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1. Introduction

The notion of a star operation is classical, and that of a Kronecker function ring
which arises by a star operation is also classical. The notions of star operations,
semistar operations, and their Kronecker function rings of integral domains have
been well-known. Let D be an integral domain, K be its quotient field, and F(D)
be the set of non-zero fractional ideals of D. A mapping I — I* from F(D) to
F(D) is called a star operation on D if, for every x € K \ {0} and I,J € F(D), the
following conditions are satisfied: (1) (x)* = (x); (2) (e)* = al*; (3) I C I*
(4) (I*)*=1I*; (5) I C Jimplies I* C J*. The Kronecker function ring of D with
respect to a star operation x on D was first defined by L.Kronecker [7] and further
investigated by W.Krull [8]. Let F/(D) be the set of non-zero D-submodules of K.
A mapping I — I'* from F'(D) to F/(D) is called a semistar operation on D if,
for every x € K \ {0} and I, J € F'(D), the following conditions are satisfied: (1)
(c)* =al*; (2) I CIY 3) (I*)*=1I* (4) I C J implies I* C J*. We
refer to M.Fontana and K.Loper [2] and [3] and F.Halter-Koch [5] for notions of
star operations, semistar operations, and their Kronecker function rings.

Let (D) (resp., ¥'(D)) be the set of star operations (resp., semistar operations)
on D. In this paper, we are interested in the cardinalities |X(D)| and |¥'(D)],
especially, when |¥'(D)| < oc.

Let D be an integrally closed domain. Then D has only a finite number of
semistar operations if and only if D is a finite dimensional Priifer domain with only

a finite number of maximal ideals [11, (5.2)].
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Let V be a valuation domain with dimension n, v be a valuation belonging to
V, and I be its value group. Let M = P, 2 P_q 2 ------ Py 2 (0) be the prime
ideals of V, let {0} & H,—1 G --- & Hi & T be the convex subgroups of I', and
let m be an integer with n +1 < m < 2n + 1. Then the following conditions are
equivalent: (1) |X/(V)| = m; (2) The maximal ideal of Vp, is principal for exactly
2n+1—mof i (3) % has a least positive element for exactly 2n + 1 —m of i [9)].

In [12], we studied star operations and semistar operations on a pseudo-valuation
domain D. We gave conditions for D to have only a finite number of semistar oper-
ations, and showed that conditions for |¥'(D)| < oo reduce to conditions for related
fields. In this paper, we will study star operations and semistar operations on al-

most pseudo-valuation domains, and will prove the following,

Main Theorem Let D be an almost pseudo-valuation domain which is not a
pseudo-valuation domain, P its maximal ideal, V = (P : P), M be the maximal
ideal of V' and set K = % and k = % Then |¥'(D)| < oo if and only if one of
the following conditions holds:

(1) K is an infinite field, K = k, dim(D) < oo, and either P = M2 or P = M?3.

(2) K is a finite field, dim(D) < oo, and P = M™ for some integer n > 2.

The paper consists of six sections. Section 2 contains preliminary results, Section
3 is the case where K = k and min v(M) exists, Section 4 is the case where K = k
and P = M? or P = M3, Section 5 is the case where K = k and P = M™ with
n > 4, and Section 6 is the case where K 2 k.

2. Preliminary results

For the general ideal theory, especially for star operations on integral domains,
we refer to R.Gilmer [4]. Thus, for every I,J € F(D), we set (I : J) = {z €
a(D) | xJ C I}, where q(D) denotes the quotient field of D, set I~ = (D : I), and
set IV = (I"Y)~L. If I = I", then I is called divisorial. By [4, Theorem (34.1)],
IV is the intersection of principal fractional ideals of D containing I, the mapping
I — I' from F(D) to F(D) is a star operation on D, and is called the v-operation,
and for every star operation x on D and for every I € F(D), we have I* C IV. The
identity mapping I — I4 = I on F(D) is a star operation on D, and is called the
d-operation.

Let I be an ideal of a domain D. If, for elements a,b € q(D), ab € I and
b & I imply a € I, then I is called strongly prime. If every prime ideal of D is
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strongly prime, then D is called a pseudo-valuation domain (or, a PVD). We refer
to J.Hedstrom and E.Houston [6] for a PVD. Thus, every PVD is a local domain,
that is, D has only one maximal ideal. If D is a local domain with maximal ideal
strongly prime, then D is a PVD.

For elements a,b € (D), if ab € T and b ¢ I imply a™ € I for some positive
integer n, then I is called strongly primary. If every prime ideal of D is strongly
primary, then D is called an almost pseudo-valuation domain (or, an APVD). We
refer to A.Badawi and E.Houston [1] for the notion of an APVD. Thus, every APVD
is a local domain. Let P be the maximal ideal of D, then V' = (P : P) is a valuation
domain, P is a primary ideal of V', and P is primary to the maximal ideal of V. If
D is a local domain with maximal ideal strongly primary, then D is an APVD.

In this section, let D be an APVD which is not a PVD, P be the maximal ideal
of D, V = (P : P), M be the maximal ideal of V, v be a valuation belonging to
the valuation domain V', I' be the value group of v, K = %, and k = 5

We note that P is not strongly prime and hence P ; M. For, if P is strongly
prime, then D is a PVD by [6, Theorem 1.4]; a contradiction to our assumption
that D is not a PVD.

The following Lemmas 2.1, 2.2 and 2.3 appear in [10, Lemmas 15 and 16 and
Theorem 17].

Lemma 2.1. (1) V =P~ L
(2) P=rP".
(3) The set of non-mazximal prime ideals of D coincides with the set of non-

mazimal prime ideals of V, and dim(V) = dim(D).

