RINGS WHOSE SEMIGROUP OF RIGHT IDEALS IS J-TRIVIAL

Henry E. Heatherly and Ralph P. Tucci

Received: 12 January 2011; Revised: 5 May 2011
Communicated by Abdullah Harmanci

Abstract. A semigroup S is J-trivial if any two distinct elements of S must generate distinct ideals of S. We investigate this condition for the semigroup of all right ideals of a ring under right ideal multiplication. There is a rich interplay between the underlying ring and the semigroup of all of its right ideals.

Mathematics Subject Classification (2010): 16D25, 16E25, 16N99, 20M10
Keywords: semigroup of right ideals, ring, J-trivial, idempotents, nilpotent, radicals, π-regular, strongly regular, right weakly regular, 0-cancellative

1. Introduction

Here R is a ring. (Herein all rings are associative, not necessarily commutative, not necessarily with identity). Let $\mathbb{R}(R)$, $\mathbb{L}(R)$, and $\mathbb{I}(R)$ denote the multiplicative semigroups of right, respectively left, two-sided ideals of R. In previous works we considered these semigroups when they are bands (every element idempotent) [7, 8]. Rings for which every right ideal is idempotent are called right weakly regular (r.w.r.) rings, and have been studied in great detail. For a survey of r.w.r. rings, see [9].

In this paper we consider the J-trivial condition for the semigroups $\mathbb{R}(R)$ and $\mathbb{L}(R)$ and the consequences for the underlying ring R. A semigroup S is said to be J-trivial if, whenever $a, b \in S$ such that a and b generate the same ideal in S, then $a = b$. (Here S will always denote a semigroup and S^1 is the monoid obtained by adjoining an identity element 1 to S [3, p.4].) Recall that the Green’s relation J on S is defined by: aJb if $a, b \in S$ and $S^1aS^1 = S^1bS^1$; i.e., a and b are J-equivalent [3, p.48]. Semigroups which are finite and J-trivial have arisen in the study of formal languages [12], and in the context of full transformation semigroups [13]. Saito gives conditions for a periodic semigroup to be J-trivial [13, Lemma 1.1]. Observe that every semilattice (commutative semigroup in which every element is idempotent) is J-trivial, and that whenever S is J-trivial, then so is S^1 and S^0. (Here S^0 is the semigroup with zero, 0, adjoined [3, p.4].) Not all bands are J-trivial. For example, let S be a semigroup in which $ab = b$ for all $a, b \in S$; such a
A semigroup is called right zero [3, p.37]. Any right zero semigroup with more than one element is a band that is not J-trivial.

In this paper we show that $\mathbb{R}(R)$ is J-trivial if R is either commutative, right duo (every right ideal of R is two-sided), or nilpotent. The paper is arranged as follows. In Section 2 we consider conditions that imply $\mathbb{R}(R)$ is J-trivial. If R is either right duo, commutative, nilpotent, or a skewfield, then $\mathbb{R}(R)$ is J-trivial. If $\mathbb{R}(R)$ is either 0-cancellative or has identity, then $\mathbb{R}(R)$ is J-trivial. In Sections 3, 4, and 5 we obtain results assuming $\mathbb{R}(R)$ is J-trivial, a hypothesis that is assumed for the remainder of this introduction. In Section 3 idempotent right ideals are shown to be ideals, maximal right ideals are considered, and the Jacobson and Brown-McCoy radicals of R are shown to be equal. In Section 4 minimal right ideals are considered, subdirectly irreducible rings are classified, and it is shown that every idempotent is central. In Section 5 it is shown that R r.w.r. implies R is strongly regular and that R π-regular implies R is strongly π-regular.

2. Conditions which imply that $\mathbb{R}(R)$ is J-trivial

We first consider conditions on the ring R which will imply that $\mathbb{R}(R)$ is J-trivial. For any skewfield K, the semigroup $\mathbb{R}(K)$ has only two elements, 0 and K, and K is the identity for the semigroup. So $\mathbb{R}(K)$ is J-trivial.

Recall that a ring R is right (left) duo if every right (respectively, left) ideal of R is a two-sided ideal. Proposition 2.1. Let R be a ring. Then we have the following.

(i) If $A, B \in \mathbb{I}(R)$ and $A \neq B$, then A and B are not J-equivalent in either $\mathbb{R}(R)$ or $\mathbb{L}(R)$.

