A NOTE ON STRONGLY CLEAN MATRICES

Huanyin Chen

Received: 29 April 2011; Revised: 20 June 2011 Communicated by Abdullah Harmancı

ABSTRACT. A ring R is strongly clean provided that for any $a \in R$, there exist an idempotent $e \in R$ and a unit $u \in R$ such that a = e + u and eu = ue. Let $\mathcal{T}_3(R)$ be a special subring of 3 by 3 matrix ring over R. We prove, in this article, that $\mathcal{T}_3(R)$ is strongly clean if and only if for any $a \in J(R), b \in$ $R, c \in 1 + J(R)$, either $l_b - r_a$ or $l_b - r_c$ is surjective. Similar characterization is obtained for $\mathcal{T}_3(R)$ over a weak h-ring R.

Mathematics Subject Classification (2010): 16E50, 16U99 Key Words: strongly clean ring, matrix ring, local ring

1. Introduction

Throughout, all rings are associative rings with identity. We say that $a \in R$ is strongly clean provided that there exist an idempotent $e \in R$ and a unit $u \in R$ such that a = e + u and eu = ue. A ring R is strongly clean in case every element in R is strongly clean. We say that a ring R is local provided that R has only a maximal right ideal. As is well known, a ring R is local if and only if for any $x \in R$, either x or 1 - x is invertible. When is a matrix ring or a triangular matrix ring over a local ring strongly clean? These are two interesting questions in general ring theory. There are detailed discussions on these questions in the literature (cf. [1-4],[8] and [10-11]). Let $a \in R$. $l_a : R \to R$ and $r_a : R \to R$ denote, respectively, the abelian group endomorphisms given by $l_a(r) = ar$ and $r_a(r) = ra$ for all $r \in R$. Thus, $l_a - r_b$ is an abelian group endomorphism such that $(l_a - r_b)(r) = ar - rb$ for any $r \in R$. Following Diesl, a local ring R is bleached provided that for any $a \in U(R), b \in J(R), l_a - r_b, l_b - r_a$ are both surjective. A ring R is an h-ring provided that for any $a, b \in R, l_a - r_b$ is surjective implies that $l_a - r_b$ is injective.

This research was supported by the Natural Science Foundation of Zhejiang Province (No. Y6090404).

Let R be a ring, let
$$\mathcal{T}_3(R) = \{ \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \mid a_{11}, a_{22}, a_{33}, a_{21}, a_{23} \in R \}.$$

Then $\mathcal{T}_3(R)$ is a ring under the usual addition and multiplication, and so $\mathcal{T}_3(R)$ is a subring of $M_3(R)$. In fact, $\mathcal{T}_3(R)$ possesses the similar form of both the ring of all upper triangular matrices and the ring of all lower triangular matrices. In [9, Theorem 3.3], Wu proved that if R is a commutative local ring, then the ring $\mathcal{T}_3(R)$ is strongly clean. In [5, Theorem 2.1], J. Cui and J. Chen proved that if R is a bleached local ring, then the ring $\mathcal{T}_3(R)$ is strongly clean. In this note, we will characterize the strong cleannes of such rings. It is shown that $\mathcal{T}_3(R)$ is strongly clean if and only if for any $a \in J(R), b \in R, c \in 1 + J(R)$, either $l_b - r_a$ or $l_b - r_c$ is surjective.

Let X be a set of a ring R. Following Borooah et al., we use Bl(X) to denote the set $\{a \in R \mid l_a - r_b, l_b - r_a \text{ are both surjective for all } b \in X\}$ (cf. [1]). Let R be a local ring. We say that R satisfies the condition \mathcal{B}_3 provided that R =

$$Bl(J(R)) \bigcup Bl(1+J(R)).$$
 Let $T_3(R) = \{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \mid \text{each } a_{ij} \in R \}.$

Then $T_3(R)$ is a ring under the usual addition and multiplication. From [1, Theorem 22], one easily sees that for a local ring R, $T_3(R)$ is strongly clean if R satisfies the condition \mathcal{B}_3 . The converse is true in the special case that R is an h-ring. A natural problem asks whether the converse is true without this hypothesis (h-ring). The other purpose of this note is to weaken the *h*-ring to a weak *h*-ring. An example of a weak h-ring R that is not an h-ring such that $T_3(R)$ is strongly clean is also given.

Throughout this paper, J(R) and U(R) will denote, respectively, the Jacobson radical and the group of units in R.

