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Abstract. In this paper, we investigate rings in which the prime radical is

an annihilator and present a characterization of Artinian rings satisfying this

property. We also study rings in which the singular ideal and the prime rad-

ical coincide. Finally we show that Artinian rings are the direct product of a

semiprime ring and a semiprime-free ring (ring in which every nonzero ideal

contains a nonzero nilpotent ideal) and present a result on quasi-Baer Artinian

rings.
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1. Preliminaries

We adopt the following notations and definitions for convenience. In this paper

the rings involved might not have identity unless explicitly pointed out.

Let R be a ring.

(1) R is said to be semiprime-free if every nonzero ideal contains a nonzero

nilpotent ideal of R.

(2) A ⊆ R is said to be a right annihilator if annr(annl(A)) = A.

(3) A ⊆ R is said to be left self-faithful if A ∩ annl(A) = 0.

(4) For A ⊆ R, the sum of ideals N with A ∩N = 0 is shown by CI(A).

(5) A right annihilator ideal means an ideal which is a right annihilator.

(6) For A,B ⊆ R, A vI
e B indicates that for every ideal N , A ∩N = 0 implies

B ∩N = 0. If also A ⊆ B, then we write A ⊆I
e B. A ⊆rAI

e B and A ⊆rI
e B

are defined similarly but the adjective ”ideal” is replaced respectively, by

right annihilator ideal and right ideal.

(7) R is said to be rAI-semiprime if zero is the only nilpotent right annihilator

ideal.
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(8) A ⊆ R is said to be lI-I-closed, if for every left ideal N , A ⊆I
e N implies

N = A.

(9) The prime radical of R is shown by P(R).

(10) Clearly for every ideal N with P(R) ∩N = 0 we have annl(N) = annr(N).

This ideal is shown by ann(N).

(11) Clearly annl(CI(P(R))) = annr(CI(P(R))). This ideal is shown by EP(R).

Lemma 1.1. Let R be a ring and N be an ideal. The following conditions are

equivalent.

(1) N is left self-faithful and annl(N) is a semiprime ideal.

(2) N contains no nonzero nilpotent ideal of R.

(3) N ∩ P(R) = 0.

Proof. (1 ⇒ 3) Since P(R) ⊆ annl(N) and N ∩ annl(N) = 0.

(3 ⇒ 2) Let J be an nilpotent ideal of R contained in N . Then J ⊆ N ∩P(R) = 0.

(2 ⇒ 1) Since (N ∩ annl(N))2 = 0, N ∩ annl(N) = 0. Now let J be an ideal

such that J2 ⊆ annl(N). Then (JN)2 ⊆ N ∩ annl(N) = 0, implying JN = 0.

Consequently J ⊆ annl(N). ¤

Lemma 1.2. Let R be a ring and J be an ideal containing P(R). Then the following

hold.

(1) J ⊆ ann(CI(J)).

(2) ann(CI(J)) is a semiprime ideal.

(3) ann(CI(J)) is a left annihilator and a right annihilator.

Proof. For every ideal N , N ∩J = 0 implies that N ∩P(R) = 0, hence ann(N) is a

semiprime ideal by Lemma 1.1 and J ⊆ ann(N) since N ∩J = 0. Thus, ann(CI(J))

is a semiprime ideal and J ⊆ ann(CI(J)). ¤

Lemma 1.3. Let R be a ring.

(1) EP(R) is a semiprime ideal and contains P(R).

(2) P(R) ⊆I
e EP(R).

(3) For every ideal N , EP(R) vI
e N implies N ⊆ EP(R).

(4) Every nonzero ideal of R contained in EP(R) contains a nonzero nilpotent

ideal of R.

(5) If N is an ideal such that every nonzero ideal of R contained in N contains

a nonzero nilpotent ideal of R, then N ⊆ EP(R).

(6) EP(R) is a left annihilator and a right annihilator.
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Proof. (1) and (6) are by Lemma 1.2.

(2) Let N be an ideal with N ∩ P(R) = 0. Set K = N ∩ EP(R). Then KN = 0

because N ⊆ CI(P(R)) and K ⊆ EP(R) = ann(CI(P(R))), implying K2 = 0,

consequently K = 0 by Lemma 1.1.

(3) Let N be an ideal such that EP(R) vI
e N . For every ideal J , that J ∩P(R) = 0

we have J ∩ EP(R) = 0, implying J ∩ N = 0, consequently N ⊆ ann(J). Thus

N ⊆ EP(R).