(ii) $\mathbb{I}(R)$ is J-trivial.

(iii) If R is right (left) duo, then $\mathbb{R}(R)$ (respectively, $\mathbb{L}(R)$) is J-trivial.

(iv) If R is commutative, then $\mathbb{R}(R)$ and $\mathbb{L}(R)$ are both J-trivial.

Proof. Suppose $A, B \in \mathbb{I}(R)$ and A and B are J-equivalent in $\mathbb{R}(R)$. Then either $A = B$, $A = XB$, $A = BX$, or $A = XBY$ for some $X, Y \in \mathbb{R}(R)$. In each case $A \subseteq B$. Similarly, $B \subseteq A$, so $A = B$. Proceed similarly if A, B are J-equivalent in $\mathbb{L}(R)$. This establishes part (i). Parts (ii) and (iii) follow immediately from (i), and (iv) follows immediately from (iii).

Note that for any commutative ring A and any set Ω of commuting indeterminates, the polynomial ring $A[\Omega]$ and the ring of formal power series $A < \Omega >$ are each commutative and hence both $\mathbb{R}(A[\Omega])$ and $\mathbb{R}(A < \Omega >)$ are J-trivial.
Proposition 2.2. If \(R \) is nilpotent, then \(\mathbb{R}(R) \) and \(\mathbb{L}(R) \) are \(\mathcal{J} \)-trivial.

Proof. Let \(H, K \in \mathbb{R}(R) \) with \(HK = K \mathcal{J} R \). For convenience in calculation we operate in the semigroup with identity, 1, adjoined to \(\mathbb{R}(R) \). So \(H = XKY \) and \(K = BHT \), where \(X, Y, B, T \) are each in \(\mathbb{R}(R) \cup \{1\} \). A routine calculation establishes that \(H = (XB)^n H(TY)^n \), for all \(n \in \mathbb{N} \). If any one of \(X, B, T, \) or \(Y \) is not 1, then since \(H \) is nilpotent, by choosing \(n \) large enough we get \(H = 0 \). So \(K = 0 \). If \(X = Y = 1 \) we get \(H = K \). Thus \(\mathbb{R}(R) \) is \(\mathcal{J} \)-trivial. Similarly, \(\mathbb{L}(R) \) is \(\mathcal{J} \)-trivial. \(\square \)

Let \(\text{char } R = n > 1 \). Recall that \(R \) can be embedded as an ideal in the ring \(R^1 \), where \(R^1 \) is the set \(\mathbb{Z}_n \times R \) with the operations \((\alpha, r) + (\beta, t) = (\alpha + \beta, r + t), (\alpha, r)(\beta, t) = (\alpha\beta, \alpha t + \beta r), \) \(\alpha, \beta \in \mathbb{Z}_n, r, t \in R, \) and that \(R^1 \) has identity with \(\text{char } R^1 = n \) [2]. Observe that right ideals of \(R \) map onto right ideals of \(R^1 \) under the embedding mapping \(r \to (0, r) \). Identifying \(R \) with its image \(R^1 \) we see that \(\mathbb{R}(R) \subseteq \mathbb{R}(R^1) \). We refer to this embedding process as the Dorroh extension of \(R \) using \(\mathbb{Z}_n \), since it follows a procedure first used by J. Dorroh in [5].

Corollary 2.3. Let \(R \) be a nilpotent ring with \(\text{char } R = p \), where \(p \) is a prime. Then \(\mathbb{R}(R^1) = \mathbb{R}(R) \cup \{R^1\} \). Consequently, if \(\mathbb{R}(R) \) is \(\mathcal{J} \)-trivial, then \(\mathbb{R}(R^1) \) is \(\mathcal{J} \)-trivial.

Proof. As described above form the Dorroh extension of \(R \) using \(\mathbb{Z}_p \). Then \(\mathbb{R}(R) \cup \{R^1\} \subseteq \mathbb{R}(R^1) \). Let \(B \) be a nonzero right ideal of \(R^1 \) and let \(\alpha 1 + r = x \in B \), where \(\alpha \in \mathbb{Z}_p, r \in R \). If \(\alpha \not= 0 \), then \(\alpha^{-1} 1 + x = 1 + \alpha^{-1} r \). Since \(r \) is nilpotent, so is \(\alpha^{-1} r \). Consequently \(\alpha^{-1} x \) is a unit in \(R^1 \) and hence \(B = R^1 \). Thus \(\mathbb{R}(R) \cup \{R^1\} = \mathbb{R}(R^1) \). Using this and that \(\mathbb{R}(R) \) is \(\mathcal{J} \)-trivial it follows immediately that \(\mathbb{R}(R^1) \) is \(\mathcal{J} \)-trivial. \(\square \)

We next give an example to show that if \(\mathbb{R}(R) \) is \(\mathcal{J} \)-trivial, then \(R \) need not be right duo.