2. The Rings $\mathcal{T}_3(R)$

The strong cleannes of the ring $\mathcal{T}_3(R)$ over a local ring R was firstly discussed by Wu (cf. [9]). Then discussed by J. Cui and J. Chen in [5]. The aim of this section is to give a more detailed consideration and get a necessary and sufficient condition $\begin{pmatrix} a_{11} & 0 & 0 \end{pmatrix}$ ι

under which
$$\mathcal{T}_3(R)$$
 is strongly clean. Obviously, $\begin{pmatrix} a_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \in U(\mathcal{T}_3(R))$
if and only if $a_{11}, a_{22}, a_{23} \in U(R)$. Also, we see that

if and only if $a_{11}, a_{22}, a_{33} \in U(R)$.

$$J(\mathcal{T}_{3}(R)) = \{ \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \mid a_{11}, a_{22}, a_{33} \in J(R), a_{21}, a_{23} \in R \}.$$

Theorem 2.1. Let R be a local ring. Then $\mathcal{T}_3(R)$ is strongly clean if and only if for any $a \in J(R), b \in R, c \in 1 + J(R), l_b - r_a$ or $l_b - r_c$ is surjective.

Proof. Suppose that $\mathcal{T}_3(R)$ is strongly clean. Let $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then

 $T_2(R) \cong E\mathcal{T}_3(R)E$. Thus, $T_2(R)$ is strongly clean. According to [6, Theorem 2.2.1], $J(R) \subseteq Bl(1 + J(R))$. Let $a_{11} \in J(R), a_{22} \in U(R) \cap (1 + U(R))$ and $a_{33} \in 1 + J(R)$. Suppose that $l_{a_{22}} - r_{a_{11}}$ is not surjective. Then we can find a $a_{21} \in R$ such that $a_{22}x - xa_{11} = -a_{21}$ is not solvable. Let $a_{23} \in R$. Choose $A = (a_{ij}) \in \mathcal{T}_3(R)$. Then we can find an idempotent $E = (e_{ij}) \in \mathcal{T}_3(R)$ such that $A - E \in U(\mathcal{T}_3(R))$ and EA = AE. This implies that $e_{11}, e_{22}, e_{33} \in R$ are all idempotents, $e_{21} = e_{21}e_{11} + e_{22}e_{21}$ and $e_{23} = e_{22}e_{23} + e_{23}e_{33}$. Clearly, $e_{11} = 1$ and $e_{33} = 0$;

otherwise, A - E is not invertible. Thus, $E = \begin{pmatrix} 1 & 0 & 0 \\ e_{21} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix}$.

If
$$E = \begin{pmatrix} 1 & 0 & 0 \\ e_{21} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, then

$$\begin{pmatrix} a_{11} & 0 & 0 \\ e_{21}a_{11} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = EA = AE = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} + a_{22}e_{21} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
and so $a_{22}e_{21} - e_{21}a_{11} = -a_{21}$. This implies that $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & e_{22} \end{pmatrix}$. Hence

and so $a_{22}e_{21} - e_{21}a_{11} = -a_{21}$. This implies that $E = \begin{pmatrix} 0 & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix}$. Hence,

$$\begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} + e_{23}a_{33} \\ 0 & 0 & 0 \end{pmatrix} = EA = AE = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{22}e_{23} \\ 0 & 0 & 0 \end{pmatrix},$$

and so $a_{22}e_{23} - e_{23}a_{33} = a_{23}$. This implies that $l_{a_{22}} - r_{a_{33}}$ is surjective.

Let $a \in J(R), b \in R, c \in 1 + J(R)$. Then $b \in U(R) \cap (1 + U(R))$ or $b \in J(R)$ or $b \in 1 + J(R)$. By the preceding discussion, either $l_b - r_a$ or $l_b - r_c$ is surjective, as asserted.

We now prove the converse. Clearly, $J(R) \subseteq Bl(1 + J(R))$. Let $A = (a_{ij}) \in \mathcal{T}_3(R)$.

Case 1. $a_{11}, a_{22}, a_{33} \in J(R)$. Then $A = I_3 + (A - I_3)$, and so $A - I_3 \in U(\mathcal{T}_3(R))$. Then $A \in \mathcal{T}_3(R)$ is strongly clean.

