2, [e1, e3]α) ̸= [J ′(e1, e2, e3), e1]α. (17)

Indeed, we have

J ′(e1, e2, e3) = [[e1, e2]α, e3]α + [[e3, e1]α, e2]α + [[e2, e3]α, e1]α

= −2b2c(b2 + c+ b2c)e4.



186 DONALD YAU

This implies that, on the one hand,

J ′(e1, e2, [e1, e3]α) = −cJ ′(e1, e2, e3)

= 2b2c
2(b2 + c+ b2c)e4.

On the other hand, we have

[J ′(e1, e2, e3), e1]α = −2b2c(b2 + c+ b2c)[e4, e1]α

= 2(b2c)
2(b2 + c+ b2c)e4.

This proves that (17) holds whenever b2 ̸= 1 and b2c(b2 + c + b2c) ̸= 0. So

(A, [−,−]α1) is not a Maltsev algebra in general.

Using Theorem 2.12 it is also possible to twist the Maltsev algebra A into a

(Hom-)Lie algebra. For example, consider the following class of algebra morphisms

α2 : A → A:

α2(e1) = −e1 + a2e2 + a3e3 + a4e4,

α2(e2) = be4,

α2(e3) = 0 = α2(e4),

where a2, a3, a4, and b are arbitrary scalars in k. By Theorem 2.12 there is a

Hom-Maltsev algebra

Aα2 = (A, [−,−]α2 = α2 ◦ [−,−], α2)

with multiplication table:

[−,−]α2 e1 e2 e3 e4
e1 0 −be4 0 0

e2 be4 0 0 0

e3 0 0 0 0

e4 0 0 0 0

From this multiplication table, it is easy to check that JAα2
= 0, i.e., Aα2 is actually

a Hom-Lie algebra. Likewise, one can check that (A, [−,−]α2) is a Lie algebra. �

Example 2.14. There is a five-dimensional non-Lie Maltsev algebra (A, [−,−])

[27] (Example 3.4) with basis {e1, e2, e3, e4, e5} and multiplication table:

[−,−] e1 e2 e3 e4 e5
e1 0 0 0 e2 0

e2 0 0 0 0 e3
e3 0 0 0 0 0

e4 −e2 0 0 0 0

e5 0 −e3 0 0 0

Let us classify all the algebra morphisms α : A → A. From the multiplication table

of A, it follows that α is determined by its values at e1, e4, and e5. With a bit of

computation, one can show that α : A → A is an algebra morphism if and only if it
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has the form

α(e1) = a1e1 + a2e2 + a3e3 + a4e4 + a5e5,

α(e2) = (a1b4 − a4b1)e2 + (a2b5 − a5b2)e3,

α(e3) = (a1b4 − a4b1)c5e3,

α(e4) = b1e1 + b2e2 + b3e3 + b4e4 + b5e5,

α(e5) = c1e1 + c2e2 + c3e3 + c4e4 + c5e5

with ai, bj , ck ∈ k, such that

a5(a4b1 − a1b4) = 0 = b5(a4b1 − a1b4),

a1c4 = a4c1, a2c5 = a5c2, b1c4 = b4c1, b2c5 = b5c2.

For each such algebra morphism α : A → A, by Theorem 2.12 there is a Hom-

Maltsev algebra

Aα = (A, [−,−]α = α ◦ [−,−], α)

whose multiplication table is:

[−,−]α e1 e2 e3 e4 e5
e1 0 0 0 α(e2) 0

e2 0 0 0 0 α(e3)

e3 0 0 0 0 0

e4 −α(e2) 0 0 0 0

e5 0 −α(e3) 0 0 0

The Hom-Maltsev algebra Aα is in general not Hom-Lie, since

JAα(e1, e4, e5) = α2(JA(e1, e4, e5)) (by (14))

= α2(e3)

= (a1b4 − a4b1)
2c25e3,

which is not equal to 0 whenever (a1b4 − a4b1)c5 ̸= 0.

In strong contrast with Example 2.13, we claim that (A, [−,−]α) is always a

Maltsev algebra, regardless of what algebra morphism α : A → A we choose. Since

[−,−]α is anti-symmetric, we only need to see that the Maltsev identity (1) holds.

Indeed, the images of [−,−] and [−,−]α are both contained in span{e2, e3}, and

α(e3) lies in span{e3}. It follows that

[[x, y]α, z]α ⊆ span{e3},

which implies that

[[[x, y]α, z]α, w]α = 0 (18)

for all w, x, y, z ∈ A. Thus, if J ′ denotes the usual Jacobian of (A, [−,−]α) as in

(16), then

[J ′(x, y, z), w]α = 0, (19)

which is in particular true when w = x. On the other hand, we have

J ′(x, y, [x, z]α) = [[x, y]α, [x, z]α]α + [[[x, z]α, x]α, y]α + [[y, [x, z]α]α, x]α

= α2([[x, y], [x, z]]) (by (18) and multiplicativity of α).
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Since both [x, y] and [x, z] lie in span{e2, e3}, it follows from the multiplication table

of A that [[x, y], [x, z]] = 0. Thus, we have

J ′(x, y, [x, z]α) = 0 (20)

for all x, y, z ∈ A. It follows from (19) and (20) that the Maltsev identity (1) holds

in (A, [−,−]α).

Moreover, certain choices of algebra morphisms β : A → A make Aβ into a Hom-

Lie algebra and (A, [−,−]β) into a Lie algebra. For example, consider the algebra

morphism β on A given by

β(e1) = ae1, β(e2) = abe2, β(e4) = be4, β(e3) = 0 = β(e5),

where a, b ∈ k are arbitrary scalars. The only non-zero brackets in Aβ involving

the basis elements are

[e1, e4]β = abe2 = −[e4, e1]β .

This implies that JAβ
and J ′ (the usual Jacobian in (A, [−,−]β)) are both equal to

0, so Aβ is a Hom-Lie algebra and (A, [−,−]β) is a Lie algebra. �

3. Hom-alternative algebras are Hom-Maltsev admissible

The main purpose of this section is to show that every Hom-alternative algebra

[16] gives rise to a Hom-Maltsev algebra via the commutator bracket (Theorem

3.8). This means that Hom-alternative algebras are all Hom-Maltsev admissible

algebras, generalizing the well-known fact that alternative algebras are Maltsev-

admissible. More properties of Hom-alternative algebras are considered in sections

5 and 6. At the end of this section, we consider an eight-dimensional, non-Hom-Lie

Hom-Maltsev algebra arising from the octonions (Example 3.19).

Let us begin with some relevant definitions.

Definition 3.1. Let V be a k-module and f : V ⊗n → V be an n-linear map for

some n ≥ 2. We say that f is alternating if

f = ϵ(π)f ◦ π

for each permutation π on n letters, where ϵ(π) ∈ {±1} is the signature of π.

Since we are working over a field k of characteristic 0, the following characteri-

zations of alternating maps are well-known facts in basic linear algebra and group

theory. We, therefore, omit the proof. We will use the following Lemma without

further comment.

Lemma 3.2. Let V be a k-module and f : V ⊗n → V be an n-linear map. Then

the following statements are equivalent:

(1) f is alternating.

(2) f(x1, . . . , xn) = 0 whenever xi = xj for some i ̸= j.

(3) f = −f ◦ ι for each transposition ι on n letters.

(4) f = (−1)n−1f◦ξ and f = −f◦η, where ξ is the cyclic permutation (12 · · ·n)
and η is the adjacent transposition (n− 1, n).



HOM-MALTSEV, HOM-ALTERNATIVE, AND HOM-JORDAN ALGEBRAS 189

Definition 3.3. Let (A,µ, α) be a Hom-algebra (Definition 2.1). Then A is called

a:

(1) Hom-associative algebra [18] if asA = 0, where asA is the Hom-associator

(3);

(2) Hom-alternative algebra [16] if asA is alternating;

(3) Hom-flexible algebra [18] if asA(x, y, x) = 0 for all x, y ∈ A.

It follows from the above definitions that a Hom-associative algebra is also a

Hom-alternative algebra and that a Hom-alternative algebra is also a Hom-flexible

algebra. Also, when α = Id in Definition 3.3, we recover the usual notions of

associative, alternative, and flexible algebras, respectively.

Remark 3.4. In [16] a Hom-alternative algebra was actually defined as a Hom-

algebra (A,µ, α) that satisfies both

asA(x, x, y) = 0 (left Hom-alternativity) (21)

and

asA(x, y, y) = 0 (right Hom-alternativity) (22)

for all x, y ∈ A. It is shown in [16] that this definition is equivalent to the one in

Definition 3.3. Indeed, if asA is alternating, then it is clearly also left and right

Hom-alternative. Conversely, left (right) Hom-alternativity is equivalent to asA
being alternating in the first (last) two variables. Since the transpositions (1 2) and

(2 3) generate the symmetric group on three letters, one infers that left and right

Hom-alternativity together imply that asA is alternating.

To state the main result of this section, we need the following definition. Recall

that τ : V ⊗W ∼= W ⊗ V denotes the twist isomorphism, τ(v ⊗ w) = w ⊗ v.

Definition 3.5. Let (A,µ, α) be a Hom-algebra. Define its commutator Hom-

algebra as the Hom-algebra

A− = (A, [−,−] = µ ◦ (Id− τ), α).