(4) Let J be an ideal contained in EP(R). Then, J ∩ P(R) is a nonzero ideal, thus

it contains a nonzero nilpotent ideal of R by Lemma 1.1.

(5) By absurd suppose that N 6⊆ EP(R). There exists a nonzero ideal J contained

in N with J∩EP(R) = 0. Then J∩P(R) = 0, hence J contains a nonzero nilpotent

ideal of R which is a contradiction. ¤

Note that conditions (2) and (3) are strong enough to characterize EP(R). In

other words EP(R) is the unique ideal of R satisfying conditions (2) and (3), because

if N is an ideal satisfying (2) and (3), then N vI
e P(R) and P(R) vI

e EP(R),

implying N vI
e EP(R), consequently EP(R) ⊆ N , also similarly N ⊆ EP(R).

Lemma 1.4. Let R be a ring. The following conditions are equivalent.

(1) R is semiprime-free.

(2) P(R) ⊆I
e R.

(3) EP(R) = R.

Proof. (2 ⇒ 1) Let J be a nonzero ideal. J ∩ P(R) contains a nonzero nilpotent

ideal of R by Lemma 1.1, because it is a nonzero ideal.

(1 ⇒ 2) Let N be a nonzero ideal. N contains a nonzero nilpotent ideal J of R,

then J ⊆ N ∩ P(R), implying N ∩ P(R) 6= 0.

(2 ⇔ 3) By Lemma 1.3. ¤

Lemma 1.5. Let R be a ring. If P(R) ∩ CI(P(R)) = 0, then R/CI(P(R)) is a

semiprime-free ring.

Proof. Let J be an ideal of R = R/CI(P(R)). Then J ∩ P(R) 6= 0, thus J ∩ P(R)

contains a nonzero nilpotent ideal of R by Lemma 1.1. On the other hand (J ∩
P(R))/CI(P(R)) 6= 0. Consequently, J contains a nonzero nilpotent ideal of R. ¤

Lemma 1.6. Let R be a ring and N be an ideal such that every ideal of R contained

in N is idempotent. Then, for every ideals J and P , N ∩ P = 0 and J ∩ P = 0

implies (N + J) ∩ P = 0.
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Proof. Set N0 = {a ∈ N | ∃b ∈ J, a + b ∈ P}. Let k ∈ (N + J) ∩ P . There exist

a ∈ N and b ∈ J with k = a + b. Since a ∈ N0, there exists ai, ci ∈ N0 such that

a =
∑n

i=1 ciai because N0 is idempotent. Now there is bi ∈ J with ai + bi ∈ P ,

then ci(ai + bi) = 0, implying

a +
n∑

i=1

cibi =
n∑

i=1

ciai +
n∑

i=1

cibi =
n∑

i=1

ci(ai + bi) = 0

Thus, a ∈ J consequently k = 0. Therefore (N + J) ∩ P = 0. ¤

Lemma 1.7. Let R be a ring. If P is an ideal such that every ideal having zero

intersection with P is idempotent, then P ∩ CI(P ) = 0.

Proof. There is an ideal N maximal with respect to the property P ∩ N = 0.

Clearly N ⊆ CI(P ). Now let J be an ideal such that P∩J = 0. Then, P∩(N +J) =

0 by Lemma 1.6, implying N+J = N by the maximality of N , consequently J ⊆ N .

Thus CI(P ) = N , implying P ∩ CI(P ) = 0. ¤

Clearly a ring R with essential prime radical (P(R) ⊆rI
e R) is semiprime-free.

The following lemma consider the other way.

Lemma 1.8. Let R be a semiprime-free ring. If for every right ideal J with J ∩
P(R) = 0, we have J ⊆rAI

e J + RJ , then R is with essential prime radical.

Proof. Let J be a right ideal such that J ∩ P(R) = 0. Then, annr(J) ∩ J =

0 and annr(J) is a right annihilator ideal, thus (J + RJ) ∩ annr(J) = 0, hence

(J + RJ) ∩ P(R) = 0, because P(R) ⊆ annr(J), implying J ⊆ J + RJ = 0. ¤

Lemma 1.9. Let R be a ring. For every right ideal N and n ≥ 1, annr(N) ⊆lI
e

annr(Nn).

Proof. It is enough to prove the claim for n = 2. Let J be a left ideal contained

in annr(N2) such that J ∩ annr(N) = 0. Then, NJ ⊆ J ∩ annr(N) = 0, hence

J ⊆ annr(N), consequently J = 0. ¤

2. Results

Theorem 2.1. Let R be a ring. If R/P(R) is left Artinian, then R = EP(R) ⊕
CI(P(R)).