Since ((I71)=1) =1 =TI~ for every I € F(D), V is a divisorial fractional ideal of
D.

Lemma 2.2. (1) F/(D) = F(D)U{qa(D)}.

(2) The integral closure D of D is a PVD with mazimal ideal M.

(3) Let T be an overring of D, that is, T is a subring of (D) containing D.
Then either T OV orT CV.

(4) Let X} = {x € ¥(D) | D* 2 V}. Then there is a canonical bijection from
¥(V) onto Xf.

(5) Let Xy = {x € X¥(D) | D* S V}. Then we have ¥'(D) = X7 U X5,

(6) If | ¥'(D) |< oo, then dim(D) < oo, V. = D, V is a finitely generated
D-module, and K is a simple extension field of k with degree K : k] < co.
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Every star operation on D can be extended uniquely to a semistar operation on
D, since F'(D)\ F(D) = {q(D)}.

Lemma 2.3. Assume that dim(D) < oo, and let {T\ | A\ € A} be the set of
overrings T of D with T G V.
(1) |Z(V)|< 0.
2) [Z =1V
(3) There is a canonical bijection from the disjoint union |J, X(Th) onto X5.
(4) If [X5] < oo, then X' (D)| = [Z5] + X' (V)]
Let T be an overring of D. Then there is a canonical injective mapping ¢ from
¥(T) to ¥'(D), and is called the descent mapping from T to D.
Lemma 2.4. Assume that |X'(D)| < oo, then v(M) has a least element.

Proof. It is well-known that for any integral domain, each overring induces a
semistar operation of finite type. Thus the number of overrings is less than the

number of semistar operations of finite type. O

Lemma 2.5. Assume that |X'(D)| < oo, and let I € F(D). Ifinf v(I) exists in
I, then it is min v(I).

Proof. Choose an element = € q(D) \ {0} such that inf v(I) = v(z). Then
271 CV and inf v(x~1I) = 0. Since v(M) has a least element by Lemma 2.4, we

have 0 = min v(z~11), hence v(x) = min v([). O

Lemma 2.6. If P =M™ for some integer n > 2, then v(M) has a least element.

Proof. Suppose the contrary, and let x € M\ P. We can take elements z1,- -+ ,x, €
T T

M such that v(z) > v(z1) > -+ > v(z,). Then we have z = —— ... =Ly ¢
1 T Tn

M"™ = P; a contradiction. O

Lemma 2.7. Let Q be an ideal of V' with M 2 QDOP,andset D+Q=T. Then
T is an APVD which is not a PVD, Q is the mazimal ideal of T, and V = (Q : Q).

Proof. We rely on [1, Theorem 3.4]. Then P is strongry primary, P is an M-
primary ideal of V| and so is Q. Clearly, @) is the unique maximal ideal of T = D+Q,
hence T is an APVD, and W = (Q : Q) is a valuation domain with @ primary to
the maximal ideal N of W. Since (Q : @) 2 V, N is a prime ideal of V, hence
N =M, and W = V. Finally, T is not a PVD, because @ is not strongly prime. [

Lemma 2.8. Let x be a star operation (resp., a semistar operation) on D.
(1) Let T be an overring of D. Then T™ is an overring of D.
(2) Both D* and V* are overrings of D.
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Proof. Because T* = (TT)* = (T*T*)* D T*T*. O

Lemma 2.9. If min v(M) exists, then we may assume that Z is the rank one

conver subgroup of T', and min v(M)=1€ Z CT.

Proof. The rank one convex subgroup of I' is isomorphic with the ordered group
Z. Therefore there is an isomorphism compatible with orders from I' onto an

ordered group IV the rank one convex subgroup of which is Z. O

Lemma 2.10. To prove our Theorem, we may assume that v(M) has a least
element and min v(M)=1€ Z CT.

The proof follows from Lemmas 2.4, 2.6 and 2.9.

3. The case where K = k and min v(M) exists

In this section, let D be an APVD which is not a PVD, P be the maximal ideal

of D,V = (P : P), M be the maximal ideal of V, v be a valuation belonging to the
valuation domain V', I" be the value group of v, assume that K = U= P and
min v(M) exists with min v(M) = v(r) =1 € Z C T for some element 7 € M,
and let {a; | ¢ € Z} = K be a complete system of representatives of V' modulo M

with {0,1} C K C D.

Lemma 3.1. Let z € q(D) \ {0} with v(z) € Z, and let k be a positive integer

with k > v(x). Then x can be expressed uniquely as © = oy’ + g m ™t + - +

ap_ 17+ ark, where | = v(z) and each a; € K with a; #0 anda € V.

Proof. Since ﬁl is a unit of V, we have il = oy (mod M) for a unique element
T T

a; € K\ {0}. Inductively, there are required elements aji1,---,ap—1 € K and

acV. O

In Lemma 3.1, we may say that a; is the coefficient of ¢ in x (or, a; is the

coefficient of degree i in ).
Lemma 3.2. There is a unique integer n > 2 such that P = M™".

Proof. Set min {v(x) | z € P} =n, and let € P such that v(z) = n. There is
a unit v of V' such that #” = xu. Since P is an ideal of V', we have n™ € P, and
hence P = M". Since P G M, we have n > 2. O

For every subset X of q(D), the D-submodule of (D) generated by X is denoted
by (X). If P = M", then we have P = (7", 7"t ... 72772 72n=1) and V =

(1,7, 7" 1).
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If a1, -+ ,a, is a finite ordered set, and not only a finite set, we denote it by
< ai,---,ap > if necessary. That is, < a1, -+ ,a, > = < by, -+ , by, > if and only

if n =m and q; = b; for each 1.