The multiplication [−,−] = µ◦(Id−τ) is called the commutator bracket of µ. We

call a Hom-algebra A Hom-Maltsev admissible (resp. Hom-Lie admissible

[18]) if A− is a Hom-Maltsev (resp. Hom-Lie) algebra (Definition 2.5).

Example 3.6. Since Hom-Lie algebras are all Hom-Maltsev algebras (Example

2.6), every Hom-Lie admissible algebra is also Hom-Maltsev admissible. In partic-

ular, since every G-Hom-associative algebra (e.g., Hom-associative, Hom-Lie, or

Hom-pre-Lie algebra) is Hom-Lie admissible [18] (Proposition 2.7), it is also Hom-

Maltsev admissible. In section 4, we will give examples of Hom-Maltsev admissible

algebras that are not Hom-Lie admissible. �

Example 3.7. A Maltsev-admissible algebra is defined as an algebra (A,µ) for

which the commutator algebra A− = (A, [−,−] = µ ◦ (Id− τ)) is a Maltsev algebra,

i.e., A− satisfies the Maltsev identity (1) (or equivalently (7)). Identifying algebras
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as Hom-algebras with identity twisting maps (Remark 2.2), a Maltsev-admissible

algebra is equivalent to a Hom-Maltsev admissible algebra with α = Id. �

It is proved in [18] that, given a Hom-associative algebra A, its commutator Hom-

algebra A− is a Hom-Lie algebra. Also, the commutator algebra of any alternative

algebra is a Maltsev algebra. The following main result of this section generalizes

both of these facts. It gives us a large class of Hom-Maltsev admissible algebras

that are in general not Hom-Lie admissible.

Theorem 3.8. Every Hom-alternative algebra is Hom-Maltsev admissible.

In particular, Hom-alternative algebras are all Hom-flexible, Hom-Maltsev ad-

missible algebras. Examples of Hom-flexible, Hom-Maltsev admissible algebras that

are not Hom-alternative are considered in section 4.

The proof of Theorem 3.8 depends on the Hom-type analogues of some identities

in alternative algebras, most of which are from [6]. We will first establish some

identities about the Hom-associator and the Hom-Jacobian. Then we will go back

to the proof of Theorem 3.8. In what follows, we often write µ(a, b) as ab and omit

the subscript in the Hom-associator asA (3) when there is no danger of confusion.

The following result is a sort of cocycle condition for the Hom-associator of a

Hom-alternative algebra.

Lemma 3.9. Let (A,µ, α) be a Hom-alternative algebra. Then the identity

as(wx, α(y), α(z))− as(xy, α(z), α(w)) + as(yz, α(w), α(x))

= α2(w)as(x, y, z) + as(w, x, y)α2(z)
(23)

holds for all w, x, y, z ∈ A.

Proof. First we claim that for any Hom-algebra (A,µ, α) (Hom-alternative or oth-

erwise), we have

as(wx, α(y), α(z))− as(α(w), xy, α(z)) + as(α(w), α(x), yz)

= α2(w)as(x, y, z) + as(w, x, y)α2(z)
(24)

for all w, x, y, z ∈ A. Indeed, starting from the left-hand side of (24), we have:

as(wx, α(y), α(z))− as(α(w), xy, α(z)) + as(α(w), α(x), yz)

= ((wx)α(y))α2(z)− α(wx)(α(y)α(z))− (α(w)(xy))α2(z)

+ α2(w)((xy)α(z)) + (α(w)α(x))α(yz)− α2(w)(α(x)(yz))

= {(wx)α(y)− α(w)(xy)}α2(z) + α2(w) {(xy)α(z)− α(x)(yz)}
− α(wx)α(yz) + α(wx)α(yz)

= α2(w)as(x, y, z) + as(w, x, y)α2(z).

In the second equality above, we used the multiplicativity of α twice. We have

established (24). Now for a Hom-alternative algebra A, its Hom-associator as is

alternating, so (24) implies (23). �
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Remark 3.10. Note that when α = Id, the condition (24) says that the (Hom-)

associator as ∈ Hom(A⊗3, A) is a Hochschild 3-cocycle.

In a Hom-alternative algebra, the Hom-associator is an alternating map on three

variables. We now build a map on four variables using the Hom-associator that, as

we will prove shortly, is alternating in a Hom-alternative algebra.

Definition 3.11. For a Hom-algebra (A,µ, α), define the Hom-Bruck-Kleinfeld

function f : A⊗4 → A as the multi-linear map

f(w, x, y, z) = as(wx, α(y), α(z))− as(x, y, z)α2(w)− α2(x)as(w, y, z) (25)

for w, x, y, z ∈ A. Define another multi-linear map F : A⊗4 → A as

F = [−,−] ◦
(
α2 ⊗ as

)
◦ (Id− ξ + ξ2 − ξ3), (26)

where [−,−] = µ ◦ (Id − τ) is the commutator bracket of µ and ξ is the cyclic

permutation

ξ(w ⊗ x⊗ y ⊗ z) = z ⊗ w ⊗ x⊗ y.

In terms of elements, the map F is given by

F (w, x, y, z) = [α2(w), as(x, y, z)]− [α2(z), as(w, x, y)]

+ [α2(y), as(z, w, x)]− [α2(x), as(y, z, w)].
(27)

The Hom-Bruck-Kleinfeld function f is the Hom-type analogue of a map studied

by Bruck and Kleinfeld ([6] (2.7)). It is closely related to the map F , as we now

show.

Lemma 3.12. In a Hom-alternative algebra (A,µ, α), we have

F = f ◦ (Id− ρ+ ρ2),

where ρ = ξ3 is the cyclic permutation ρ(w ⊗ x⊗ y ⊗ z) = x⊗ y ⊗ z ⊗ w.

Proof. By Lemma 3.9 and (25), we have

α2(w)as(x, y, z) + as(w, x, y)α2(z)

= as(wx, α(y), α(z))− as(xy, α(z), α(w)) + as(yz, α(w), α(x))

= f(w, x, y, z) + as(x, y, z)α2(w) + α2(x)as(w, y, z)

− f(x, y, z, w)− as(y, z, w)α2(x)− α2(y)as(x, z, w)

+ f(y, z, w, x) + as(z, w, x)α2(y) + α2(z)as(y, w, x).

Since the Hom-associator as is alternating, we have

as(y, w, x) = as(w, x, y), as(x, z, w) = as(z, w, x), as(w, y, z) = as(y, z, w).

Therefore, rearranging terms in the above equality, we obtain F = f ◦ (Id− ρ+ ρ2)

in the explicit form (27). �

The following result is the Hom-type analogue of part of [6] (Lemma 2.1).
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Proposition 3.13. Let (A,µ, α) be a Hom-alternative algebra. Then the Hom-

Bruck-Kleinfeld function f is alternating.

Proof. First observe that −F = F ◦ ξ, which follows immediately from the defini-

tion (26) of F . This implies −F = F ◦ ρ, where ρ = ξ3. Note that ρ3 = ξ. Thus,

we have:

0 = F ◦ (Id+ ρ)

= f ◦ (Id− ρ+ ρ2) ◦ (Id+ ρ) (by Lemma 3.12)

= f ◦ (Id+ ρ3)

= f ◦ (Id+ ξ).

Equivalently, we have

f = −f ◦ ξ, (28)

so f changes sign under the cyclic permutation ξ. From the definition (25) of f and

the fact that the Hom-associator as is alternating in a Hom-alternative algebra, we

infer also that

f = −f ◦ η, (29)

where η is the adjacent transposition η(w⊗x⊗y⊗z) = w⊗x⊗z⊗y. So f changes

sign under the transposition η. Since the cyclic permutation ξ and the adjacent

transposition η generate the symmetric group on four letters, we infer from (28)

and (29) that f is alternating. �

The following identities are consequences of Proposition 3.13 and are the Hom-

type analogues of part of [6] (Lemma 2.2). In what follows, we write µ(x, x) as

x2.

Corollary 3.14. Let (A,µ, α) be a Hom-alternative algebra. Then:

as(x2, α(y), α(z)) = α2(x)as(x, y, z) + as(x, y, z)α2(x), (30)

as(α(x), xy, α(z)) = as(x, y, z)α2(x) = as(α(x), α(y), xz), (31)

and

as(α(x), yx, α(z)) = α2(x)as(x, y, z) = as(α(x), α(y), zx) (32)

for all x, y, z ∈ A.

Proof. To obtain (30), set w = x in the definition (25) of f and use the fact that

f is alternating (Proposition 3.13).

For (31) we compute as follows:

as(α(x), xy, α(z)) = as(xy, α(z), α(x)) (by alternativity of as)

= f(x, y, z, x) + as(y, z, x)α2(x) + α2(y)as(x, z, x) (by (25))

= as(x, y, z)α2(x) (by alternativity of f and as).
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This proves half of (31). For the other half of (31), we compute similarly as follows:

as(α(x), α(y), xz) = as(xz, α(x), α(y)) (by alternativity of as)

= f(x, z, x, y) + as(z, x, y)α2(x) + α2(z)as(x, x, y) (by (25))

= as(x, y, z)α2(x) (by alternativity of f and as).

This finishes the proof of (31).