Case 2. $a_{11} \in U(R), a_{22}, a_{33} \in J(R)$. If $a_{11} - 1 \in J(R)$, by hypothesis, we can find some $e_{21} \in R$ such that $a_{22}e_{21} - e_{21}a_{11} = a_{21}$. Choose $E = \begin{pmatrix} 0 & 0 & 0 \\ e_{21} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{C}$

 $\mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. In addition,

$$EA = \begin{pmatrix} 0 & 0 & 0 \\ e_{21}a_{11} + a_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ a_{22}e_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = AE.$$

Hence $A \in \mathcal{T}_3(R)$ is strongly clean. If $a_{11} - 1 \in U(R)$, we can choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E), where $A - E \in \mathcal{T}_3(R)$.

 $U(\mathcal{T}_{3}(R))$. It is easy to verify that EA = AE. Hence $A \in \mathcal{T}_{3}(R)$ is strongly clean. **Case 3.** $a_{11} \in J(R), a_{22} \in U(R), a_{33} \in J(R)$. If $a_{22} - 1 \in J(R)$, by hypothesis, we can find some $e_{21}, e_{23} \in R$ such that $a_{22}e_{21} - e_{21}a_{11} = -a_{21}$ and $a_{22}e_{23} - e_{23}a_{33} = -a_{23}$. Choose $E = \begin{pmatrix} 1 & 0 & 0 \\ e_{21} & 0 & e_{23} \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_{3}(R)$. Then $E = E^{2}$,

and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. In addition,

$$EA = \begin{pmatrix} a_{11} & 0 & 0 \\ e_{21}a_{11} & 0 & e_{23}a_{33} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} + a_{22}e_{21} & 0 & a_{22}e_{23} + a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = AE.$$

Hence $A \in \mathcal{T}_3(R)$ is strongly clean. If $a_{22}-1 \in U(R)$, we choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_2(R)$. Then $E = E^2$ and A = E + (A = E) where $A = E \in U(\mathcal{T}_2(R))$. Hence

 $\mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. Hence $A \in \mathcal{T}_3(R)$ is strongly clean.

Case 4. $a_{11}, a_{22} \in J(R), a_{33} \in U(R)$. If $a_{33} - 1 \in J(R)$, by hypothesis, we can find some $e_{21} \in R$ such that $a_{22}e_{23} - e_{23}a_{33} = a_{23}$. Choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix} \in$

 $\mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. In addition,

$$EA = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} + e_{23}a_{33} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{22} & a_{22} & a_{22}e_{23} \\ 0 & 0 & 0 \end{pmatrix} = AE.$$

Hence $A \in \mathcal{T}_3(R)$ is strongly clean. If $a_{33}-1 \in U(R)$, we choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. Hence

 $A \in \mathcal{T}_3(R)$ is strongly clean. Correction = C I(R) is a construction of L(R) by hyperbody of $\mathcal{T}_3(R)$ is strongly clean.

Case 5. $a_{11} \in J(R), a_{22}, a_{33} \in U(R)$. If $a_{22} - 1 \in J(R)$, by hypothesis, we can find some $e_{21} \in R$ such that $a_{22}e_{21} - e_{21}a_{11} = -a_{21}$. Choose $E = \begin{pmatrix} 1 & 0 & 0 \\ e_{21} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. In addition,

$$EA = \begin{pmatrix} a_{11} & 0 & 0\\ e_{21}a_{11} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0\\ a_{21} + a_{22}e_{21} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = AE.$$

Hence $A \in \mathcal{T}_{3}(R)$ is strongly clean. If $a_{22} - 1, a_{33} - 1 \in U(R)$, we choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_{3}(R)$. Then $E = E^{2}$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_{3}(R))$. Obviously, EA = AE. Hence $A \in \mathcal{T}(R)$ is strongly clean. If $a_{22} - 1 \in U(R), a_{33} - 1 \in J(R)$, by hypothesis, $l_{a_{22}} - r_{a_{11}}$ or $l_{a_{22}} - r_{a_{33}}$ is surjective. Thus, we can find some $e_{21} \in R$ such that $a_{22}e_{21} - e_{21}a_{11} = -a_{21}$ or some $e_{23} \in R$ such that $a_{22}e_{23} - e_{23}a_{33} = a_{23}$. Assume that $a_{22}e_{21} - e_{21}a_{11} = -a_{21}$. Choose $E = \begin{pmatrix} 1 & 0 & 0 \\ e_{21} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{T}_{3}(R)$. Then $E = E^{2}$, and A = E + (A - E), where A = E + (A - E), where A = E + (A - E), where A = E + (A - E).