Lemma 3.3. Let I € F(D).
(1) Ifinf v(I) exists, then it is min v(I).
(2) Ifinf v(I) does not exist, then we have I = IV.

Proof. (1) Then min v(M) exists by the assumption, and the proof is similar to
that of Lemma 2.5.

(2) By Lemma 3.2, there is an integer n > 2 such that P = M™. Since dI C D
for some element d € D \ {0}, v(I) is bounded below. Let {v(zy) | A € A} be
the lower bound of v([I), and let x € [, (zx). Suppose that v(z) is in the lower
bound of v(I). Then v(z) < v(zy) for some element A € A, hence z & (z)); a
contradiction. Therefore there are elements aq,as, -+ ,a, € I such that v(a,) <
<o <w(ag) <v(ar) <v(z). Then x = %Z—;u' aZ;lan € M"a, C I. Hence we
have (), («x) € I. On the other hand, obviously we have I C (xy) for every A. It
follows that I = (1, (zx), and hence I = IV by [4, Theorem (34.1)]. O

Example 3.4. (1) Assume that P = M?, then we have
{IeFD)|DCICV}={1),1Q,n)}.
(2) Assume that P = M3. Set (1) = Iy, (1,72) = Iy 2, (1, m,7%) = Io1,2, and set
(1,7 + an?) = I§, for every a € K. Then we have
{I€F(D) | DCICV}={Ip,To2 o1} ULIG, | a €K},
IfIg, = I()B,l for an element B € IC, then o = 3.
3) Assume that P = M*. For elements ay,as € K, set

2 3) — 71,02
L+ aoam? + agn’) = I,

3 2 3\ _ 791,02
L+ arm, 8 + agm’) = 1757,

Then we have
{I e F(D) | DCICV}y={lo,Igy" Igh, Tos, I575% 151 3 lo2,3; To123 |
a1, an € K}
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For elements a1,az, 81,82 € K, if I = 1512, then aq = By if Ig} 53 = Ig’ll’g,
then an = B1; if IgY™ = Igfl’&, then the ordered set < ay, a9 > = < 31,82 >; if
I3y = 511’22, then < ai, a9 > = < 1, B2 >.

(4) Assume that P = M?®. For elements oy, o, a3, a4 € K, set

)_IOa

1,7+ a1 + apmd + azm?) = ,

— 184’17042»043
L2 + anm® + agnt) = I55*,
L +apmt) = Ig's,

) = I,

4

1,74 0w + aon?, 12 4 asmd + aur

4 7104170121043,044
=1 ,

3Ly

aq,a2,Q
L+ on? 4 apr?, w8 4+ agn?) = I§15>%°,

(1

(1,

(1,

(1,

(1,

(1,

(

(1w + oam® 4+ apm®, o) = IG5,
(1,
(
(
(
(1,
(1,
(1,
(1,

4 — 104170(2

1,72 + oy, +0¢27T4) 0,2,3 »
17r2+061ﬂ'371') 124,
L,m3, 74 = Iy 3.4,

a1,
L+ onmt, 7% + agnt, 7% + asnt) = I779%%,

3 — 1017a2

4
L+ onm?, m% + cpn®, mt) = I575%,

L+ ogm?, w8, mh) = Igh 5 4,

Lr2, w8, mt) = Ina3.4,

Lmn? w3, 1) =Ip123.4.

Then we have

(1 F(D) [ D€ TCV) = (I I I3, B T Y5 e,

1,02 aq,02 a17a21053 1,02
Io 1,4 > Io 2,3 0 2 4 Lo3,4, Io 1,2,3 10,1,2 4> 10,1,3,4,10,2,3,4’ Io1234 | each a; €

K}.

For elements a1, -+ a4, B1,--+, Ba € K, if Iy = 163713, then oaq = fr; if [gy™* =
155’52, then < ay,ar > =< f1,B2 >; if [§7*% = 1(1)3’11,132,/33’ then < a1, ag, a3 >
= < fB1,P2,03 >; etc.

Proof. (4) Let I be a fractional ideal of D such that D C I C V. Let 7 =
{v(z) | = € I'\ P}, and let, for instance, 7 = {0,1,3}. Then I contains elements a, b
of the form a = 7+ aan? + azn® + ayn? and b = 73 + B, where o, a3, a4, B € K.
Exchanging a by a — asb, we may assume that a3 = 0. Let v = By + 17 +
Bom? + Bamd + Pym* +p € I, where each ; € K and p € P. We have z =
Bo + Bra + Bsb + Bim? + Bhywt + p’ for some elements B; € K and p’ € P. Since
7=1{0,1,3}, we have 3] = 85 =0, hence I = (1, a,b).

For the second assertion, say I§55* = I5552. Then 72 + pint = do + di(n? +

a1) + da (7 + agm?) for some elements dy,d;,dy € D. Comparing coefficients
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of 1,72, 7% in both sides, we have dy = 0(P),d; = 1(P) and dy = 0(P). Then
72 + Bim* = 72 + a1t + p for some element p € P, hence f; = a;.

Similarly, we have 73 + Bom* = do + di (7% + ay7?) + do(73 + o) for some
elements dy,d;,ds € D. Comparing coefficients of 1,72, 72 in both sides, we have
dp =0,dy =0 and do = 1. Then 73 + Borr* = 73 + aun* + p for some element
p € P. Hence 82 = a9, and hence < ay, a0 > = < 51,82 >.