For (32) we compute as follows:

as(α(x), yx, α(z)) = as(yx, α(z), α(x)) (by alternativity of as)

= f(y, x, z, x) + as(x, z, x)α2(y) + α2(x)as(y, z, x) (by (25))

= α2(x)as(x, y, z) (by alternativity of f and as).

This proves half of (32). For the other half of (32), we compute similarly as follows:

as(α(x), α(y), zx) = as(zx, α(x), α(y)) (by alternativity of as)

= f(z, x, x, y) + as(x, x, y)α2(z) + α2(x)as(z, x, y) (by (25))

= α2(x)as(x, y, z) (by alternativity of f and as).

This finishes the proof. �

The following result says that every Hom-alternative algebra satisfies a variation

of the Hom-Maltsev identity (6) in which the Hom-Jacobian is replaced by the

Hom-associator.

Corollary 3.15. Let (A,µ, α) be a Hom-alternative algebra. Then

as(α(x), α(y), [x, z]) = [as(x, y, z), α2(x)]

for all x, y, z ∈ A, where [−,−] = µ ◦ (Id− τ) is the commutator bracket.

Proof. Indeed, we have

as(α(x), α(y), [x, z]) = as(α(x), α(y), xz)− as(α(x), α(y), zx)

= as(x, y, z)α2(x)− α2(x)as(x, y, z) (by (31) and (32))

= [as(x, y, z), α2(x)],

as desired. �

Next we consider the relationship between the Hom-associator (3) in a Hom-

algebra A and the Hom-Jacobian (4) in its commutator Hom-algebra A− (Definition

3.5).

Lemma 3.16. Let (A,µ, α) be any Hom-algebra. Then

JA− = asA ◦ (Id+ σ + σ2) ◦ (Id− δ),

where σ(x⊗ y ⊗ z) = z ⊗ x⊗ y and δ(x⊗ y ⊗ z) = x⊗ z ⊗ y.
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Proof. For x, y, z ∈ A, we have:

JA−(x, y, z) = [[x, y], α(z)] + [[z, x], α(y)] + [[y, z], α(x)]

= (xy)α(z)− (yx)α(z)− α(z)(xy) + α(z)(yx)

+ (zx)α(y)− (xz)α(y)− α(y)(zx) + α(y)(xz)

+ (yz)α(x)− (zy)α(x)− α(x)(yz) + α(x)(zy)

= asA(x, y, z) + asA(z, x, y) + asA(y, z, x)

− asA(x, z, y)− asA(y, x, z)− asA(z, y, x)

= asA ◦ (Id+ σ + σ2) ◦ (Id− δ)(x, y, z).

This proves the Lemma. �

Proposition 3.17. Let (A,µ, α) be a Hom-alternative algebra. Then we have

JA− = 6asA.

Proof. Since the Hom-associator asA is alternating, with the notations in Lemma

3.16 we have

asA ◦ σ = asA = −asA ◦ δ.
The result now follows from Lemma 3.16. �

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let (A,µ, α) be a Hom-alternative algebra and A− be its

commutator Hom-algebra. The commutator bracket [−,−] = µ ◦ (Id − τ) is anti-

symmetric. Thus, it remains to show that the Hom-Maltsev identity (6) holds in

A−, i.e.,

JA−(α(x), α(y), [x, z]) = [JA−(x, y, z), α2(x)].

To prove this, we compute as follows:

JA−(α(x), α(y), [x, z]) = 6asA(α(x), α(y), [x, z]) (by Proposition 3.17)

= [6asA(x, y, z), α
2(x)] (by Corollary 3.15)

= [JA−(x, y, z), α2(x)] (by Proposition 3.17).

We have shown that A− is a Hom-Maltsev algebra, so A is Hom-Maltsev admissible.

�

Remark 3.18. By Theorem 3.8 the map A 7→ A− defines a functor from the cat-

egory of Hom-alternative algebras to the category of Hom-Maltsev algebras. Using

the combinatorial objects of weighted trees and an argument similar to that in [31],

one can show that this functor has a left adjoint M 7→ U(M). However, we do not

know whether there is an analogue of the Poincaré-Birkhoff-Witt (PBW) Theorem,

i.e., whether the canonical map M → U(M) is injective. In fact, even in the non-

Hom case of Maltsev algebras, it is not known whether there is a PBW Theorem

with alternative algebras in place of associative algebras. Probably the closest result

to a PBW Theorem for Maltsev algebras is in [25].
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Example 3.19. In this example, we describe a Hom-alternative algebra (hence

Hom-Maltsev admissible by Theorem 3.8) that is not Hom-Lie admissible and not

alternative. Recall that the octonions is an eight-dimensional alternative (but not

associative) algebra O with basis {e0, . . . , e7} and the following multiplication table,

where µ denotes the multiplication in O.

µ e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e4 e7 −e2 e6 −e5 −e3
e2 e2 −e4 −e0 e5 e1 −e3 e7 −e6
e3 e3 −e7 −e5 −e0 e6 e2 −e4 e1
e4 e4 e2 −e1 −e6 −e0 e7 e3 −e5
e5 e5 −e6 e3 −e2 −e7 −e0 e1 e4
e6 e6 e5 −e7 e4 −e3 −e1 −e0 e2
e7 e7 e3 e6 −e1 e5 −e4 −e2 −e0

The reader is referred to [5,10,24,29] for discussion about the roles of the octonions

in exceptional Lie groups, projective geometry, physics, and other applications.

One can check that there is an algebra automorphism α : O → O given by

α(e0) = e0, α(e1) = e5, α(e2) = e6, α(e3) = e7,

α(e4) = e1, α(e5) = e2, α(e6) = e3, α(e7) = e4.
(33)

There is a more conceptual description of this algebra automorphism on O. Note

that e1 and e2 anti-commute, and e3 anti-commutes with e1, e2, and e1e2 = e4.

Such a triple (e1, e2, e3) is called a basic triple in [5]. Another basic triple is

(e5, e6, e7). Then α is the unique automorphism on O that sends the basic triple

(e1, e2, e3) to the basic triple (e5, e6, e7).

Using [16] (Theorem 2.1), which is the analogue of Theorem 2.12 for Hom-

alternative algebras, we obtain a Hom-alternative (hence Hom-Maltsev admissible)

algebra

Oα = (O, µα = α ◦ µ, α)

with the following multiplication table.

µα e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e5 e6 e7 e1 e2 e3 e4
e1 e5 −e0 e1 e4 −e6 e3 −e2 −e7
e2 e6 −e1 −e0 e2 e5 −e7 e4 −e3
e3 e7 −e4 −e2 −e0 e3 e6 −e1 e5
e4 e1 e6 −e5 −e3 −e0 e4 e7 −e2
e5 e2 −e3 e7 −e6 −e4 −e0 e5 e1
e6 e3 e2 −e4 e1 −e7 −e5 −e0 e6
e7 e4 e7 e3 −e5 e2 −e1 −e6 −e0

Note that Oα is not alternative because

µα(µα(e0, e0), e1) = e5 ̸= e2 = µα(e0, µα(e0, e1)).
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Since Oα is Hom-alternative, by Theorem 3.8 it is also Hom-Maltsev admissible,

i.e., its commutator Hom-algebra

O−
α = (O, [−,−]α, α),

where [−,−]α = µα ◦ (Id− τ) = α ◦ µ ◦ (Id− τ), is a Hom-Maltsev algebra.

Observe that Oα is not Hom-Lie admissible, i.e., O−
α is not a Hom-Lie algebra.

Indeed, with O− denoting the Maltsev algebra (O, [−,−] = µ ◦ (Id− τ)), we have

JO−
α
= [−,−]α ◦ ([−,−]α ⊗ α) ◦ (Id+ σ + σ2)

= α2 ◦ [−,−] ◦ ([−,−]⊗ Id) ◦ (Id+ σ + σ2)

= α2 ◦ JO−

= 6α2 ◦ asO

(34)

by Proposition 3.17. Here we are regarding O as the Hom-alternative algebra

(O, µ, Id) with identity twisting map. Since asO ̸= 0 (because O is not associa-

tive) and α is an automorphism, it follows that JO−
α
̸= 0. For example, we have

asO(e5, e6, e7) = −2e3 ̸= 0

and

JO−
α
(e5, e6, e7) = −12α2(e3) = −12e4 ̸= 0.

Therefore, Oα is a Hom-alternative (and hence Hom-Maltsev admissible) algebra

that is neither alternative nor Hom-Lie admissible.

Also, (O, [−,−]α) is not a Maltsev algebra. Indeed, let J ′ denote the usual Ja-

cobian in (O, [−,−]α) as in (16). Then we have

[J ′(e5, e6, e7), e5]α = [[[e5, e6]α, e7]α, e5]α + [[[e7, e5]α, e6]α, e5]α

+ [[[e6, e7]α, e5]α, e5]α

= 8(e3 − e7)

and

J ′(e5, e6, [e5, e7]α) = 2J ′(e5, e6, e1)

= −8(e1 + e3 + e7).

So (O, [−,−]α) does not satisfy the Maltsev identity (1).