 $A - E \in U(\mathcal{T}_3(R))$. In addition

$$EA = \begin{pmatrix} a_{11} & 0 & 0\\ e_{21}a_{11} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0\\ a_{21} + a_{22}e_{21} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = AE.$$

Hence $A \in \mathcal{T}_3(R)$ is strongly clean. Assume that $a_{22}e_{23} - e_{23}a_{33} = a_{23}$. Choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{T}_3(R).$ Then $E = E^2$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. In addition

$$EA = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} + e_{23}a_{33} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{22}e_{23} \\ 0 & 0 & 0 \end{pmatrix} = AE.$$

Hence $A \in \mathcal{T}_3(R)$ is strongly clean.

Case 6. $a_{11} \in U(R), a_{22} \in J(R), a_{33} \in U(R)$. If $a_{11} - 1, a_{33} - 1 \in J(R)$, then we can find some $e_{21}, e_{23} \in R$ such that $a_{22}e_{21} - e_{21}a_{11} = a_{21}$ and $a_{22}e_{23} - e_{23}a_{33} = a_{23}$. Choose $E = \begin{pmatrix} 0 & 0 & 0 \\ e_{21} & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E),

where $A - E \in U(\mathcal{T}_3(R))$

$$EA = \begin{pmatrix} 0 & 0 & 0 \\ e_{21}a_{11} + a_{21} & a_{22} & a_{23} + e_{23}a_{33} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ a_{22}e_{21} & a_{22} & a_{22}e_{23} \\ 0 & 0 & 0 \end{pmatrix} = AE.$$

If $a_{11} - 1 \in J(R)$, $a_{33} - 1 \in U(R)$, then we can find some e_{21} such that $a_{22}e_{21} - a_{22}e_{22}$ $e_{21}a_{11} = a_{21}$. Choose $E = \begin{pmatrix} 0 & 0 & 0 \\ e_{21} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_3(R)$. Then $E = E^2$, and $A = C_1 = C_2$. E + (A - E), where $A - E \in \dot{U}(\mathcal{T}_3(R))$. In addition

$$EA = \begin{pmatrix} 0 & 0 & 0 \\ e_{21}a_{11} + a_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ a_{22}e_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = AE.$$

If $a_{11} - 1 \in U(R), a_{33} - 1 \in J(R)$, then we can find some $e_{23} \in R$ such that $a_{22}e_{23} - e_{23}a_{33} = a_{23}$. Choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{T}_3(R)$. Then $E = E^2$, and

A = E + (A - E), where $A - E \in U(\dot{\mathcal{T}}_3(R))$

$$EA = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} + e_{23}a_{33} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{22}e_{23} \\ 0 & 0 & 0 \end{pmatrix} = AE.$$

If $a_{11} - 1, a_{33} - 1 \in U(R)$, we choose $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_3(R)$. Then $E = E^2$,

and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. Obviously, EA = AE. Hence $A \in \mathcal{T}(R)$ is strongly clean.

Case 7. $a_{11}, a_{22} \in U(R), a_{33} \in J(R)$. If $a_{22} - 1 \in J(R)$, by hypothesis, we can find some $e_{23} \in R$ such that $a_{22}e_{23} - e_{23}a_{33} = -a_{23}$. Choose $E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e_{23} \\ 0 & 0 & 1 \end{pmatrix} \in$

 $\mathcal{T}_3(R)$. Then $E = E^2$, and A = E + (A - E), where $A - E \in U(\mathcal{T}_3(R))$. In addition,

$$EA = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e_{23}a_{33} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a_{22}e_{23} + a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = AE.$$

One easily checks that $EA \in J(\mathcal{T}_3(R))$. Hence $A \in \mathcal{T}_3(R)$ is strongly clean. If $a_{22} - 1 \in U(R), a_{11} - 1 \in J(R)$, by hypothesis, $l_{a_{22}} - r_{a_{11}}$ or $l_{a_{22}} - r_{a_{33}}$ is surjective. Thus, we can find some $e_{21} \in R$ such that $a_{22}e_{21} - e_{21}a_{11} = a_{21}$ or some $e_{23} \in R$ such that $a_{22}e_{23} - e_{23}a_{33} = -a_{23}$. Assume that $a_{22}e_{21} - e_{21}a_{11} = a_{21}$. Choose $E = \begin{pmatrix} 0 & 0 & 0 \\ e_{21} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_3(R). \text{ Then } E = E^2, \text{ and } A = E + (A - E), \text{ where } A - E \in U(\mathcal{T}_3(R)). \text{ In addition,}$

$$EA = \begin{pmatrix} 0 & 0 & 0 \\ e_{21}a_{11} + a_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ a_{22}e_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = AE$$

Hence $A \in \mathcal{T}_3(R)$ is strongly clean. Assume that $a_{22}e_{23} - e_{23}a_{33} = -a_{23}$. Choose $E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e_{23} \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{T}_3(R). \text{ Then } E = E^2, \text{ and } A = E + (A - E), \text{ where } A - E \in U(\mathcal{T}_3(R)). \text{ In addition,}$

$$EA = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e_{23}a_{33} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a_{22}e_{23} + a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = AE.$$

Hence $A \in \mathcal{T}_3(R)$ is strongly clean.