Example 2.4. Let \(K \) be any skewfield, and let \(R = \begin{bmatrix} 0 & K & K \\ 0 & 0 & K \\ 0 & 0 & 0 \end{bmatrix} \). Since \(R \) is nilpotent, then \(\mathbb{R}(R) \) is \(\mathcal{J} \)-trivial by Proposition 2.2. Further, the right ideal \(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & K \\ 0 & 0 & 0 \end{bmatrix} \) is not two-sided, so that \(R \) is not right duo.
If the skewfield in Example 2.4 has characteristic p for some prime p, then we can use Corollary 2.3 to embed the ring of Example 2.4 in a ring R^1 with identity and having that $R(R^1)$ is J-trivial.

We use $[B]$ for the ideal in the semigroup $R(R)$ generated by $B \in R(R)$.

Proposition 2.5. If $R(R)$ is J-trivial and \overline{R} is a homomorphic image of the ring R, then $R(\overline{R})$ is J-trivial.

Proof. Let $\phi : R \to \overline{R}$ be a surjective ring homomorphism with $Ker \phi = I$. For notational convenience let $S = R(\overline{R})$. For any $C \in R(R)$ we use \overline{C} for its image under ϕ. Consider $H, K \in S$ with HJK. In general, from HJK we have that $H = \alpha K \beta$ and $K = \gamma H \sigma$, where $\alpha, \beta, \gamma, \sigma \in S^1$. First consider the case where $H = X KY$ and $K = BH \overline{T}$. Then $H + I = (X + I)(K + I)(Y + I)$ and $K + I = (B + I)(H + I)(T + I)$. So $H + I \in [K + I]$ in $R(R)$, and $K + I \in [H + I]$ in $R(R)$. Since $R(R)$ is J-trivial, this yields $H + I = K + I$. Consequently $\overline{H} = \overline{K}$.

The other cases, where one or more of α, β, γ, or σ is 1, are either similar to the first case or easier.

Example 2.6. The homomorphic image of a J-trivial semigroup need not be J-trivial. Let $F = \langle 1, x, y \rangle$ be the free monoid generated by x and y. This monoid is J-trivial. Let $B = \langle p, q \mid pq = 1 \rangle$ be the bicyclic semigroup. Then B is a simple monoid, and hence any two right ideals are J-related. In particular, B is not J-trivial. Define $\phi : F \to B$ by $\phi(1) = 1$, $\phi(x) = p$, $\phi(y) = q$. Then B is a homomorphic image of F.

Proposition 2.7. If $R(R)$ has identity, then the identity is R and $R(R)$ is J-trivial.

Proof. Let X be the identity of $R(R)$. Let H be a right ideal of R. Then $H = HX \subseteq HR \subseteq H$ which implies that $H = HR$ and hence R is a right identity for $R(R)$. So $X = R$. In this case R is right duo, and hence $R(R)$ is J-trivial by Proposition 2.1 (iii). \[\square\]

Note that in Proposition 2.7 one cannot replace “$R(R)$ has identity” with “R has identity”. Any simple ring with identity and which is not a skewfield has that $R(R)$ is not J-trivial.

The converse of Proposition 2.7 is false. In the ring of Example 2.4, the right ideal...
Let \(H \) hence Example 2.11. Then the ideal \(r \) is not two-sided, so that \(R \) is not the identity of \(\mathbb{R}(R) \). Similarly, for \(n \geq 3 \) one can show that, in the \(n \times n \) strictly upper triangular matrix ring \(U \) over any skewfield, we have that \(\mathbb{R}(U) \) is \(J \)-trivial, but \(U \) is not the identity of \(\mathbb{R}(U) \).

We say that a semigroup \(S \) is left (right) \(0 \)-cancellative if \(sx = sy \) \((xs = ys) \) implies \(x = y \) for all non-zero \(s, x, y \in S \). The semigroup \(S \) is \(0 \)-cancellative if \(S \) is both left and right \(0 \)-cancellative. See \([3, p.3]\).