Finally, observe that as long as β : O → O is an algebra automorphism, (34)

implies that O−
β is a Hom-Maltsev algebra that is not Hom-Lie. There are plenty of

algebra automorphisms on O other than the one in (33). In fact, the automorphism

group of O is the 14-dimensional exceptional Lie group G2 [5,7]. �
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4. Hom-Maltsev admissible algebras

In Theorem 3.8 we showed that every Hom-alternative algebra is Hom-Maltsev

admissible, i.e., its commutator Hom-algebra is a Hom-Maltsev algebra. Since

Hom-alternative algebras are always Hom-flexible (Definition 3.3), we know that

Hom-alternative algebras are Hom-flexible, Hom-Maltsev admissible algebras. The

purpose of this section is to study the (strictly larger) class of Hom-flexible, Hom-

Maltsev admissible algebras. We give several characterizations of Hom-flexible alge-

bras that are Hom-Maltsev admissible in terms of the cyclic Hom-associator (Propo-

sition 4.3). Then we prove the analogues of the construction results, Theorems 2.10

and 2.12, for Hom-flexible and Hom-Maltsev admissible algebras (Theorems 4.4 and

4.5). We then consider examples of Hom-flexible, Hom-Maltsev admissible algebras

that are neither Hom-alternative nor Hom-Lie admissible.

To state our characterizations of Hom-flexible algebras that are Hom-Maltsev

admissible, we need the following definition.

Definition 4.1. For a Hom-algebra (A,µ, α), define the cyclic Hom-associator

SA : A⊗3 → A as the multi-linear map

SA = asA ◦ (Id+ σ + σ2),

where asA is the Hom-associator (3) and σ(x⊗ y ⊗ z) = z ⊗ x⊗ y.

We will use the following preliminary observations about the relationship be-

tween the cyclic Hom-associator and the Hom-Jacobian (4) of the commutator

Hom-algebra (Definition 3.5).

Lemma 4.2. Let (A,µ, α) be a Hom-flexible algebra. Then we have

2SA = JA− , (35)

where A− = (A, [−,−], α) is the commutator Hom-algebra.

Proof. Let � denote the cyclic sum (Id+ σ + σ2). We have:

SA(x, y, z) = � asA(x, y, z)

= −� asA(z, y, x) (by Hom-flexibility)

= −� asA(x, z, y)

= −SA(x, z, y).

(36)

Let δ denote the permutation δ(x⊗ y ⊗ z) = x⊗ z ⊗ y. Then (36) is equivalent to

SA = −SA ◦ δ.

This implies that

2SA = SA ◦ (Id− δ)

= asA ◦ (Id+ σ + σ2) ◦ (Id− δ)

= JA− ,

where the last equality is by Lemma 3.16. �
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The following result gives characterizations of Hom-Maltsev admissible algebras

in terms of the cyclic Hom-associator, assuming Hom-flexibility. The condition (38)

below is the Hom-type analogue of [22] (Lemma 1.2(ii)).

Proposition 4.3. Let (A,µ, α) be a Hom-flexible algebra and A− = (A, [−,−], α)

be its commutator Hom-algebra. Then the following statements are equivalent:

(1) A is Hom-Maltsev admissible (Definition 3.5).

(2) The equality

JA−(α(x), α(y), [x, z]) = [JA−(x, y, z), α2(x)] (37)

holds for all x, y, z ∈ A.

(3) The equality

SA(α(x), α(y), [x, z]) = [SA(x, y, z), α
2(x)] (38)

holds for all x, y, z ∈ A.

(4) The equality

SA(α(w), α(y), [x, z]) + SA(α(x), α(y), [w, z])

= [SA(w, y, z), α
2(x)] + [SA(x, y, z), α

2(w)]
(39)

holds for all w, x, y, z ∈ A.

Proof. The equivalence of the first two statements is immediate, since the commu-

tator bracket [−,−] = µ ◦ (Id− τ) is anti-symmetric and (37) is the Hom-Maltsev

identity (6) for A−. The equivalence of (37) and (38) follows from (35), which

uses the Hom-flexibility of A. Finally, that (38) is equivalent to (39) follows from

linearization. In other words, starting from (38), one replaces x by w+ x to obtain

(39). Conversely, starting from (39), one sets w = x to obtain (38). �

The following construction results for Hom-flexible and Hom-Maltsev admissible

algebras are the analogues of Theorems 2.10 and 2.12.

Theorem 4.4. (1) Let (A,µ) be a flexible algebra (i.e., (xy)x = x(yx) for

all x, y ∈ A) and α : A → A be an algebra morphism. Then the induced

Hom-algebra Aα = (A,µα = α ◦ µ, α) is a Hom-flexible algebra.

(2) Let (A,µ, α) be a Hom-flexible algebra. Then the derived Hom-algebra An =

(A,µ(n), α2n) is also a Hom-flexible algebra for each n ≥ 0, where µ(n) =

α2n−1 ◦ µ.

Proof. For the first assertion, for any algebra (A,µ), we regard it as the Hom-

algebra (A,µ, Id) with identity twisting map. Then we have:

asAα = µα ◦ (µα ⊗ α− α⊗ µα)

= α2 ◦ µ ◦ (µ⊗ Id− Id⊗ µ) (by multiplicativity of α)

= α2 ◦ asA.
(40)

Now for a flexible algebra (A,µ), this implies that

asAα(x, y, x) = α2(asA(x, y, x)) = 0,
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so Aα is Hom-flexible.

For the second assertion, we have that for any Hom-algebra (A,µ, α):

asAn = µ(n) ◦ (µ(n) ⊗ α2n − α2n ⊗ µ(n))

= α2(2n−1) ◦ µ ◦ (µ⊗ α− α⊗ µ) (by multiplicativity of α)

= α2(2n−1) ◦ asA.

(41)

Now for a Hom-flexible algebra (A,µ, α), this implies that

asAn(x, y, x) = α2(2n−1)(asA(x, y, x)) = 0,

so An is Hom-flexible. �

Theorem 4.5. (1) Let (A,µ) be a Maltsev-admissible algebra and α : A → A

be an algebra morphism. Then the induced Hom-algebra Aα = (A,µα =

α ◦ µ, α) is a Hom-Maltsev admissible algebra.

(2) Let (A,µ, α) be a Hom-Maltsev admissible algebra. Then the derived Hom-

algebra An = (A,µ(n), α2n) is also a Hom-Maltsev admissible algebra for

each n ≥ 0, where µ(n) = α2n−1 ◦ µ.

Proof. For the first assertion, the commutator algebra of (A,µ) isA− = (A, [−,−] =

µ ◦ (Id− τ)), which is a Maltsev algebra by assumption. In particular, the Maltsev

identity

JA−(x, y, [x, z]) = [JA−(x, y, z), x] (42)

holds. The commutator Hom-algebra of the induced Hom-algebra Aα is A−
α =

(A, [−,−]α, α), where

[−,−]α = µα ◦ (Id− τ) = α ◦ [−,−], (43)

which is anti-symmetric. We must show that A−
α satisfies the Hom-Maltsev identity

(6). We have:

JA−
α
= [−,−]α ◦ ([−,−]α ⊗ α) ◦ (Id+ σ + σ2)

= α2 ◦ [−,−] ◦ ([−,−]⊗ Id) ◦ (Id+ σ + σ2) (by (43))

= α2 ◦ JA− .

(44)

Therefore, we have:

JA−
α
(α(x), α(y), [x, z]α)− [JA−

α
(x, y, z), α2(x)]α

= α2{JA−(α(x), α(y), α[x, z])} − α[α2(JA−(x, y, z)), α2(z)] (by (44))

= α3 {JA−(x, y, [x, z])− [JA−(x, y, z), x]} (by (15))

= 0 (by (42)).

This shows that the Hom-Maltsev identity holds in A−
α , proving the first assertion.

For the second assertion, assume that (A,µ, α) is a Hom-Maltsev admissible

algebra. Note that the commutator Hom-algebra of the nth derived Hom-algebra

An is (An)− = (A, [−,−](n), α2n), where

[−,−](n) = µ(n) ◦ (Id− τ) = α2n−1 ◦ [−,−].
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Thus, we have

(An)− = (A−)n, (45)

where A− = (A, [−,−], α) is the commutator Hom-algebra of A and (A−)n is its

nth derived Hom-algebra (Definition 2.8). Since [−,−](n) is anti-symmetric, we

must show that (An)− satisfies the Hom-Maltsev identity (6). To do that, observe

that

J(An)− = J(A−)n (by (45))

= α2(2n−1) ◦ JA− (by (12)).
(46)

In the computation below, we write k = 3(2n−1). Using (11) and (46) we compute

as follows:

J(An)−(α
2n(x), α2n(y), [x, z](n))− [J(An)−(x, y, z), (α

2n)2(x)](n)

= α2(2n−1)
{
JA−(α2n(x), α2n(y), α2n−1[x, z])

}
− α2n−1[α2(2n−1) ◦ JA−(x, y, z), α2n+1

(x)]

= αk
{
JA−(α(x), α(y), [x, z])− [JA−(x, y, z), α2(x)]

}
= 0.

This last equality follows from the Hom-Maltsev identity (6) in A−. We have shown

that (An)− satisfies the Hom-Maltsev identity, so An is Hom-Maltsev admissible.

�

Below we consider examples of Hom-flexible, Hom-Maltsev admissible algebras

that are not Hom-alternative, not Hom-Lie admissible, and not Maltsev-admissible.