Case 8. $a_{11}, a_{22}, a_{33} \in U(R)$. Then A = 0 + A, where $A \in U(\mathcal{T}_3(R))$. Hence $A \in \mathcal{T}_3(R)$ is strongly clean.

Therefore we conclude that $\mathcal{T}_3(R)$ is strongly clean.

A ring R is strongly rad clean in case there is an idempotent $e \in R$ such that $ae = ea, a - e \in U(R), ea \in J(R)$. As in the preceding discussion, we claim that $\mathcal{T}_3(R)$ is strongly rad clean if and only if R is bleached. We omit the details.

Let R be a local ring $\mathfrak{T}_3(R) = \{ \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{pmatrix} \mid a_{11}, a_{22}, a_{33}, a_{13} \in R \}.$

Then $\mathfrak{T}_3(R)$ forms a 3 × 3 subring of the ring of all 3 × 3 lower triangular matrices over R under the usual additions and multiplications. Now we characterize the strongly cleanness of such rings, which also extend [5, Theorem 3.1].

Proposition 2.2. Let R be a local ring. Then the following are equivalent.

- (1) $\mathfrak{T}_3(R)$ is strongly clean.
- (2) $J(R) \subseteq Bl(1+J(R)).$

Proof. Construct a map $\varphi : \mathfrak{T}_3(R) \longrightarrow T_2(R) \oplus R; \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{pmatrix} \longrightarrow (\begin{pmatrix} a_{33} & a_{31} \\ 0 & a_{11} \end{pmatrix}, a_{22}).$ One easily checks that φ is a ring morphism. Clearly, R

is strongly clean; hence, $\mathfrak{T}_3(R)$ is strongly clean if and only if so is $T_2(R)$. Therefore we complete the proof by [1, Theorem 14].

3. Triangular Forms

Let *R* be a ring. Obviously,
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \in U(T_3(R))$$
 if and only if

 $a_{11}, a_{22}, a_{33} \in U(R)$. We say that a local ring is a weak h-ring in case for any $a \in J(R), b \in 1 + J(R)$, whenever $l_a - r_b$ is surjective, $l_a - r_b$ is injective. For instance, every commutative local ring is a weak h-ring. Clearly, every h-ring is a weak h-ring, but the converse is not true (cf. Example 3.4).

Theorem 3.1. Let R be a weak h-ring. Then the following are equivalent.

- (1) $T_3(R)$ is strongly clean.
- (2) For any $a \in J(R)$, $b \in R$, $c \in 1 + J(R)$, both $l_a r_b$ and $l_b r_a$ are surjective or both $l_b - r_c$ and $l_c - r_b$ are surjective.
- (3) R satisfies the condition \mathcal{B}_3 .

Proof. (1)
$$\Rightarrow$$
 (2) Let $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then $T_2(R) \cong ET_3(R)E$. Thus, $T_2(R)$

is strongly clean. According to [6, Theorem 2.2.1], $J(R) \subseteq Bl(1+J(R))$.

Let $a_{11} \in J(R), a_{22} \in U(R) \cap (1+U(R)), a_{33} \in 1+J(R)$. Suppose that $l_{a_{11}} - r_{a_{22}}$ is not surjective. Then we can find some $a_{12} \in R$ such that $a_{11}x - xa_{22} = a_{12}$ is not solvable. Let $a_{23} \in R$ and let $A = \begin{pmatrix} a_{11} & a_{12} & 0 \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \in T_3(R)$. Then we can find

an idempotent $E = (e_{ij}) \in T_3(R)$ such that $A - E \in U'(T_3(R))$ and EA = AE. This implies that $e_{11}, e_{22}, e_{33} \in R$ are all idempotents. As $a_{11} \in J(R), a_{33} \in 1 + J(R),$ $e_{11} = 1$ and $e_{33} = 0$; otherwise, A - E is not invertible. In addition, $e_{22} = 0$ or $e_{22} = 0$