Proof. First we claim that every ideal N with N∩P(R) = 0 is idempotent, because

R/P(R) is a semisimple left Artinian ring, thus N/P(R) is idempotent, hence N ⊆
N2⊕P(R) implying N2 = N . Thus, P(R)∩CI(P(R)) = 0 by Lemma 1.7, implying

EP(R)∩CI(P(R)) = 0 by Lemma 1.3. Set R = R/EP(R). Showing CI(P(R)) ⊆I
e R
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completes the proof because R is a semisimple left Artinian ring by Lemma 1.3,

implying CI(P(R)) = R. Let J be an ideal of R such that J ∩CI(P(R)) = 0. Then,

J ∩ CI(P(R)) ⊆ EP(R), thus J ∩ CI(P(R)) = 0, hence J ⊆ EP(R), consequently

J = 0. ¤

Proposition 2.2. Every ring R in which R/P(R) is left Artinian, is the direct

product of a semiprime ring and a semiprime-free ring.

Proof. We have R = EP(R) ⊕ CI(P(R)). On the other hand R/CI(P(R)) is a

semiprime-free ring by Lemma 1.5, and R/EP(R) is a semiprime ring by Lemma

1.3. ¤

Recall that a ring R is quasi-Baer if every right annihilator ideal is a right direct

summand [1].

Proposition 2.3. Let R be a nonzero left faithful quasi-Baer ring with ACC on

right annihilator ideals. Then, R is not right essential extension of P(R).

Proof. There exists a maximal right annihilator ideal Q. Then, there exists a

right ideal N such that R = Q⊕N . On the other hand Q is a prime ideal, hence

P(R) ⊆ Q, consequently N ∩ P(R) = 0. ¤

Theorem 2.4. Let R be a quasi-Baer left Artinian ring with identity. If for every

right ideal J with J ∩ P(R) = 0, we have J ⊆rAI
e RJ , then R is semisimple.

Proof. By Proposition 2.2, assuming R is semiprime-free, it is enough to show that

R = 0 and that can be obtained by applying Lemma 1.8 and Proposition 2.3. ¤

Theorem 2.5. A quasi-Baer left Artinian ring with identity in which every right

annihilator ideal is left self-faithful, is semisimple.

Proof. By Theorem 2.4, it s enough to show that for every right ideal J , J ⊆rAI
e RJ .

Let K be a right annihilator ideal such that J ∩K = 0. Then K ⊆ annr(J), thus

K∩annl(annr(J)) = 0 because annr(J) is a right annihilator ideal, hence K∩RJ = 0

because RJ ⊆ annl(annr(J)). ¤

Proposition 2.6. Let R be a nonzero left faithful quasi-Baer and idempotent ring.

If P(R) is nilpotent, then every maximal right annihilator ideal is a minimal prime

ideal.

Proof. Let Q be maximal right annihilator ideal. There exists a right ideal N such

that R = Q ⊕ N . If Q is not a minimal prime ideal, then Q is contained in no
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minimal prime ideal because Q is a prime ideal, consequently N ⊆ P(R). On the

other hand there exists n ≥ 1 such that P(R)n = 0, implying R = Rn = Q+Nn = Q

which is a contradiction. ¤

Proposition 2.7. Let R be a ring. The following conditions are equivalent.

(1) R is rAI-semiprime.

(2) Zero is the only right annihilator ideal with zero square.

(3) Every right annihilator ideal is right self-faithful.

Proof. (2 ⇒ 3) Let N be a right annihilator ideal. N ∩ annr(N) is a right annihi-

lator ideal with zero square, implying N ∩ annr(N) = 0.

(3 ⇒ 1) Temporary suppose that there exists a nonzero nilpotent right annihi-

lator ideal N . There exists n ≥ 2 such that Nn = 0 and Nn−1 6= 0. Then

Nn−1 ⊆ N ∩ annr(N) = 0 which is a contradiction.

(1 ⇒ 2) It is obvious. ¤

Theorem 2.8. A left Artinian ring is left nonsingular if and only if is rAI-

semiprime.

Proof. (⇒) Let N be a right annihilator ideal with zero square. We show that

annl(N) ⊆lI
e R. Let J be a left ideal with annl(N) ∩ J = 0, then annl(N)J = 0,

thus J ⊆ annr(annl(N)) = N ⊆ annl(N), implying J = 0. Thus, N ⊆ annr(N) ⊆
Z(RR) = 0.