In particular, these Hom-Maltsev admissible algebras cannot be obtained from The-

orem 3.8. Therefore, the class of Hom-flexible, Hom-Maltsev admissible algebras is

strictly larger than the class of Hom-alternative algebras.

Example 4.6. There is a five-dimensional flexible, Maltsev-admissible algebra

(A,µ) ([22] Example 1.5, p.29) with basis {e1, . . . , e5} and multiplication table:

µ e1 e2 e3 e4 e5
e1 0 e5 +

1
2e4 0 1

2e1 0

e2 e5 − 1
2e4 0 0 −1

2e2 0

e3 0 0 0 1
2e3 0

e4 −1
2e1

1
2e2 − 1

2e3 −e5 0

e5 0 0 0 0 0

This Maltsev-admissible algebra A is neither alternative nor Lie-admissible.

Let λ, ξ ∈ k be arbitrary scalars with λ ̸∈ {0,±1}. There is an algebra morphism

α : A → A given by

α(e1) = λe1, α(e2) = λ−1e2, α(e3) = ξe3,

α(e4) = e4, α(e5) = e5.

By Theorems 4.4 and 4.5 the induced Hom-algebra Aα = (A,µα = α ◦ µ, α) is a

Hom-flexible, Hom-Maltsev admissible algebra. Its multiplication table is:
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µα e1 e2 e3 e4 e5
e1 0 e5 +

1
2e4 0 λ

2 e1 0

e2 e5 − 1
2e4 0 0 −λ−1

2 e2 0

e3 0 0 0 ξ
2e3 0

e4 −λ
2 e1

λ−1

2 e2 − ξ
2e3 −e5 0

e5 0 0 0 0 0

Note that Aα is not Hom-alternative because

asAα(e1, e2, e2) =
λ−2

4
e2 ̸= 0.

Also, Aα is not Hom-Lie admissible because

J(Aα)−(e1, e2, e3) = −b2e3 ̸= 0.

Finally, (A,µα) is not Maltsev-admissible, i.e., (A, [−,−]α) is not a Maltsev alge-

bra, where [−,−]α = µα ◦ (Id − τ) = α ◦ [−,−]. Indeed, let J ′ denote the usual

Jacobian of (A, [−,−]α) as in (16). Then, on the one hand, we have

J ′(e1, e2, [e1, e4]α) = [[e1, e2]α, [e1, e4]α]α + [[[e1, e4]α, e1]α, e2]α

+ [[e2, [e1, e4]α]α, e1]α

= [e4, λe1]α + [[λe1, e1]α, e2]α + [[e2, λe1]α, e1]α

= −λ2e1 + 0 + λ2e1

= 0.

On the other hand, we have

[J ′(e1, e2, e4), e1]α = [� [[e1, e2]α, e4]α, e1]α

= [(λ−1 − λ)e4, e1]α

= (λ2 − 1)e1,

which is not equal to 0 because λ ̸= ±1. So (A, [−,−]α) does not satisfy the Maltsev

identity (7) and, therefore, is not a Maltsev algebra. �

Example 4.7. There is a six-dimensional flexible, Maltsev-admissible algebra (A,µ)

([22] Table 5.10, p.301) with basis {e, h, f, u, v, w} and multiplication table:

µ e h f u v w

e 0 −e 1
2h+ λu 0 w 0

h e 2λu −f 0 v −w

f − 1
2h+ λu f 0 0 0 v

u 0 0 0 0 0 0

v −w −v 0 0 0 1
2u

w 0 w −v 0 −1
2u 0

In the table above, λ ∈ k is an arbitrary but fixed scalar. This Maltsev-admissible

algebra A is neither alternative nor Lie-admissible.
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Let γ ∈ k be a scalar with γ ̸= 0 and γ8 ̸= 1. Then there is an algebra morphism

α : A → A given by

α(e) = γ−2e, α(h) = h, α(f) = γ2f,

α(u) = u, α(v) = γv, α(w) = γ−1w.

By Theorems 4.4 and 4.5 the induced Hom-algebra Aα = (A,µα = α ◦ µ, α) is a

Hom-flexible, Hom-Maltsev admissible algebra. Its multiplication table is:

µα e h f u v w

e 0 −γ−2e 1
2h+ λu 0 γ−1w 0

h γ−2e 2λu −γ2f 0 γv −γ−1w

f − 1
2h+ λu γ2f 0 0 0 γv

u 0 0 0 0 0 0

v −γ−1w −γv 0 0 0 1
2u

w 0 γ−1w −γv 0 − 1
2u 0

Note that Aα is not Hom-alternative because

asAα(h, h, f) = −γ4f ̸= 0.

Also, Aα is not Hom-Lie admissible because

J(Aα)−(h, f, w) = −12γ2v ̸= 0.

Finally, (A,µα) is not Maltsev-admissible, i.e., (A, [−,−]α) is not a Maltsev alge-

bra, where [−,−]α = µα ◦ (Id− τ) = α ◦ [−,−]. Indeed, with J ′ denoting the usual

Jacobian of (Aα)
− = (A, [−,−]α) as in (16), we have

J ′(e, h, [e, f ]α)− [J ′(e, h, f), e]α = 4(γ−4 − 1)e− 4(γ4 − 1)e

= 4(γ−4 − γ4)e.

This is not equal to 0 because γ8 ̸= 1. So (A, [−,−]α) does not satisfy the Maltsev

identity (7) and, therefore, is not a Maltsev algebra. �

Example 4.8. There is an eight-dimensional flexible, Maltsev-admissible algebra

(A,µ) [22] (Theorems 4.11 and 5.7) with basis {a, e0, e±i : i = 1, 2, 3}, whose mul-

tiplication is determined by:

e0e±i = −e±ie0 = ±e±i for i = 1, 2, 3,

e±ie±j = −e±je±i = ±e∓k for (ijk) = (123), (312), (231),

eie−i =
1

2
e0 + γa, e−iei = −1

2
e0 + γa for i = 1, 2, 3,

e20 = 2γa, a2 = δa,

ax = xa = εx for x ∈ {e0, e±i}i=1,2,3.

The unspecified products of the basis elements are 0, and γ, δ, ε are arbitrary but

fixed scalars. This Maltsev-admissible algebra A is neither alternative nor Lie-

admissible.
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Let λ, ξ ∈ k be non-zero scalars. Then there is an algebra morphism α : A → A

given by

α(a) = a, α(e0) = e0,

α(e±1) = λ±1e±1, α(e±2) = ξ±1e±2, α(e±3) = (λξ)∓1e±3.

By Theorems 4.4 and 4.5 the induced Hom-algebra Aα = (A,µα = α ◦ µ, α) is a

Hom-flexible, Hom-Maltsev admissible algebra. Note that Aα is not Hom-alternative

because

asAα(e0, e0, a) = 2γ(δ − ε)a,

which is not equal to 0 in general. Also, Aα is not Hom-Lie admissible because

J(Aα)−(e0, e1, e2) = 12(λξ)2e−3 ̸= 0.

Finally, (A,µα) is not Maltsev-admissible, i.e., (A, [−,−]α) is not a Maltsev alge-

bra, where [−,−]α = µα ◦ (Id− τ) = α ◦ [−,−]. Indeed, with J ′ denoting the usual

Jacobian of (A, [−,−]α) as in (16), we have

J ′(e0, e1, [e0, e2]α)− [J ′(e0, e1, e2), e0]α = 8γe−3,

where

γ = λξ2(λ+ ξ − 2λξ − λ2 + λ2ξ),

which is not equal to 0 in general. �

5. Hom-alternative algebras are Hom-Jordan-admissible

In this section, we define Hom-Jordan(-admissible) algebras. Some alternative

characterizations of the Hom-Jordan identity (48) are given in Proposition 5.5. The

main result of this section is Theorem 5.6, which says that Hom-alternative alge-

bras are Hom-Jordan-admissible. Then we prove Theorems 5.8 and 5.9, which are

construction results for Hom-Jordan and Hom-Jordan-admissible algebras. In Ex-

ample 5.10 we construct Hom-Jordan algebras from the 27-dimensional exceptional

simple Jordan algebra of 3× 3 Hermitian octonionic matrices.

Let us begin with some relevant definitions.

Definition 5.1. Let (A,µ, α) be a Hom-algebra. Define its plus Hom-algebra

as the Hom-algebra A+ = (A, ∗, α), where ∗ = (µ+ µ ◦ τ)/2.

With µ(x, y) = xy, the product ∗ is given by

x ∗ y =
1

2
(µ(x, y) + µ(y, x)) =

1

2
(xy + yx),

which is commutative. Also, we have

x ∗ x = µ(x, x) = x2 (47)

for x ∈ A. In other words, µ and ∗ have the same squares. In what follows, we will

often abbreviate x ∗ x to x2.
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Definition 5.2. (1) A Hom-Jordan algebra is a Hom-algebra (A,µ, α) such

that µ = µ ◦ τ (commutativity) and the Hom-Jordan identity

asA(x
2, α(y), α(x)) = 0 (48)

is satisfied for all x, y ∈ A, where asA is the Hom-associator (3).

(2) A Hom-Jordan-admissible algebra is a Hom-algebra (A,µ, α) whose

plus Hom-algebra A+ = (A, ∗, α) is a Hom-Jordan algebra.