The proofs for (1), (2) and (3) are similar and simpler. O

Lemma 3.5. Assume that P = M™ with n > 2, and let I € F(D) with D C I C
V. Then there is a set of generators fo, f1, -, fm for I satisfying the following
conditions:

(1) FEach f; has the following form: fo =1, and
1(3)
fi =7F 4 Zai,ﬂre“ for each 1 <i <m, where a; ; € K for each i, j.
j=1
(2) In (1), the set {0,ky, - ,kn} is a subset of {0,1,2,--- n — 1} with 0 <
kp < <kp.
(3) {k‘z + 1,k +2,---,n— 1} \ {kiJr]_, cee ,k‘m} = {ei,l, T, € l(z)} with €1 <

eia << e ) for each 1 <i <m.

Proof. We have {v(z) | « € I\ P} = {1,k1, -+ ,kn}, where 1 < k; < -+ <

k,, <n —1. By Lemma 3.1, there are elements fq, f1,-- , frn € I which have the
following form: fy =1, and
n—l—ki
fi= ki 4 Z ﬂi’kiﬂﬂk’iﬂ for each 1 <@ < m, where 3; ; € K for each i, j.
j=1
For each 1 <4 < m, exchanging f; by f; — B; x, [; for each j > i, we may assume
that Bk, = Bikiyo =+ = Bikm = 0. Then fo, f1,---, fin satisfy the conditions

(1), (2) and (3).

Suppose that (fo, f1, -+, fm) S I, and let € I'\ (fo, f1,--- , fm). Then v(x) €
{1,k1, - ,km}. Let k; = max {v(z) | € I\ (fo,f1,"",fm)}, where we put
1 =ko, and let y € I\ (fo, f1, -, fm) such that v(y) = k;. Then there is an
element o € K such that v(y — af;) > k;. It follows that y — afi € (fo, f1, 5 fm),
and hence y € (fo, f1,- -+, fm); a contradiction. The proof is complete. O

Lemma 3.6. Assume that P = M™ withn > 2, and let I € F(D) with D C I C
V. Then the system of generators fo, f1, -+ , fm for I satisfying the conditions in

Lemma 3.5 is determined uniquely.

Proof. Let fj,---, f., be generators for I satisfying the conditions in Lemma 3.5.
Then each f] has the following form: f} =1, and
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U (3)

fl=ahi4 Za;jﬂe(id for each 1 < i < m’, where o ; € K for each i and j,
{0,k1,- - ,k;n/]} ils a subset of {0,1,2,--- ,n—1} with 0 < k] <--- <k, and

[ L B2, = TP\ (Ko sk} = (s sy} with €, < ey <
e < e;,l,(i) foreach 1 <¢<m/'.

Suppose that k; = kj for each i < j and k) < k; for some j. Then f} ¢
(fo, f1, -+, fm); a contradiction.

It follows that m = m’, k; = kj for each i, I(i) = I'(i) for each i, and e, ; = €] ;
for each ¢, j.

Suppose that f; = f; for each i < j and that f; # f;. We have f; =
fi +djs1fj+1 + -+ dp fru+ p for some elements djiq, - ,dy € D and p € P.
If dji1,---,dn € P, there is a contradiction to the uniqueness in Lemma 3.1.
Otherwise, there is an integer k& > j and an element a € K \ {0} such that
fi=fi+afi+d  frer+- +d, fm + P for some elements d ,,--- ,d;, € D
and for some element p’ € P. The coefficient of 7* in the left side f]’ is zero and

that in the right side is a # 0; a contradiction. The proof is complete. O

Assume that P = M™ for an integer n > 2. Let {0,ky, -+, k., } be a subset of
{0,1,2,--- ;n — 1} containing 0 with 0 < k; < -+ < k;,. Then the ordered set
<0,k1, - ,kp > with order 0 < k1 < --- < k,, is called a type on D. There are
2"~ ! types on D. Let 7 = < 0,k1,--- , kmn > be a type on D. Set

{ki+ 1Lk +2,--- n =13\ {kiy1, - s km} = {ei1, - e} with ej1 <ejo <
<< e for each 1 <4 <m.

Then an ordered set p = < 1,1, , a1, (1), *** > Qm,1, " s Qm, 1(m) > Of ele-

ments in K is called a system of parameters on D belonging to 7. The ordered

set 0= <0,k1, km, 11,0, Q1 1(1), 0 Qm1s 0 s Qo 1(m) > 1S called a data
on D belonging to 7. We denote the data by < 0,ki, - kniar1,- a1, (1),
CQm1y vy Qg y(m) >- T (resp., p) is said to belong to o, and is denoted by

7(o) (resp., p(o)). A system of parameters belonging to 7 may be empty. In this

case, the data belonging to 7 is 7 itself. Set f§ =1, and
1(4)
= 7k 4 Zozm'ﬂ'e” foreach 1 < i <m.

7

j=1
Then < f§, f7,---, f7, > is called a canonical system of generators on D be-
longing to 0. And the fractional ideal (f§, f7, fg,---, f7) is said to be associated

to o, and is denoted by I? or, by I(o).
Let I be a fractional ideal of D with D C I C V. Lemmas 3.5 and 3.6 show that

there are a type 7, a system of parameters p, a data o uniquely such that I = I(0)
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on D. Then 7 (resp., p,o) is called the type (resp., the system of parameters,
the data) of I. The system of generators < fJ, f7,---,f7 > for I is called the

canonical system of generators for I.

Lemma 3.7. Assume that P = M™ with n > 2. Then we have {I € F(D) | D C
I1CV}y={I(o) | o is adata on D}.

Let I,J € F(D). If there is an element = € q(D) \ {0} such that xJ = I, then I
and J are said similar, and is denoted by I ~ J.
Lemma 3.8. Assume that P = M"™ withn > 2. Let 0,0’ be two datas on D such

that 7(0) # 7(0"). Then I(0o) is not similar to I(c’).