1. Thus,
$$E = \begin{pmatrix} 1 & e_{12} & e_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & e_{13} \\ 0 & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix}$. If $E = \begin{pmatrix} 1 & e_{12} & e_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, then

$$\begin{pmatrix} a_{11} & a_{12} + e_{12}a_{22} & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = EA = AE = \begin{pmatrix} a_{11} & a_{11}e_{12} & a_{11}e_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and so $a_{11}e_{12} - e_{21}a_{22} = a_{12}$. This gives a contradiction. Thus, we have an idempotent $E = \begin{pmatrix} 1 & 0 & e_{13} \\ 0 & 1 & e_{23} \\ 0 & 0 & 0 \end{pmatrix}$ such that $A - E \in T_3(R)$ is invertible. In addition,

$$\begin{pmatrix} a_{11} & a_{12} & * \\ 0 & a_{22} & a_{23} + e_{23}a_{33} \\ 0 & 0 & 0 \end{pmatrix} = EA = AE = \begin{pmatrix} a_{11} & a_{12} & * \\ 0 & a_{22} & a_{22}e_{23} \\ 0 & 0 & 0 \end{pmatrix},$$

and so $a_{22}e_{23} - e_{23}a_{33} = a_{23}$. Therefore we conclude that $l_{a_{22}} - r_{a_{33}}$ is surjective. Choose $B = \begin{pmatrix} a_{33} & 0 & -a_{23} \\ 0 & a_{11} & a_{12} \\ 0 & 0 & a_{22} \end{pmatrix} \in T_3(R)$. Then we can find an idempotent $F = (f_{ij}) \in T_3(R)$ such that $B - F \in U(T_3(R))$ and FB = BF. Further, $f_{11} = 0$

and
$$f_{22} = 1$$
; otherwise, $B - F$ is not invertible. In addition, $f_{33} = 0$ or $f_{33} = 1$.
Thus, $F = \begin{pmatrix} 0 & f_{12} & f_{12}f_{23} \\ 0 & 1 & f_{23} \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & f_{12} & f_{13} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. If $F = \begin{pmatrix} 0 & f_{12} & f_{12}f_{23} \\ 0 & 1 & f_{23} \\ 0 & 0 & 0 \end{pmatrix}$,

then

$$\begin{pmatrix} 0 & f_{12}a_{11} & * \\ 0 & a_{11} & a_{12} + f_{23}a_{22} \\ 0 & 0 & 0 \end{pmatrix} = FB = BF = \begin{pmatrix} 0 & a_{33}f_{12} & * \\ 0 & a_{11} & a_{11}f_{23} \\ 0 & 0 & 0 \end{pmatrix},$$

and so $a_{11}f_{23} - f_{23}a_{22} = a_{12}$. This gives a contradiction. Thus, we can find an idempotent $F = \begin{pmatrix} 0 & f_{12} & f_{13} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ such that

$$\begin{pmatrix} 0 & f_{12}a_{11} & f_{12}a_{12} + f_{13}a_{22} \\ 0 & a_{11} & a_{12} \\ 0 & 0 & a_{22} \end{pmatrix} = FB = BF = \begin{pmatrix} 0 & a_{33}f_{12} & a_{33}f_{13} - a_{13} \\ 0 & a_{11} & a_{12} \\ 0 & 0 & a_{22} \end{pmatrix}.$$

Hence, $a_{33}f_{12} = f_{12}a_{11}$, and so $(1 - a_{33})f_{12} = f_{12}(1 - a_{11})$, where $1 - a_{33} \in J(R), 1 - a_{11} \in 1 + J(R)$. As R is a weak h-ring, we get $f_{12} = 0$. As a result, we have $a_{33}f_{13} - f_{13}a_{22} = a_{13}$. Consequently, we conclude $l_{a_{33}} - r_{a_{22}}$ is surjective. This implies that either $l_{a_{11}} - r_{a_{22}}$ is surjective or both $l_{a_{22}} - r_{a_{33}}$ and $l_{a_{33}} - r_{a_{22}}$ are surjective. Likewise, we show that either $l_{a_{22}} - r_{a_{11}}$ is surjective or both $l_{a_{22}} - r_{a_{33}}$ and $l_{a_{33}} - r_{a_{22}}$ are surjective.

Let $a \in J(R), b \in R, c \in 1 + J(R)$. Then $b \in U(R) \cap (1 + U(R))$ or $b \in J(R)$ or $b \in 1 + J(R)$. By the preceding discussion, we show that $l_b - r_a$ or $l_b - r_c$ is surjective, as desired.