The Hom-Jordan identity (48) can be rewritten as

µ(µ(x2, α(y)), α2(x)) = µ(α(x2), µ(α(y), α(x))).

Since the product ∗ is commutative, using (47) a Hom-algebra A is Hom-Jordan-

admissible if and only if A+ satisfies the Hom-Jordan identity

asA+(x2, α(y), α(x)) = 0, (49)

or equivalently

(x2 ∗ α(y)) ∗ α2(x) = α(x2) ∗ (α(y) ∗ α(x)),

for all x, y ∈ A.

Example 5.3. A Jordan(-admissible) algebra is a Hom-Jordan(-admissible) alge-

bra with α = Id, since the Hom-Jordan identity (48) with α = Id is the Jordan

identity (2). The reader is referred to [1,12,28] for discussions about structures of

Jordan algebras. Other ways of constructing Hom-Jordan(-admissible) algebras are

given below. �

Remark 5.4. In [16] Makhlouf defined a Hom-Jordan algebra as a commutative

Hom-algebra satisfying asA(x
2, y, α(x)) = 0, which becomes our Hom-Jordan iden-

tity (48) if y is replaced by α(y). This seemingly minor difference is, in fact, very

significant with respect to Hom-Jordan-admissibility of Hom-alternative algebras.

Using Makhlouf’s definition of a Hom-Jordan algebra, Hom-alternative algebras

are not Hom-Jordan-admissible, although Hom-associative algebras are still Hom-

Jordan-admissible.

Let us give some alternative characterizations of the Hom-Jordan identity (48),

including a linearized version of it (51). The ordinary (non-Hom) version of the

following result can be found in, e.g., [28] (Chapter IV).

Proposition 5.5. Let (A,µ, α) be a Hom-algebra with µ commutative, i.e., µ =

µ ◦ τ . Then the following statements are equivalent:

(1) A is a Hom-Jordan algebra, i.e., A satisfies the Hom-Jordan identity (48).

(2) A satisfies

2asA(xz, α(y), α(x)) + asA(x
2, α(y), α(z)) = 0 (50)

for all x, y, z ∈ A.
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(3) A satisfies

asA(zx, α(y), α(w)) + asA(wz, α(y), α(x)) + asA(xw, α(y), α(z)) = 0 (51)

for all w, x, y, z ∈ A.

Proof. We will show the implications (1) ⇒ (2) ⇒ (3) ⇒ (1).

First assume that A is a Hom-Jordan algebra. Replace x with x+ λz for λ ∈ k

in the Hom-Jordan identity (48). Using the commutativity of µ and (48), the result

is

0 = λ
{
2asA(xz, α(y), α(x)) + asA(x

2, α(y), α(z))
}

+ λ2
{
2asA(xz, α(y), α(z)) + asA(z

2, α(y), α(x))
}
.

(52)

Since (52) holds for both λ = 1 and λ = −1, it follows that the coefficient of λ in

(52) is equal to 0, which is exactly the condition (50). So statement (1) implies

statement (2).

Next assume that A satisfies (50). Replace x with x+ γw for γ ∈ k in (50). By

the same reasoning as in the previous paragraph, in the resulting expression the

coefficient of γ must be equal to 0. A simple computation shows that this coefficient

of γ is twice the left-hand side of (51). Therefore, statement (2) implies statement

(3).

Finally, starting from (51), one sets w = z = x to obtain the Hom-Jordan identity

(48). �

Note that the linearized Hom-Jordan identity (51) can be written as

� x,w,z asA(xw, α(y), α(z)) = 0,

where � x,w,z is the cyclic sum over (x,w, z).

Here is the main result of this section.

Theorem 5.6. Every Hom-alternative algebra is Hom-Jordan-admissible.

To prove Theorem 5.6, we will use the following preliminary observation.

Lemma 5.7. Let (A,µ, α) be any Hom-algebra and A+ = (A, ∗, α) be its plus

Hom-algebra. Then we have

4asA+(x2, α(y), α(x)) = asA(x
2, α(y), α(x))− asA(α(x), α(y), x

2)

+ asA(α(y), x
2, α(x))− asA(α(x), x

2, α(y))

+ asA(x
2, α(x), α(y))− asA(α(y), α(x), x

2)

+ [α2(y), asA(x, x, x)]

(53)

for all x, y ∈ A, where [−,−] = µ ◦ (Id− τ) is the commutator bracket.
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Proof. As usual we write µ(a, b) as the juxtaposition ab, and µ(x, x) = x2 = x ∗x.
Starting from the left-hand side of (53), we have:

4asA+(x2, α(y), α(x))

= 4(x2 ∗ α(y)) ∗ α2(x)− 4α(x2) ∗ (α(y) ∗ α(x))

= (x2α(y))α2(x) + (α(y)x2)α2(x) + α2(x)(x2α(y)) + α2(x)(α(y)x2)

− α(x2)(α(y)α(x))− α(x2)(α(x)α(y))− (α(y)α(x))α(x2)− (α(x)α(y))α(x2)

= asA(x
2, α(y), α(x))− asA(α(x), α(y), x

2)

+ (α(y)x2)α2(x) + α2(x)(x2α(y))− α(x2)(α(x)α(y))− (α(y)α(x))α(x2).

(54)

Using the definition of the Hom-associator (3), the last four terms in (54) are:

(α(y)x2)α2(x) = asA(α(y), x
2, α(x)) + α2(y)(x2α(x)),

α2(x)(x2α(y)) = −asA(α(x), x
2, α(y)) + (α(x)x2)α2(y),

−α(x2)(α(x)α(y)) = asA(x
2, α(x), α(y))− (x2α(x))α2(y),

−(α(y)α(x))α(x2) = −asA(α(y), α(x), x
2)− α2(y)(α(x)x2).

(55)

Note that

[α2(y), asA(x, x, x)] = [α2(y), (x2)α(x)− α(x)x2]

= α2(y)(x2α(x))− α2(y)(α(x)x2)

− (x2α(x))α2(y) + (α(x)x2)α2(y).

(56)

The desired condition (53) now follows from (54), (55), and (56). �

Proof of Theorem 5.6. Let (A,µ, α) be a Hom-alternative algebra. To show that

it is Hom-Jordan-admissible, it suffices to prove the Hom-Jordan identity for its

plus Hom-algebra A+ (49). To do this, first observe that A itself satisfies the

Hom-Jordan identity:

asA(x
2, α(y), α(x)) = α2(x)asA(x, y, x) + asA(x, y, x)α

2(x) (by (30))

= 0 (by alternativity of asA).

Using again the alternativity of asA, this implies that

0 = (asA ◦ θ)(x2, α(y), α(x))

for every permutation θ on three letters. Since asA(x, x, x) = 0 as well, it follows

from Lemma 5.7 that

4asA+(x2, α(y), α(x)) = 0,

from which the desired Hom-Jordan identity for A+ (49) follows. �

The following construction results are the analogues of Theorems 2.10 and 2.12

for Hom-Jordan and Hom-Jordan-admissible algebras.
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Theorem 5.8. (1) Let (A,µ) be a Jordan algebra and α : A → A be an algebra

morphism. Then the induced Hom-algebra Aα = (A,µα = α ◦ µ, α) is a

Hom-Jordan algebra.

(2) Let (A,µ, α) be a Hom-Jordan algebra. Then the derived Hom-algebra An =

(A,µ(n) = α2n−1 ◦ µ, α2n) is also a Hom-Jordan algebra for each n ≥ 0.

Proof. For the first assertion, first note that µα = α ◦µ is commutative. To prove

the Hom-Jordan identity (48) in Aα, regard (A,µ) as the Hom-algebra (A,µ, Id).

Then we have:

asAα(µα(x, x), α(y), α(x)) = asAα(α(x
2), α(y), α(x))

= α2
(
asA(α(x

2), α(y), α(x))
)

(by (40))

= α3
(
asA(x

2, y, x)
)

= 0 (by (2) in A).

This shows that Aα is a Hom-Jordan algebra.

For the second assertion, first note that µ(n) = α2n−1 ◦ µ is commutative. To

prove the Hom-Jordan identity (48) in An, we compute as follows:

asAn(µ(n)(x, x), α2n(y), α2n(x))

= α2(2n−1) ◦ asA(α2n−1(x2), α2n(y), α2n(x)) (by (41))

= α3(2n−1) ◦ asA(x2, α(y), α(x))

= 0 (by (48) in A).

This shows that An is a Hom-Jordan algebra. �

Theorem 5.9. (1) Let (A,µ) be a Jordan-admissible algebra and α : A → A

be an algebra morphism. Then the induced Hom-algebra Aα = (A,µα =

α ◦ µ, α) is a Hom-Jordan-admissible algebra.

(2) Let (A,µ, α) be a Hom-Jordan-admissible algebra. Then the derived Hom-

algebra An = (A,µ(n) = α2n−1 ◦ µ, α2n) is also a Hom-Jordan-admissible

algebra for each n ≥ 0.

Proof. For the first assertion, first note that the plus Hom-algebra (Aα)
+ =

(A, ∗α, α) satisfies

∗α =
1

2
(µα + µα ◦ τ) = α ◦ 1

2
(µ+ µ ◦ τ) = α ◦ ∗.