Proof. Suppose that zI(c) = I(o’) for some element z € q(D) \ {0}. Then
v(z) = 0. Let 7(0) = {0,k1, ko, ,km} with 0 < k1 < ko < -+ < kyp, and let

7(0") = {0,k{, kb, -+ k!, } with 0 < K} < k) < --- < k/.,. We may assume that
k; = K for each i < j and k; < k; for some positive integer j. Then we have
xf7 & I(0’), and hence zI(0) € I(0’); a contradiction. O

Lemma 3.9. Assume that K is a finite field. Then {I € F(D) | D C I CV} is

a finite set.
The proof follows from Lemma 3.7.

Lemma 3.10. Assume that K is a finite field, and let | be a megative integer.
Then {I € F(D) | I has min v(I), and I < min v(I) <0} is a finite set.

Proof. Let P = M". By Lemma 3.9, theset {I e F(D) | DCICV}=Xis
a finite set. Let I be a fractional ideal of D such that min v(I) = [y exists with
[ <lp <0. We have v(ag) = lp for some element ay € I. We may assume that
ag = 7Tl0(1 + o1+ agm? 4+ -+ 17" + p) for some element p € P. Since

1 1
D C —1 CV,wehave —I € X, completing the proof. O
ao ao

Lemma 3.11. Assume that K is a finite field. Then {T | T is an overring of D
with D CT CV} is a finite set.

Proof. Because each overring T with T C V' has some type, and each type has

only a finite number of systems of parameters. O

Lemma 3.12. Assume that K is a finite field. Let T be an overring of D with
T CV, and let I be a negative integer.

(1) {IeF(T) | TCICV} isa finite set.

(2) {I € F(T)| min v(I) ezists, and | < min v(I) <0} is a finite set.
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Proof. Since F(T') C F(D), the proof follows from Lemmas 3.9 and 3.10. O

4. The case where K = k and P = M? or P = M3

In this section, let D, P,V, M, K,v,I', 7 and K be as in Section 3. We will prove
the following,

Proposition 4.1. (1) If K is a finite field, then |X(D)| < oco.
(2) If P = M?, then |S(D)| = 1.
(3) If P=M?, and if dim(D) < oo, then |¥/(D)| =1+ |¥/(V)].
(4) If P = M3, then |S(D)| = 3.
(5) If P = M3, and if dim(D) < oo, then |¥/(D)| =4+ |¥/(V)].

We note that if dim(D) = oo, then |X'(D)| = |¥'(V)| = oo. For, Spec(D) =
{Pr» | A € A} is an infinite set. And, for every A, there is a semistar operation
I —— IDp,. Furthermore, if we have an infinite number of overrings of D, then

|2/ (D)| = co. For, for every overring T', there is a semistar operation I — IT.
Lemma 4.2. If K is a finite field, then we have |X(D)| < oc.

Proof. Then {I € F(D) | D C I CV} = X is a finite set by Lemma 3.9. Let
be a star operation on D, and let I € X. Since V is a divisorial fractional ideal of
D, wehave D C I* CV*CVY =1V, and hence I* € X.

If we set I* = g,(I), then the element x € (D) gives an element g, € XX,
where XX is the set of mappings from X to X. And the mapping g : * — ¢, from
%(D) to XX is injective by the definition. O

Lemma 4.3. Assume that P = M?. Then {T | T is an overring of D with
TSV} ={D}.

Proof. Because {I € F(D) | DCICV}={(1),(1,7)} by Example 3.4 (1). O

Lemma 4.4. Assume that P = M?. Then we have |S(D)| =1, and if dim(D) <
oo, then |X/(D)| =1+ |X/(V)].

Proof. If inf v(I) does not exist, then I = IV by Lemma 3.3. Hence every member
I € F(D) is divisorial. It follows that |X(D)| = 1, and Lemma 2.3 completes the
proof. (I

A mapping + from F(D) to F(D) is said to satisfy condition (C) if it satisfies the
following three conditions: (1) D* = D and V* =V; (2) (zI)* = aI* for every
element x € (D) \ {0} and I € F(D); (3) If inf v(I) does not exist, then I* = I.

Obviously, every star operation satisfies the condition (C).
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Throughout the rest of this section, assume that P = M?3.
Lemma 4.5. We have {T | T is an overring of D with T SV} ={D, D+ M?}.

Proof. We have that {I € F(D) | D C I CV} = {lo,lo2,lo12} U{I§ | a € K}
by Example 3.4 (2), and that Ip = D,lpo = D+ M? Ip12 =V, and I§; is not a
subring of q(D) for every a € K. O

Lemma 4.6. (1) For elements o, 3 € K, we have I§; C 163,1 if and only if o = 3.
(2) Io2 and I§; are not comparable for every a € K.

(3) I, and I{il are similar for every o, 8 € K.

Proof. (3) Set 1+ ar+ a?r? = z. Then we have z(1,7) = (1,7 + ar?).
The proofs for (1) and (2) are similar. O

Lemma 4.7. Let * be a star operation on D. Then (Ip2)* is either Ipo or'V, and

(I§1)* is either I§ ; or V.

Proof. Since V is a divisorial fractional ideal of D, we have ([p2)* € V and
(I§1)* € V. Then the assertion follows from Lemma 4.6. O

Lemma 4.8. (1) Set Iy = (Io2)* and I, = (I§,)*. Then x can be extended
uniquely to a mapping x1 from F(D) to F(D) with condition (C).

(2) Set Ips = (lo2)* and V = (I§,)*. Then * can be extended uniquely to a
mapping *2 from F(D) to F(D) with condition (C).