 $(2) \Rightarrow (3)$ Clearly, $Bl(J(R)) \bigcup Bl(1+J(R)) \subseteq R$. Let $b \in R$. If $b \notin Bl(J(R))$, then there exists some $a \in J(R)$ such that $l_b - r_a$ is not surjective. If $c \in 1+J(R)$, by hypothesis, we see that $l_b - r_c$ and $l_c - r_b$ are surjective. This implies that $b \in Bl(1+J(R))$. Hence, $R = Bl(J(R)) \bigcup Bl(1+J(R))$, i.e., R satisfies the condition \mathcal{B}_3 .

 $(3) \Rightarrow (1)$ is obvious from [1, Theorem 22].

Let R[[x]] denote the ring of formal series over a ring R, that is all formal power series in x with coefficients from R.

Corollary 3.2. Let R be a weak h-ring. Then the following are equivalent.

- (1) $T_3(R)$ is strongly clean.
- (2) $T_3(R[[x]])$ is strongly clean.

Proof. (1) \Rightarrow (2) Clearly, $R/J(R) \cong R[[x]]/J(R[[x]])$. Thus, R[[x]] is local. Let $a = \sum_{i=0}^{\infty} a_i x^i \in J(R[[x]]), b = \sum_{i=0}^{\infty} b_i x^i \in R[[x]]$ and $c = \sum_{i=0}^{\infty} c_i x^i \in 1 + J(R[[x]]).$

Assume that $l_a - r_c$ is surjective and $d = \sum_{i=0}^{\infty} d_i x^i \in R[[x]]$ such that ad = dc. Then $l_{a_0} - r_{c_0}$ is surjective and $a_0d_0 = d_0c_0$. Clearly, $a_0 \in J(R)$ and $c_0 \in 1 + J(R)$. As R is a weak h-ring, we deduce that $d_0 = 0$. Further, $a_0d_1 + a_1d_0 = d_0c_1 + d_1c_0$, and so $a_0d_1 = d_1c_0$. Thus, we see that $d_1 = 0$. Moreover, $a_0d_2 + a_1d_1 + a_2d_0 = d_0c_2 + d_1c_1 + d_2c_0$, and then $a_0d_2 = d_2c_0$; hence, $d_2 = 0$. By iteration of this process, we deduce that $d_n = 0(n = 3, 4, \cdots)$. Thus, d = 0. That is, R[[x]] is a weak h-ring.

Assume that $l_a - r_b : R[[x]] \to R[[x]]$ is not surjective. Let $e = \sum_{i=0}^{\infty} e_i x^i \in R[[x]]$. If $l_{a_0} - r_{b_0} : R \to R$ is surjective, then we can find some $h_0 \in R$ such that $a_0h_0 - h_0b_0 = e_0$ by Theorem 3.1. Further, we can find some $h_1, h_2, \dots, h_n, \dots$ such that the following hold:

$$a_{0}h_{0} - h_{0}b_{0} = e_{0};$$

$$a_{0}h_{1} - h_{1}b_{0} = e_{1} - a_{1}h_{0} + h_{0}b_{1};$$

$$a_{0}h_{2} - h_{2}b_{0} = e_{2} - a_{1}h_{1} - a_{2}h_{0} + h_{0}b_{2} + h_{1}b_{1};$$

$$\vdots$$

$$a_{0}h_{n} - h_{n}b_{0} = e_{n} - \left(\sum_{i=1}^{n} a_{i}h_{n-i}\right) + \sum_{i=0}^{n-1} h_{i}b_{n-i};$$

$$\vdots$$

Thus, we have a $h = \sum_{i=0}^{\infty} h_i x^i$ such that ah - hb = e. This implies that $l_a - r_b : R[[x]] \to R[[x]]$ is surjective, a contradiction. So $l_{a_0} - r_{b_0} : R \to R$ is not surjective. According to Theorem $3.1, l_{b_0} - r_{c_0}, l_{c_0} - r_{b_0}$ are surjective. By virtue of Theorem 3.1, there exists $k_0 \in R$ such that $a_0k_0 - k_0c_0 = e_0$. As is the preceding discussion, we can find some $k_1, k_2, \dots \in R$ such that ak - kc = e, where $k = \sum_{i=0}^{\infty} k_i x^i$. This means that $l_a - r_c$ is surjective. Likewise, $l_c - r_a$ is surjective. If $l_b - r_a : R[[x]] \to R[[x]]$ is not surjective, analogously, we deduce that both $l_b - r_c$ and $l_c - r_b$ are surjective. In light of Theorem $3.1, T_3(R[[x]])$ is strongly clean.