Proposition 2.8. If \(\mathbb{R}(R) \) is \(0 \)-cancellative, then \(\mathbb{R}(R) \) and \(L(R) \) are each \(J \)-trivial.

Proof. Let \(H, K \in \mathbb{R}(R) \) with \(HJK \) in \(\mathbb{R}(R) \). If either \(H \) or \(K \) is zero, then both must be zero. So take \(H \) and \(K \) to be nonzero. From \(HJK \) we get that there exist \(X, Y, B, T \in \mathbb{R}(R) \) such that \(XHY = K \) and \(BKT = H \). Then \(K = XHY = X(BKT)Y \subseteq XKY = X(XHY)Y = X^2HY^2 \subseteq XHY = K \). So \(K = XKY \). Thus \(XKY = XHY \). Note that if either \(X \) or \(Y \) is zero, then \(K = 0 \).

So \(X \) and \(Y \) are nonzero. If \(X, Y \in \mathbb{R}(R) \), then using that \(\mathbb{R}(R) \) is \(0 \)-cancellative and \(XHY = XKY \) we get \(K = H \). If \(X = Y = 1 \), then \(K = H \). If \(X = 1 \) and \(Y \in \mathbb{R}(R) \), then \(KY = HY \) and hence \(H = K \). Similarly, if \(X \in \mathbb{R}(R) \) and \(Y = 1 \), we get \(K = H \). Thus \(\mathbb{R}(R) \) is \(J \)-trivial. Proceed similarly to get \(L(R) \) is \(J \)-trivial. \(\square \)

Note that the converse of Proposition 2.8 is false, as the next example illustrates.

Example 2.9. Let \(A \) be any commutative ring and let \(R = A \oplus A \). Then \(\mathbb{R}(R) \) is not \(0 \)-cancellative but \(\mathbb{R}(R) \) is \(J \)-trivial.

Proposition 2.10. Let \(R \) be a simple ring with \(R^2 \neq 0 \). Then either \(R \) is a skewfield or \(\mathbb{R}(R) \) is not \(J \)-trivial.

Proof. Assume \(R \) is not a skewfield and let \(H \in \mathbb{R}(R) \) with \(0 \neq H \neq R \). If \(RH = 0 \), then the ideal \(r(R) = \{ x \mid Rx = 0 \} \) is nonzero and hence \(R = r(R) \), contrary to \(R^2 \neq 0 \). So \(RH = R \). Similarly \(HR \neq 0 \). Then \(H^2 \subseteq HR = H(RH) \subseteq H^2 \) and hence \(H^2 = HR \). Consequently \(H^2 \in [R] \). Also, \(R = RH^2 \), so \(R \in [H^2] \). Then \(R \not\in JH^2 \). Since \(H^2 \) is not \(R \) we have that \(\mathbb{R}(R) \) is not \(J \)-trivial. \(\square \)

Example 2.11. In Proposition 2.2 the hypothesis “\(R \) is nilpotent” cannot be replaced by “\(R \) is nil”. If \(R \) is a simple nil ring which is not nilpotent, then by Proposition 2.10 \(\mathbb{R}(R) \) is not \(J \)-trivial. Examples of such rings were first given by Smoktunowicz, see \([14]\).
As an immediate consequence of Proposition 2.10 we have that if R is a simple ring with identity and $M_n(R)$ is the full $n \times n$ matrix ring over R, then $\mathbb{R}(M_n(R))$ is not J-trivial for $n > 1$.

Note that for any commutative ring A and any set Ω of commuting indeterminates, the polynomial ring $A[\Omega]$ and the ring of formal power series $A < \Omega >$ are each commutative and hence both $\mathbb{R}(A[\Omega])$ and $\mathbb{R}(A < \Omega >)$ are J-trivial.

Proposition 2.12. If for some $m \in N$, $\mathbb{R}(R^m)$ is J-trivial, then $\mathbb{R}(R)$ is J-trivial.