Therefore, we have (Aα)
+ = (A+)α, where A+ is the Jordan-algebra (A, ∗). Since

∗α is commutative, it remains to prove the Hom-Jordan identity in (Aα)
+ = (A+)α.

We compute as follows:

as(A+)α(µα(x, x), α(y), α(x)) = α2 ◦ asA+(α(x2), α(y), α(x)) (by (40) in A+)

= α3
(
asA+(x2, y, x)

)
= 0 (by (2) in A+).
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This shows that (Aα)
+ satisfies the Hom-Jordan identity, so Aα is Hom-Jordan-

admissible.

For the second assertion, first note that the plus Hom-algebra

(An)+ = (A, ∗(n), α2n)

satisfies

∗(n) = 1

2
(µ(n) + µ(n) ◦ τ) = α2n−1 ◦ 1

2
(µ+ µ ◦ τ) = α2n−1 ◦ ∗.

Therefore, we have (An)+ = (A+)n, where A+ is the Hom-Jordan algebra (A, ∗, α)
and (A+)n is its nth derived Hom-algebra. Since ∗(n) is commutative, it remains

to prove the Hom-Jordan identity in (An)+ = (A+)n. We compute as follows:

as(A+)n(µ
(n)(x, x), α2n(y), α2n(x))

= α2(2n−1) ◦ asA+(α2n−1(x2), α2n(y), α2n(x)) (by (41) in A+)

= α3(2n−1) ◦ asA+(x2, α(y), α(x))

= 0 (by (48) in A+).

This shows that (An)+ is a Hom-Jordan algebra, so An is Hom-Jordan-admissible.

�

Example 5.10. In this example, we discuss how (non-Jordan) Hom-Jordan alge-

bras can be constructed from the 27-dimensional exceptional simple Jordan algebra

M8
3 . First recall from Example 3.19 the octonions O, which is an eight-dimensional

alternative (but not associative) algebra with basis {e0, . . . , e7}, where e0 is a two-

sided multiplicative unit. For an octonion x =
∑7

i=0 biei with each bi ∈ k, its

conjugate is defined as the octonion x = b0e0 −
∑7

i=1 biei.

The elements of M8
3 are 3 × 3 Hermitian octonionic matrices, i.e., matrices of

the form

X =

a1 x y

x a2 z

y z a3


with each ai ∈ k and x, y, z ∈ O. Here we are using the convention ai = aie0
for the diagonal elements. This k-module M8

3 becomes a Jordan algebra with the

multiplication

X ∗ Y =
1

2
(XY + Y X),

where XY and Y X are the usual matrix multiplication. The reader is referred to

[10,13,24,28] for discussions about the Jordan algebra M8
3 and its relationship with

the exceptional Lie algebra F4.

Let α : O → O be any unit-preserving and conjugate-preserving algebra mor-

phism, i.e., α(e0) = e0 and α(x) = α(x) for all x ∈ O. Then it extends entrywise

to a linear map α : M8
3 → M8

3 . It is easy to see that this extended map α respects
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matrix multiplication and hence also the Jordan product ∗, i.e., α is an algebra

morphism on (M8
3 , ∗). By the first part of Theorem 5.8, the induced Hom-algebra

(M8
3 )α = (M8

3 , ∗α = α ◦ ∗, α)

is a Hom-Jordan algebra.

Note that (M8
3 , ∗α = α ◦ ∗) is in general not a Jordan algebra. For instance,

consider the algebra automorphism α : O → O defined in (33), which is both unit-

preserving and conjugate-preserving. We claim that (M8
3 , ∗α) is not a Jordan alge-

bra, i.e., the Jordan identity

((X ∗α X) ∗α Y ) ∗α X = (X ∗α X) ∗α (Y ∗α X) (57)

is not satisfied for some X,Y ∈ M8
3 . Indeed, using the multiplicativity of α with

respect to ∗, the left-hand side in (57) is

α(α(α(X2) ∗ Y ) ∗X),

where X2 = X ∗X, and its right-hand side is

α2(X2 ∗ (Y ∗X)).

Since α is invertible, to show that (M8
3 , ∗α) is not a Jordan algebra, it suffices to

exhibit two elements X,Y ∈ M8
3 such that

α(α(X2) ∗ Y ) ∗X ̸= α(X2 ∗ (Y ∗X)). (58)

Now we pick

X =

 1 0 e1
0 1 0

−e1 0 1

 and Y =

 1 e2 e3
−e2 0 0

−e3 0 0


in M8

3 . With a little bit of computation, we obtain

α(α(X2) ∗ Y ) ∗X =

 2 1
2e3 +

3
2e6 e1 + e2 + 2e7

− 1
2e3 −

3
2e6 0 −3

4e5 + e7
−e1 − e2 − 2e7

3
4e5 − e7 0


and

α(X2 ∗ (Y ∗X)) =

 3 2e6 2e5 + 2e7
−2e6 0 7

4e1
−2e5 − 2e7 − 7

4e1 1

.

Therefore, we have proved (58), so (M8
3 , ∗α) is not a Jordan algebra. �
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6. Further properties of Hom-alternative algebras

In this section, we consider further properties of Hom-alternative algebras, in-

cluding Hom-type analogues of the Moufang identities [21] (Theorem 6.8) and more

identities concerning the Hom-Bruck-Kleinfeld function (25) (Propositions 6.3 and

6.5).

By Theorem 3.8 every Hom-alternative algebra is Hom-Maltsev admissible. As

we saw in Example 3.19, there are Hom-alternative algebras that are not Hom-

Lie admissible. It is, therefore, natural to ask which Hom-alternative algebras are

Hom-Lie admissible. The following result says that the intersection of the classes of

Hom-alternative algebras and of Hom-Lie admissible algebras (within the class of

Hom-algebras) is precisely the class of Hom-associative algebras. It is the Hom-type

generalization of [2] (Theorem 3).

Proposition 6.1. Let (A,µ, α) be a Hom-algebra. Then A is a Hom-associative

algebra if and only if it is both a Hom-alternative algebra and a Hom-Lie admissible

algebra.

Proof. If A is Hom-associative, then by definition asA = 0, which is alternating,

so A is Hom-alternative [16]. It is observed in [18] that Hom-associative algebras

are always Hom-Lie admissible. Conversely, if A is Hom-alternative and Hom-Lie

admissible, then

asA =
1

6
JA− (by Proposition 3.17)

= 0 (A− is Hom-Lie).

So A is Hom-associative. �

It is proved in [16] that there is an analogue of Theorem 2.12 for Hom-alternative

algebras. It is a variation of [32] (Theorem 2.3), which deals withG-Hom-associative

algebras. More precisely, if (A,µ) is an alternative algebra and α : A → A is an

algebra morphism, then the induced Hom-algebra Aα = (A,µα = α ◦ µ, α) is a

Hom-alternative algebra.

The following result is the analogue of Theorem 2.10 for Hom-alternative alge-

bras. It says that the category of Hom-alternative algebras is closed under taking

derived Hom-algebras (Definition 2.8).

Proposition 6.2. Let (A,µ, α) be a Hom-alternative algebra. Then the nth derived

Hom-algebra An = (A,µ(n) = α2n−1 ◦ µ, α2n) is also a Hom-alternative algebra for

each n ≥ 0.

Proof. Indeed, asAn is alternating because

asAn = α2(2n−1) ◦ asA

by (41) and asA is alternating. �
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Next we provide further properties of the Hom-Bruck-Kleinfeld function f (25).

The following result gives two characterizations of the Hom-Bruck-Kleinfeld func-

tion in a Hom-alternative algebra. It is the Hom-type analogue of part of [6] (Lemma

2.1).

Proposition 6.3. Let (A,µ, α) be a Hom-alternative algebra. Then the Hom-

Bruck-Kleinfeld function f satisfies

f =
1

3
F = as ◦ ([−,−]⊗ α⊗2) ◦ (Id+ ζ), (59)

where F is defined in (26) and ζ is the permutation ζ(w⊗x⊗y⊗z) = y⊗z⊗w⊗x

Proof. First note that

f = −f ◦ ρ = f ◦ ρ2

because f is alternating (Proposition 3.13), where ρ = ξ3 is the cyclic permutation

ρ(w ⊗ x⊗ y ⊗ z) = x⊗ y ⊗ z ⊗ w. Therefore, we have

F = f ◦ (Id− ρ+ ρ2) (by Lemma 3.12)

= 3f,

which proves the first equality in (59). It remains to prove that f is equal to the

last entry in (59).

Since f is alternating, from its definition (25) we have

2f(w, x, y, z) = f(w, x, y, z)− f(x,w, y, z)

= as(wx, α(y), α(z))− as(x, y, z)α2(w)− α2(x)as(w, y, z)

− as(xw, α(y), α(z)) + as(w, y, z)α2(x) + α2(w)as(x, y, z).