(2) \Rightarrow (1) Let φ : $R[[x]] \rightarrow R$ given by $\varphi(f(x)) = f(0)$ for any $f(x) \in R[[x]]$. Then φ is an epimorphism. This induces an epimorphism $\varphi^* : T_3(R[[x]]) \rightarrow T_3(R)$. Hence, $T_3(R) \cong T(R[[x]])/Ker\varphi^*$. Since R[[x]] is strongly clean, then so is R, as asserted.

Corollary 3.3. Let R be a weak h-ring. Then the following are equivalent.

- (1) $T_3(R)$ is strongly clean.
- (2) $T_3(R[x]/(x^n))$ is strongly clean.

Proof. (1) \Rightarrow (2) According to Corollary 3.2, $T_3(R[[x]])$ is strongly clean, and so is the homomorphic image $T_3(R[[x]]/(x^n))$. Clearly, $R[[x]]/(x^n) \cong R[x]/(x^n)$. Therefore $T_3(R[x]/(x^n))$ is strongly clean.

(2) \Rightarrow (1) Let $\varphi : R[x]/(x^n) \to R$ given by $\varphi(\overline{f(x)}) = f(0)$ for any $f(x) \in R[x]$. Then we get an epimorphism $\varphi^* : T_3(R[x]/(x^n)) \to T_3(R)$ given by $\varphi^*((\overline{f_{ij}})) = (\varphi(f_{ij})$. Hence, $T_3(R)$ is a homomorphic image of $T_3(R[x]/(x^n))$, and thus yielding the result.

As in the preceding discussion, it follows from Theorem 2.1 that for a local ring R, $\mathcal{T}_3(R)$ is strongly clean if and only if so is $\mathcal{T}_3(R[[x]])$, if and only if so is $\mathcal{T}_3(R[x]/(x^n))$. The following example shows that Theorem 3.1 is a nontrivial generalization of the corresponding result of Borooah et al.

Example 3.4. There exists a weak h-ring R which is not an h-ring, while $T_3(R)$ is strongly clean.

Proof. Let Δ be an arbitrary division ring with $char(\Delta) > 0$. As in [7], one can construct an extension division ring R with the property that there exists an element $a \in R$ whose associated inner derivation D_a is an onto map: $D_a(R) = R$. This implies that $l_a - r_a$ is surjective. As $(l_a - r_a)(1_R) = 0$, we see that $l_a - r_a$ is not injective. Thus, R is not an h-ring. It is easy to verify that every division ring is a weak h-ring, and so is R. Also we see that every division ring is a bleached local ring. In light of [1, Theorem 9], $T_3(R)$ is strongly clean.

References

- G. Borooah, A.J. Diesl and T.J. Dorsey, Strongly clean triangular matrix rings over local rings, J. Algebra, 312 (2007), 773–797.
- [2] G. Borooah, A.J. Diesl and T.J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra, 212 (2008), 281–296.
- [3] H. Chen, On strongly J-clean rings, Comm. Algebra, 38 (2010), 3790–3804.
- [4] H. Chen, Rings Related Stable Range Conditions, Series in Algebra, 11, Hackensack, NJ: World Scientific, 2011.
- [5] J. Cui and J. Chen, Strongly clean 3 × 3 matrices over a class of local rings, J. Nanjing Univ., Math. Biquarterly, 27 (2010), 31-40.
- [6] A.J. Diesl, Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, 2006.
- [7] E.E. Lazerson, Onto inner derivations in divisions, Bull. Amer. Math. Soc., 67 (1961), 356–358.

- [8] Y. Li, On strongly clean matrix rings, J. Algebra, 312 (2007), 397-404.
- [9] S.F. Wu, Strongly Cleanness of Rings and Distributive Properties of Rings, MS Thesis, Nanjing University of Science & Technology, 2008.
- [10] X. Yang and Y. Zhou, Strongly cleanness of the 2×2 matrix ring over a general local ring, J. Algebra, 320 (2008), 2280–2290.
- [11] L. Fan and X. Yang, A note on strongly clean matrix rings, Comm. Algebra, 38 (2010), 799–806.

Huanyin Chen

Department of Mathematics Hangzhou Normal University Hangzhou 310036 People's Republic of China e-mail : huanyinchen@yahoo.cn