Proof. For convenience of notation let $S = \mathbb{R}(R)$ and consider $H, K \in \mathbb{R}(R)$ with $[H] = [K]$ in S. Then there exist $X, Y, B, T \in S^1$ such that $H = XKY$ and $K = BHT$. A routine calculation shows that $H = (XB)^nH(TY)^n$ for $n \in N$. Choose $n = m$ to get $H \in \mathbb{R}(R^m)$. Similarly $K \in \mathbb{R}(R^m)$. Also, $H = (XB)^mH(TY)^m = ([XB]^mX)K(Y(TY))^m$, so H is in the ideal in $\mathbb{R}(R^m)$ generated by K. Similarly, K is in the ideal in $\mathbb{R}(R^m)$ generated by H. So H, K in $\mathbb{R}(R^m)$. But $\mathbb{R}(R^m)$ is J-trivial, so $H = K$.

Corollary 2.13. If, for some $m \in N$, R^m is right duo or commutative, then $\mathbb{R}(R)$ is J-trivial.

Proposition 2.14. Let $R = R_1 \oplus R_2$, where R_1 is a ring with $\mathbb{R}(R_1)$ J-trivial and R_2 is a nilpotent ring. Then $\mathbb{R}(R)$ is J-trivial.

Proof. The argument is similar to that for Proposition 2.12. Since R_2 is nilpotent, some power of R is in R_1. Then H and K will be J-equivalent in $\mathbb{R}(R_1)$, and since $\mathbb{R}(R_1)$ is J-trivial we have $H = K$.

Corollary 2.15. Let $R = R_1 \oplus R_2$, where R_1 is a ring such that $\mathbb{R}(R_1^m)$ is J-trivial for some $m \in N$, and R_2 is nilpotent. Then $\mathbb{R}(R)$ is J-trivial.

Observe that $R = R_1 \oplus R_2$ will have $\mathbb{R}(R)$ is J-trivial when R_2 is nilpotent and R_1^m is either commutative or right duo, for some m.

3. Maximal right ideals and radicals

Unless otherwise specified, for the remainder of the paper R will have identity.

Proposition 3.1. Let $\mathbb{R}(R)$ be J-trivial.

(i) If $H \in \mathbb{R}(R)$ and $H = H^2$, then $H \in \mathbb{I}(R)$.

(ii) If R is r.w.r., then $\mathbb{R}(R) = \mathbb{I}(R)$.

(iii) If $\mathbb{R}(R)$ is regular, then $\mathbb{R}(R) = \mathbb{I}(R)$.
RINGS WHOSE SEMIGROUP OF RIGHT IDEALS IS J-TRIVIAL

Proof. (i) We have that $H = H^2 \subseteq HR \subseteq H$, which implies that $H = HR$. Since $H = HR$ we have $H = H^2 = (HR)H = H(RH)$. Thus $H \in [RH]$, and trivially $RH \in [H]$. So $[RH] = [H]$ and since $\mathbb{R}(R)$ is J-trivial we have $RH = H$.

(ii) This part follows immediately from part (i).

(iii) Every regular ring is r.w.r. [16, p.173].

Recall that a semigroup S is periodic if for each $s \in S$ there exists $n, m \in \mathbb{N}, n > m$, such that $s^n = s^m$ [3, p.20].

Corollary 3.2. Let $\mathbb{R}(R)$ be J-trivial and periodic. If $H \in \mathbb{R}(R)$, then for some $k \in \mathbb{N}$, H^k is an idempotent ideal. Consequently, each nonzero right ideal of R is either nilpotent or contains a nonzero idempotent ideal of R.

Proof. Recall that each element in a periodic semigroup has a power which is an idempotent [3, p.20]. The desired result follows from this and from Proposition 3.1 (i).

Proposition 3.3. (i) If M is a maximal right ideal of R, then either $M^2 = M$ or M is an ideal of R.

(ii) If $\mathbb{R}(R)$ is J-trivial, then every maximal right ideal of R is an ideal of R.

Proof. (i) Since RM is an ideal of R and $M \subseteq RM$ we have that either $RM = M$, and hence M is a two-sided ideal of R, or $RM = R$. If the latter holds, then $M^2 = (MR)M = M(RM) = MR = M$.

(ii) Let $\mathbb{R}(R)$ be J-trivial and let M be a maximal right ideal of R. Suppose M is not an ideal of R. Then $RM = R$. Hence $R \in [M]$. So $[R] \subseteq [M]$, but, because R has identity, $M = MR \in [R]$, which implies $[M] \subseteq [R]$. So $[R] = [M]$, and since $\mathbb{R}(R)$ is J-trivial we have $R = M$, a contradiction.