(3) Set V= (lo2)* and I, = (I§,)*. Then * can be extended uniquely to a
mapping *3 from F(D) to F(D) with condition (C).

(4) Set V.= (lo2)* and V = (I§,)*. Then x can be extended uniquely to a
mapping x4 from F(D) to F(D) with condition (C).

Proof. We confer Example 3.4 (2) and Lemma 3.3. Let I € F(D), then Lemma
3.8 implies that either I is similar to one and only one in {Iy, Iy 2, lo,1,2, 1871}, or

inf v(I) does not exist. If inf v(I) does not exist, then we set I = I*i for each . O

Lemma 4.9. In Lemma 4.8, we have the following:

(1) %1 is a star operation on D, and *; = d.

(2) *2 is a star operation on D.
(3) x3 is not a star operation on D.
(4) x4 is a star operation on D, and x4 = v.

Proof. We confer Lemma 4.6.
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(2) For elements x € q(D) \ {0} and I € F(D), we have (2)*? = (x), (zI)** =
eI, I C I*2, and (I*2)* = [*.

Let I, Iy € F(D) with I; C I5. The proof for I;? C I? follows from the following
two facts:

(i) Let (1,7) C I € F(D) such that inf v(I) does not exist. Then V C I.

(ii) For elements = € (D) \ {0} and I € {Io, Iy}, if 210, C I, then zV C I.

(3) Set m+ 7% = . Then z(1,72) C (1,7 + 2) and 2V € (1,7 + 7°).

The proofs for (1) and (4) are similar. O

Lemma 4.10. Assume that P = M?. Then |S(D)| = 3, and, if dim(D) < oo,
then |X/(D)] =4+ X' (V).

Proof. By Lemma 4.9, (D) = {d, v,*2}, and hence |X(D)| = 3.

Assume that dim(D) < co. By Lemma 2.7, we can apply Lemma 4.4 for D’ =
D + M?. Then, in Lemma 2.3, we have |$5| = |2(D)| + |2(D + M?)| =3+ 1 =4.
It follows that |X/(D)| = |Z1| + |25 =4+ |X'(V)]. O

The proof for Proposition 4.1 is complete.

5. The case where K = k and P = M™ withn > 4

In this section, let D, P,V, M, K,v,I', 7w and K be as in Section 3. We will prove
the following,

Proposition 5.1. (1) Assume that K is an infinite field and P = M™ with n > 4.
Then |2(D)| = co.
(2) Assume that K is a finite field and dim(D) < co. Then |X/(D)| < oc.

Lemma 5.2. Let T be an overring of D with T C V', and let I € F(T).
(1) Ifinf v(I) exists, then it is min v([).
(2) Ifinf v(I) does not exist, then I is a divisorial fractional ideal of T.

The proof is similar to that of Lemma 3.3.

Lemma 5.3. Assume that K is a finite field, and let T be an overring of D with
T CV. Then |2(T)| < co.

Proof. Let P=M". Set {I e F(T) | T CICV} =X, and set {I € F(T) |
min v([) exists, and —n < min v(I) < 0} =Y. Then X and Y are finite sets by
Lemma 3.12. Let I € F(T'). Then either min v(I) exists or inf v(I) does not exist,
and, if inf v(I) does not exist, then T is a divisorial fractional ideal of T' by Lemma
9.2.
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Let x be a star operation on T, and let I € X. Since "I C T, we have
7" I[* C T. Hence min v(I*) exists, and —n < min v(I*) < 0, that is, I* € Y. If
we set I* = g,(I), there is a canonical mapping g : ¥(T) — Y X, where Y is the
set of mappings from X to Y. Moreover, g is injective by the definition, and hence
IS(T)] < oo. O

Lemma 5.4. Assume that K is a finite field and dim(D) < co. Then |X/(D)| <

Q.

Proof. By Lemmas 3.11 and 5.3, we have |X4| < oo and |¥/(D)| < co in Lemma
2.3. (I

Lemma 5.5. Let < 1501, ,a >, < T;01, -+, Bk > be two datas on D with
the same type 7 and with k > 1. Then I(t;a1,--- ,ap) C I(7; 61, ,Bk) if and
only if a; = B; for each i.

Proof. For instance, assume that P = M® and that I§}5>“*** C 169711722763764.
Then we have 7+ ;73 + aon? = (7 + B17® + Bor?) + (72 + B3 + Bum)p1 + po
for some elements p1,p2 € P. Hence a; = 1 and as = (5. Similarly, we have
72 4+ azm® + aumt = (72 + By + Bymt) + p3 for some element p3 € P. Hence
ag = B3 and ay = B4. O

Lemma 5.6. Assume that P = M™ with n > 4 and that K is an infinite field.
(1) The set {T | T is an overring of D with T C V'} is an infinite set.
(2) [E'(D)] = oo.

Proof. (1) I§,_, is an overring of D with I§, o C V for every a € K. Since
|| = oo, the assertion holds by Lemma 5.5.
(2) follows from (1). O

Lemma 5.7. Assume that P = M™ withn > 3. Let I € F(D) such that D C I C
V' with type 7, let J € F(D), and let x € q(D) \ {0}.

(1) IfI CJ, and if inf v(J) does not exist, then V C J.

(2) Ifzl CIy, and if € {<0>,<0,n—1>}, then 2V C Iy.

(3) Ifel Clyp1, and if T ¢ {<0>,<0,n—1>}, thenaV C Iy,—1.

(4) Ifal CIGY7 % and if 7 & {< 0 >,< 0,1 >,< 0,n —1 >}, then
BV CIgTOe,

Proof. (3) Suppose that v(z) = 0. Since 7 € {< 0 >,< 0,n—1 >}, I contains an
element a such that 0 < v(a) < n—1. We have za € Iy,,—1 and 0 < v(za) < n—1,

a contradiction.
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(4) We have v(zI) € {0,1,n,n +1,---}. Since = € I§}"""*""*, we have v(z) €
{0,1,nm,n+1,---}.