Rearranging terms we obtain

as([w, x], α(y), α(z)) = [α2(x), as(w, y, z)]− [α2(w), as(x, y, z)] + 2f(w, x, y, z)

= [α2(x), as(y, z, w)]− [α2(w), as(x, y, z)] + 2f(w, x, y, z),

(60)

in which as(w, y, z) = as(y, z, w) because as is alternating. Interchanging (w, x)

with (y, z) in (60) and using the alternativity of f , we obtain

as([y, z], α(w), α(x)) = [α2(z), as(w, x, y)]− [α2(y), as(z, w, x)] + 2f(y, z, w, x)

= [α2(z), as(w, x, y)]− [α2(y), as(z, w, x)] + 2f(w, x, y, z).

(61)

Adding (60) and (61) we have

as ◦ ([−,−]⊗ α⊗2) ◦ (Id+ ζ)(w ⊗ x⊗ y ⊗ z)

= as([w, x], α(y), α(z)) + as([y, z], α(w), α(x))

= (4f − F )(w, x, y, z) (by (27))

= f(w, x, y, z),

since F = 3f . This proves that f is equal to the last entry in (59). �
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In Proposition 3.13 we showed that the Hom-Bruck-Kleinfeld function f (25)

in a Hom-alternative algebra is an alternating function on four variables. We now

discuss a closely related function on five variables in a Hom-alternative algebra.

Definition 6.4. Let (A,µ, α) be a Hom-algebra. Define the multi-linear map

g : A⊗5 → A by

g(u, v, w, x, y) = f(uv, α(w), α(x), α(y))− α3(u)f(v, w, x, y)

− f(u,w, x, y)α3(v)− α (as(u, x, y)α[v, w])

− α ((α[u,w])as(v, x, y))

(62)

for u, v, w, x, y ∈ A, where f is the Hom-Bruck-Kleinfeld function (25) and [−,−] =

µ ◦ (Id− τ) is the commutator bracket of µ.

The following result says that the map g is almost alternating in a Hom-alternative

algebra and is the Hom-type analogue of [6] (Lemma 2.3). Since g is constructed

using α, µ, [−,−], as, and f (which is defined using α, µ, and as), the following

result is ultimately about identities in a Hom-alternative algebra.

Proposition 6.5. In a Hom-alternative algebra (A,µ, α), the map g (62) is alter-

nating in {u, v, w} and also in {x, y}. That is, g changes sign when two of {u, v, w}
(or x and y) are interchanged.

Proof. The map g is alternating in {x, y} because f and as are both alternating

(the former by Proposition 3.13).

To show that g is alternating in {u, v, w}, first note that it is enough to show

that g is alternating in {u,w} and in {v, w}. The map g is alternating in {u,w} if

and only if

g(u, v, u, x, y) = 0. (63)

Since f is alternating and [u, u] = 0, (63) is equivalent to

f(uv, α(u), α(x), α(y)) = α3(u)f(v, u, x, y) + α (as(u, x, y)α[v, u]) . (64)

Likewise, g is alternating in {v, w} if and only if

g(u, v, v, x, y) = 0,

which is equivalent to

f(uv, α(v), α(x), α(y)) = f(u, v, x, y)α3(v) + α ((α[u, v])as(v, x, y)) . (65)

It remains to prove (64) and (65), which we do in the following two Lemmas. �

Lemma 6.6. In a Hom-alternative algebra (A,µ, α), (64) holds.

Proof. To prove (64), we start with

f(vu, α(u), α(x), α(y)) = as([vu, α(u)], α2(x), α2(y))+as([α(x), α(y)], α(vu), α2(u)),

(66)
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which follows from Proposition 6.3. We have

[vu, α(u)] = (vu)α(u)− α(u)(vu)

= (vu)α(u)− (uv)α(u)

= [v, u]α(u).

Therefore, using the definition (25) of f , the first summand on the right-hand side

of (66) is:

as([vu, α(u)], α2(x), α2(y)) = as([v, u]α(u), α2(x), α2(y))

= f([v, u], α(u), α(x), α(y)) + as(α(u), α(x), α(y))α2([v, u])

+ α2(α(u))as([v, u], α(x), α(y))

= f(vu, α(u), α(x), α(y))− f(uv, α(u), α(x), α(y))

+ α(as(u, x, y)α[v, u]) + α3(u)as([v, u], α(x), α(y)).

(67)

In the last equality above, we used the multiplicativity of α. On the other hand,

the second summand on the right-hand side of (66) is:

as([α(x), α(y)], α(vu), α2(u)) = as(α[x, y], α(v)α(u), α2(u)) (by multiplicativity of α)

= −as(α2(u), α(v)α(u), α[x, y]) (by alternativity of as)

= −α2(α(u))as(α(u), α(v), [x, y]) (by (32))

= α3(u)as([x, y], α(v), α(u)) (by alternativity of as).

(68)

Using (67) and (68) in (66), we obtain:

f(uv, α(u), α(x), α(y)) = α(as(u, x, y)α[v, u])

+ α3(u){as([v, u], α(x), α(y)) + as([x, y], α(v), α(u))}

= α(as(u, x, y)α[v, u]) + α3(u)f(v, u, x, y),

where the last equality follows from Proposition 6.3 again. This finishes the proof.

�

Lemma 6.7. In a Hom-alternative algebra (A,µ, α), (65) holds.

Proof. To prove (65), we start with

f(vu, α(v), α(x), α(y)) = as([vu, α(v)], α2(x), α2(y))+as([α(x), α(y)], α(vu), α2(v)),

(69)

which follows from Proposition 6.3. We have

[vu, α(v)] = (vu)α(v)− α(v)(vu)

= α(v)(uv)− α(v)(vu)

= α(v)[u, v].
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Therefore, using the definition (25) of f , the first summand on the right-hand side

of (69) is:

as([vu, α(v)], α2(x), α2(y)) = as(α(v)[u, v], α2(x), α2(y))

= f(α(v), [u, v], α(x), α(y)) + as([u, v], α(x), α(y))α3(v)

+ α2([u, v])as(α(v), α(x), α(y))

= f(vu, α(v), α(x), α(y))− f(uv, α(v), α(x), α(y))

+ as([u, v], α(x), α(y))α3(v) + α ((α[u, v])as(v, x, y)) .

(70)

In the last equality above, we used the alternativity of f (Proposition 3.13) and the

multiplicativity of α. On the other hand, the second summand on the right-hand

side of (69) is:

as([α(x), α(y)], α(vu), α2(v)) = as(α[x, y], α(v)α(u), α2(v)) (by multiplicativity of α)

= −as(α2(v), α(v)α(u), α[x, y]) (by alternativity of as)

= −as(α(v), α(u), [x, y])α3(v) (by (31))

= as([x, y], α(u), α(v))α3(v) (by alternativity of as).

(71)

Using (70) and (71) in (69), we obtain:

f(uv, α(v), α(x), α(y)) = α ((α[u, v])as(v, x, y))

+ {as([u, v], α(x), α(y)) + as([x, y], α(u), α(v))}α3(v)

= α ((α[u, v])as(v, x, y)) + f(u, v, x, y)α3(v),

where the last equality follows from Proposition 6.3 again. This finishes the proof.

�

In any alternative algebra, the following Moufang identities [21] hold:

(xyx)z = x(y(xz)),

((zx)y)x = z(xyx),

(xy)(zx) = x(yz)x.

(72)

Here xyx = (xy)x = x(yx) is unambiguous in an alternative algebra. Now we prove

analogues of the Moufang identities in a Hom-alternative algebra. The proof below

is the Hom version of that of [6] (Lemma 2.2).

Theorem 6.8 (Hom-Moufang identities). Let (A,µ, α) be a Hom-alternative

algebra. Then the following Hom-Moufang identities hold for all x, y, z ∈ A:

((xy)α(x))α2(z) = α2(x)(α(y)(xz)), (73a)

((zx)α(y))α2(x) = α2(z)(α(x)(yx)), (73b)

α((xy)(zx)) = α2(x)((yz)α(x)). (73c)
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Proof. For (73a) we compute as follows:

((xy)α(x))α2(z)

= as(xy, α(x), α(z)) + α(xy)(α(x)α(z)) (by (3))

= as(xy, α(x), α(z)) + (α(x)α(y))α(xz) (by multiplicativity of α)

= as(xy, α(x), α(z)) + as(α(x), α(y), xz) + α2(x)(α(y)(xz)) (by (3))

= −as(α(x), α(y), xz) + as(α(x), α(y), xz) + α2(x)(α(y)(xz)) (by (31))

= α2(x)(α(y)(xz)).

For (73b) we compute as follows:

((zx)α(y))α2(x)

= as(zx, α(y), α(x)) + α(zx)(α(y)α(x)) (by (3))

= as(zx, α(y), α(x)) + (α(z)α(x))α(yx) (by multiplicativity of α)

= as(zx, α(y), α(x)) + as(α(z), α(x), yx) + α2(z)(α(x)(yx)) (by (3))

= −as(α(z), α(x), yx)) + as(α(z), α(x), yx) + α2(z)(α(x)(yx)) (by (32))

= α2(z)(α(x)(yx)).

For (73c) we compute as follows:

α((xy)(zx)) = (α(x)α(y))α(zx) (by multiplicativity of α)

= as(α(x), α(y), zx) + α2(x)(α(y)(zx)) (by (3))

= α2(x)as(x, y, z) + α2(x)(α(y)(zx)) (by (32))

= α2(x) {as(y, z, x) + α(y)(zx)} (by alternativity of as)

= α2(x)((yz)α(x)).

This completes the proof. �
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