It is worth noting that from Proposition 3.3 (i) we see that in a ring with identity a maximal right ideal which is nilpotent must be a two-sided ideal.

Recall that because R has identity the Jacobson radical of R, denoted by $J(R)$, is the intersection of all maximal right ideals of R, and the Brown-McCoy radical of R, denoted by $B(R)$, is the intersection of all maximal ideals of R [15]. Neither of these results need hold for rings without identity [15].

Corollary 3.4. If $\mathbb{R}(R)$ is J-trivial, then $J(R) = B(R)$. If $J(R) = 0$, then R is isomorphic to the subdirect product of skewfields.

Proof. That $J(R) = B(R)$ follows immediately from Proposition 3.3(ii). If $J(R) = 0$, then $B(R) = 0$ and R is isomorphic to a subdirect product of rings with identity.
of the form \(R/M\), where the ideal \(M\) is also maximal as a right ideal of \(R\). So \(R/M\) has no proper nonzero right ideals and hence is a skewfield.

\[\square\]

4. Minimal right ideals

Recall that an idempotent \(e\) is left semicentral if \(ere = re\) for all \(r \in R\) [1].

Proposition 4.1. If \(\mathbb{R}(R)\) is \(J\)-trivial, then any idempotent in \(R\) is central.

Proof. Let \(e \in E(R)\). Since \(e \in ReR\) we have \(eR \subseteq ReR\) and hence \(eR \subseteq eReR \subseteq eR\), so \(eR = (eR)^2\). Then by Proposition 3.1(i) we have \(eR = ReR\). Then \(Re = Ree \subseteq ReR = eR\). So for each \(r \in R\) there exists \(y \in R\) such that \(re = ey\). Then \(ere = e^2y = ye = re\). Thus \(e\) is left semicentral and consequently \(1 - e\) is left semicentral. Let \(f \in E(R)\). Then \((ef - fe)e = 0\) and \((ef - fe)(1 - e) = ef - fe - (ef - fe)e = ef - fe\). Thus \(ef - fe = (ef - fe)(1 - e) = (1 - e)(ef - fe)(1 - e) = 0\). So \(e\) commutes with every idempotent of \(R\). It is well-known that this implies \(e\) is central in \(R\).

\[\square\]

Proposition 4.2. Let \(\mathbb{R}(R)\) be \(J\)-trivial. If \(B\) is a minimal right ideal of \(R\) and \(B^2 \neq 0\), then we have the following.

(i) \(B\) is an ideal of \(R\),

(ii) there exists a central idempotent \(e \in R\) such that \(B = eR\) and \(eR = Re = eRe\),

(iii) \(R = eR \oplus (1 - e)R = eRe \oplus (1 - e)R\) and \(eRe\) is a skewfield, so \((1 - e)R\) is an ideal of \(R\) which is maximal as a right (left) ideal of \(R\).

Proof. (i) Since \(0 \neq B^2 \subseteq B\), by minimality of \(B\) we get \(B^2 = B\). So by Proposition 3.1(i), \(B\) is an ideal of \(R\).

(ii) It is well-known that any non-nilpotent minimal right ideal is generated by an idempotent [11, Section 31]. So there exists \(e \in E(R)\) such that \(B = eR\). By Proposition 4.1, \(e\) is central.

(iii) Since \(eR\) is a minimal right ideal of \(R\) we have that \(eRe\) is a skewfield [11, Theorem 3.16]. Using the Pierce decomposition with \(e\) we have \(R = eR \oplus (1 - e)R\), and this is a direct sum of two-sided ideals of \(R\). From \(eRe = eR \cong R/(1 - e)R\), and since \(eRe\) is a skewfield, then \((1 - e)R\) is maximal as a right (left) ideal of \(R\).

\[\square\]

Corollary 4.3. Let \(\mathbb{R}(R)\) be \(J\)-trivial. If \(R\) has a minimal right ideal which is not nilpotent, then \(R = R_1 \oplus R_2\) where \(\mathbb{R}(R_1)\) and \(\mathbb{R}(R_2)\) are \(J\)-trivial.
RINGS WHOSE SEMIGROUP OF RIGHT IDEALS IS J-TRIVIAL

Proof. From Proposition 4.2(iii) we have $R = eR \oplus (1-e)R$, where eR and $(1-e)R$ are ideals of R. Use $R/eR \cong (1-e)R$ and Proposition 2.5 to get that $R((1-e)R)$ is J-trivial. Similarly, $R(eR)$ is J-trivial.