If v(z) = 0, then v(I) C {0,1,n,n+1,---}. Hence 7 is either < 0 > or < 0,1 >;
a contradiction.

Ifv(z) =1, thenv(I) C {0,n—1,n,---}. Hence 7 is either < 0 > or < 0,n—1 >;
a contradiction.

Finally, if v(z) > n, then 2V C Ig”l n=z

The proofs for (1) and (2) are similar. O

Lemma 5.8. Assume that P = M™ with n > 4. Then 1(0,1;0,--- ,0,a) ~
1(0,1;0, - -+, 0,5) if and only if a = .

Proof. The necessity: There is an element « € q(D) \ {0} such that z(1,7 +
ar™ 1) = (1,7 +B7""1). We may assume that x = 1 + (7 + 7"~ 1)’ for some

element o/ € K. Since z(7 + an™ 1) € (1,7 + "~ 1), we have a = 3. O

Example 5.9. Assume that P = M®. In the following, let ag, Bi, oy € K for
each 1.

(1) Igy™> ™ ~ 1511’62’63 if and only if as — B2 = (ag — f1)(a1 + B1) (modP) and
(az = B3) = (a1 = B1)(a2 + a1 By + B2) (modP).

(2) Let x € q(D)\ {0}. If xlg """ C I8y and if 155" %
Igye®e, then xV C IgTo%%°.

(3) Fiz a data < 0,1; a1y, ), ) > on D. Let I € F(D) with D C 1 CV.
If I is either Io or In or Iy with I§1*% 4 Ig @O st I = 1*0, and
otherwise set V.= I"0. Then xo determines uniquely a star operation x on D.

(4) If K is an infinite field, then |2(D)| = oo.

Proof. We confer Example 3.4 (4).

(1) Set ™4 a17? + aom® + azm? = A and set 7 + Sy + for® + B3t = B.

The necessity: There is an element 2 € q(D) \ {0} such that zI§}*** =
1511’52”83. Then we have v(x) = 0. We may assume that x = 1 + Ba for some
element o € K. Since A € (1, B), we have a = 1 — a1, f2 — as = a(aq + 1) and
Bs — az = a(as + a1 1 + F2).

The sufficiency: Let 81 —a; = o with a € K, and set 1+ Ba = . We have that
A+ ABa = B+ p; for some element p; € P, and hence z(1, A) C (1, B). Similarly,
let ay — 1 =p with e, 14+ AB =y, and B+ ABfS = A + ps for some element
pa € P. Then y(1,B) C (1,A). On the other hand, since zy is a unit of D, it
follows that z(1, A) = (1, B) and y(1, B) = (1, A).
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(2) Suppose that v(x) = 0. Then we may assume that x = 1+ (7 +a1m2 +asm +
azm?)a for some element a € K. Then z(m 4 a1y + a)m® + ogym?) € I >
implies that a() — a2 = (o) — a1)(a@) +a1) and ag) — a3 = (a@) — a1)(ap) +
a1 + az); a contradiction.

(3) We introduced the condition (C) in Section 4. Then %y can be extended
uniquely to a mapping * from F(D) to F(D) with condition (C). Let I, Iy € F(D)
with Iy C I, then we have IT C I3 by Lemma 5.7 and (2).

(4) Let %a,) (.00 be the star operation on D determined in (3). If I5'7**"** o

Igll’ﬁZ’ﬁ3, then %o, ag,a5 7 *B1,82.8;- By Lemma 5.8, we have |X(D)| = occ. O

Lemma 5.10. Assume that P = M™ with n > 4.

(1) Then I(0,1;a1, -+ yan—2) ~ I(0,1; 81, -+, Bn—2) if and only if ar — B, =
(o1 — 61)(20_1 Biag—1—;) (modP) for each 2 <k <n—2.

(2) Let x € q(D)\ {0}. If 2I(0,1;01, -+ ,ctn—2) C I(0,1; B4, , Bn_2) with
10, 1501, -+ -5 ap—2) 2 1(0,1;B1, -+, Bu—2), then 2V C 1(0,1; 81, -+ , Bn—2).

Proof. We confer Lemma 5.9, where n = 5.

(1) Set T4+ a1m2 44y o™t = A and set 7+ 172+ -+ B! = B.

The necessity: There is an element x € q(D) \ {0} such that zIg}**" """ =
I()B’ll’ﬁz"" P2 Gince v(x) = 0, we may assume that x = 1 + Ba for some element
a € K. Since A € (1, B), we have a = 81 — a3 and 8 — oy, = a(zg_l Bitk—1—)
for each 2 < k <n —2.

The sufficiency is similar to the proof for Lemma 5.9 (1).

(2) Suppose that v(z) = 0. Then we may assume that z = 1 + (7 + Bi7% +
<4 B o for some element o € K. Then x(m + a1m2 + -+ + o7 1) €
Igll"” B2 implies that 8, —ax = (b1 —oq)(zg_l ;fr—1—;) foreach 2 < k <n-—2;

a contradiction. O

Lemma 5.11. Assume that P = M" withn > 4. Fiz a data <0, 1; (1), 02y, ,
Q(n—2)y > on D, and let I € F(D) with D C I C V. If I is either Iy or Iy, 1
or 1(0,L;ay, a9, -+, an_2) with I(0,1;a1, a2, ,an_2) # 1(0,1;a(1), (2, -,
Q(n—2)), set I = I*°, and otherwise set V = I*°. Then %o determines uniquely a

star operation x on D.