Proposition 4.4. Let R be a subdirectly irreducible ring (not necessarily having identity) and let H be the heart of R. Assume $H^2 \neq 0$ and that $\mathbb{R}(R)$ is J-trivial. If R contains a minimal right ideal B of R with $B \subseteq H$, then R is a skewfield.

Proof. It is well-known that the non-nilpotent heart of a subdirectly irreducible ring must itself be a simple ring [4, p.135]. So H is a simple ring. If $B^2 = 0$, then the ring H must contain a non-zero nilpotent ideal. Consequently this ideal is H itself, contrary to $H^2 \neq 0$. So $B^2 \neq 0$. Use Proposition 4.2 to get that H is a skewfield. So the ring H has an identity element, which forces $H = R$, and hence R is a skewfield.

Corollary 4.5. Let R be a subdirectly irreducible ring (not necessarily having identity) with heart H, $H^2 \neq 0$. If $\mathbb{R}(R)$ is J-trivial and R is right Artinian, then R is a skewfield.

Proof. The chain condition yields the existence of a minimal right ideal B of R with $B \subseteq H$.

Example 4.6. The ring in Example 2.4 is subdirectly irreducible with heart $H = \begin{bmatrix} 0 & 0 & F \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

5. Regularity conditions

Let $E(R)$ denote the set of idempotents of R. Recall that a ring R is strongly regular if R is regular and every idempotent of R is central [6].

Theorem 5.1. If R is r.w.r. and $\mathbb{R}(R)$ is J-trivial, then R is strongly regular.

Proof. Let $B \in \mathbb{R}(R)$. Then $B = B^2 = (BR)R = B(RB)$. So $B \in [RB]$. Since trivially RB is in $[B]$, we then have $[B] = [RB]$ and consequently $B = RB$. So each right ideal of R is a two-sided ideal. It is known that a r.w.r. ring with this property is a regular ring [7]. By Proposition 4.1 we have that every idempotent of R is central. Therefore, R is strongly regular.
Corollary 5.2. The following are equivalent:

(i) R is r.w.r. and $\mathbb{R}(R)$ is J-trivial,
(ii) R is regular and $\mathbb{R}(R)$ is J-trivial,
(iii) R is strongly regular,
(iv) $\mathbb{R}(R)$ is a semilattice.

Proof. The equivalence of (i), (ii), and (iii) is clear from the proof of Theorem 5.1. The equivalence of (iii) and (iv) is given in [7]. Any semilattice is a band and is J-trivial, so (iv) implies (i), completing the logical circuit.

Note that for a skewfield K, the ring is $M_n(K)$ is regular, and hence r.w.r., but for $n > 1$, $\mathbb{R}(M_n(K))$ is not J-trivial.

Recall that R is π-regular if for each $r \in R$ there exists $b \in R$ such that $r^n br^n$, and R is strongly π-regular if for each $r \in R$ there exists $m \in N$ such that $r^n = r^{n+1} y$ for some $y \in R$ [16, Section 23]. It is known that every strongly π-regular ring is π-regular, but there are π-regular rings that are not strongly π-regular [16, Theorem 23.4].

Proposition 5.3. Let $\mathbb{R}(R)$ be J-trivial. Then R is π-regular if and only if R is strongly π-regular.

Proof. Since all strongly π-regular rings are π-regular, it suffices to show that π-regular implies strongly π-regular when $\mathbb{R}(R)$ is J-trivial. Let R be π-regular and let $r \in R$. Then $r^n = r^n br^n$, for some $n \in N$, $b \in R$. Observe that $r^n b$ is idempotent, so by Proposition 4.1, $r^n b$ is central and hence $r^n = r^{2n} b \in r^{n+1} R$. So R is strongly π-regular.

Note that the hypothesis that R is π-regular and $\mathbb{R}(R)$ is J-trivial does not imply that R is r.w.r., as the example of any nonzero nilpotent ring shows.

References

Henry E. Heatherly
Department of Mathematics
University of Louisiana at Lafayette
Lafayette, Louisiana 70504
e-mail: heh5820@louisiana.edu

Ralph P. Tucci
Department of Mathematical Sciences
Loyola University New Orleans
New Orleans, LA. 70118
e-mail: tucci@loyno.edu