Proof. We confer Lemma 5.9 (3). Then %o can be extended uniquely to a mapping
* from F(D) to F(D) with condition (C). Let Iy, Iz € F(D) with I C Iy. Then, by
Lemma 5.7 and Lemma 5.10 (2), we have I} C I3. O

Lemma 5.12. Assume that K is an infinite field and P = M™ with n > 4. Then
|2(D)| = oc.
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Proof. Let *a a0, be the star operation on D determined in Lemma

¥ (n—2)
5.11. It I(‘)X,ll’a%mﬂn_2 76 1311’62"“’6n_23 then *Ot170427“‘70¢n—2 7é *517527'“,571,—2' By
Lemma 5.8, we have |X(D)| = oo. O

The proof for Proposition 5.1 is complete, and the proof for the case where K = k

in our Theorem is complete.

6. The case where K 2 k

In this final section, let D be an APVD which is not a PVD, P be the maximal
ideal of D, V = (P : P), M be the maximal ideal of V|, K = %, k= %, v be a
valuation belonging to V, T be the value group of v, {a; | i € T} = K be a complete
system of representatives of V' modulo M with {0,1} C K, and assume that K 2 k,
and that min v(M) exists with min v(M) = v(w) =1 € Z C T for some element
m € M. We will prove the following,

Proposition 6.1. The following conditions are equivalent.
1) [Z(D)] < .
(2) K is a finite field, dim(D) < oo, and P = M™ for some n > 2.

Lemma 6.2. (1) Letx € q(D)\{0} withv(x) € Z, and let k be a positive integer
with k > v(x). Then x can be expressed uniquely as v = oy’ + gt + - +
ap_ 17+ ark, where | = v(z) and each a; € K with a; #0 anda € V.

(2) There is a unique integer n > 2 such that P = M™.

(3) Let I € F(D) such that inf v(I) exists. Then inf v(I) = min v(I).

(4) Let I € F(D) such that inf v(I) does not exist. Then I =IV.

The proofs are similar to those for Lemmas 3.1, 3.2 and 3.3.

Lemma 6.3. Assume that P = M™ for some n > 2. Let T be an overring of D
with T CV and let I € F(T).

(1) Ifinf v(I) exists, then it is min v(I).

(2) Ifinf v(I) does not exist, then I is a divisorial fractional ideal of T.

The proof is similar to that for Lemma 3.3.

Lemma 6.4. Assume that K is a finite field and P = M™ for some n > 2.

(1) The set {I € F(D) | DCICV} isa finite set.

(2) Letl be a negative integer. Then the set {I € F(D) | min v(I) exists, and
I < min v(I) < 0} is a finite set.

(3) The set {T | T is an overring of D with D CT C V'} is a finite set.
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(4) The set {I € F(T) | T C1ICV} isa finite set.
(5) Let T be an overring of D with T C V', and let | be a negative integer. Then
the set {I € F(T) | min v(I) exists, and I < min v(I) < 0} is a finite set.

The proofs are similar to those for Lemmas 3.9, 3.10, 3.11 and 3.12.

Lemma 6.5. Assume that k is an infinite field and P = M™ for some n > 2.

Then there is an infinite number of intermediate rings between D and V.

Proof. Let w € V such that 2 = u+ M € K\ k. Let a € D\ P, and set
(1,(1 + au)m™~t) = D,. Then D, is an overring of D with D, C V.

Let a,b € D\ P such that D, = Dj,. Then we have a = b. For, we have
(14 au)7m™ ! = (1 + bu)7™~d + p for some elements d € D and p € P. It follows
that 1 —d = (bd — a)u+ m for some element m € M. If bd —a =0, then 1 —d = 0,
hence b = bd = a. Suppose that bd — a # 0. Since 1 — d = bd — a @, we have u € k;
a contradiction. It follows that {D, | a € D\ P} is an infinite set, since k is an

infinite field. The proof is complete. O

Proof for Proposition 6.1. (1) = (2): By Lemma 2.2 (6), we have dim(D) < oo
and [K : k] < co. We may apply Lemma 6.2. Then we have P = M" for some
n > 2. Suppose that K is an infinite field. Since [K : k] < 0o, k is an infinite field.
By Lemma 6.5, there is an infinite number of intermediate rings between D and V.
It follows that |X/(D)| = co; a contradiction.

(2) = (1): We can apply Lemma 6.4. Theset {I € F(D) | DCICV} =X
is a finite set. Let * be a star operation on D, and let I € X. We note that V is a
divisorial fractional ideal of D. Since D C I* C V, we have I* € X.

If we set I* = g,(I), then the element x € (D) gives an element g, € XX.
By Lemma 6.2 (3), the mapping g : x — g, from X(D) to XX is an injection. It
follows that |2(D)] < 0.

Let T be an overring of D with T C V. Set {I e F(T) | T CICV} =X, and
set {I € F(T) | min v(]) exists, and —n < min v(I) <0} =Y. Then X and Y are
finite sets. For every I € F(T), either min v(I) exists or inf v(I) does not exist by
Lemma 6.3 (1). Let x be a star operation on T, and let I € X. Since 7" C T, we
have 7™ I* C T. Hence min v(I*) exists, and —n < min v(I*) <0, that is, I* € Y.
If we set I* = g,(I), there is a canonical mapping g : ¥(T) — Y. Lemma 6.3
implies that ¢ is an injection, hence |X(7T')| < co. By Lemma 6.4 (3) and Lemma
2.3, we have |X4| < o0, and |X'(D)| < oc.
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The proof for our Theorem is complete by Propositions 5.1 and 6.1.
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