(⇐) It is easy to see that annl(Z(RR)) is the intersection of essential left annihila-

tors. Thus, annl(Z(RR)) is an essential left ideal, then annr(annl(Z(RR))) ⊆ Z(RR),

implying Z(RR) = annr(annl(Z(RR))). Thus Z(RR) is a right annihilator ideal.

On the other hand Z(RR) is nilpotent by [4, p. 252, Theorem 7.15]. Therefore

Z(RR) = 0. ¤

Recall that a ring R is called semiprimary if R/P(R) is a left Artinian ring and

P(R) is nilpotent [4].

Theorem 2.9. Let R be a semiprimary and idempotent ring. If P(R) is a right

annihilator, then R is the only left faithful ideal.

Proof. Let N be a left faithful ideal. We claim that N/P(R) is left faithful, because

if K is an ideal with KN ⊆ P(R), then annl(P(R))KN = 0, hence annl(P(R))K =

0, implying K ⊆ annr(annl(P(R))) = P(R). Thus R = N + P(R) because R/P(R)

is a semisimple left Artinian ring. On the other hand, there exists n ≥ 1 such that

P(R)n = 0, then R = Rn = (N + P(R))n ⊆ N + P(R)n = N . ¤
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Corollary 2.10. Let R be a semiprimary and idempotent ring. If P(R) is a right

annihilator, then every left and right self-faithful left annihilator ideal, is a right

direct summand.

Proof. Let N be a left and right self-faithful left annihilator ideal. N ⊕ annr(N)

is a left faithful ideal. Thus R = N ⊕ annr(N) by Theorem 2.9. ¤

Corollary 2.11. In a QF-ring, every left and right self-faithful left annihilator

ideal is a right direct summand.

For a semiprimary R, P(R) is a prime ideal if and only R/P(R) is simple, also if

and only if every ideal is either left faithful or nilpotent. These rings are investigated

in [4] and a nice theorem, [4, p. 349, Theorem (23.10)] is obtained. Also this idea is

generalized as rings in which for every ideal N , a power of N is left self-faithful and

[3, Theorem 8] is obtained and shown that the prime radical is a right annihilator

[3, Lemma 5].

A nonzero right ideal N of a ring R is said to be right self-prime, if NR is a

prime module, in other words if for every nonzero right ideal J contained in N ,

annr(J) = annr(N). Below, the sum of right self-prime right ideals is shown by E.

It is easy to see that annr(N) is a prime ideal for every right self-prime right ideal

N . Thus, P(R) ⊆ annr(E).

Proposition 2.12. Let R be a ring with ACC on right annihilator ideals. Then,

E ⊆rI
e R.

Proof. Let J be a nonzero right ideal. J contains a nonzero right ideal N such

that annr(N) is maximal respect to this condition. It can be see easily that N is a

right self-prime, implying E ∩ J 6= 0. ¤

Theorem 2.13. Let R be a ring with DCC on left annihilators. Every right essen-

tial left annihilator ideal is left essential if and only if Z(RR) = annr(E). In this

case Z(RR) = P(R) and P(R) is a right annihilator.

Proof. (⇒) Clearly R is with ACC on right annihilators so R is with ACC on right

annihilator ideals. Thus, E ⊆rI
e R by Proposition 2.12, hence annl(annr(E)) ⊆rI

e R,

implying annl(annr(E)) ⊆lI
e R, consequently P(R) ⊆ annr(E) ⊆ Z(RR). On the

other hand Z(RR) is nilpotent by [4, p. 252, Theorem 7.15], implying Z(RR) ⊆
P(R).

(⇐) Let N be a right essential left annihilator ideal. For every right self-prime

right ideal N ∩ J 6= 0, thus annr(N) ⊆ annr(N ∩ J) = annr(J), hence annr(N) ⊆
annr(E) = Z(RR), implying annl(Z(RR)) ⊆ N . Thus N is left essential. ¤
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A ring R is called reversible if ab = 0 implies ba = 0 for all a, b ∈ R [2]. Below,

we consider rings in which AB = 0 implies BA = 0 for all ideals A and B. It is

easy to see that in this case, for every ideal N , annl(N) = annr(N).

Theorem 2.14. Let R be a ring with DCC on left annihilators. If AB = 0 implies

BA = 0 for all ideals A and B, then, Z(RR) = P(R) and P(R) is a right annihilator.

Proof. By [4, p. 252, Theorem 7.15], it is enough to show that Z(RR) is a

semiprime ideal. Let N be an ideal such that N2 ⊆ Z(RR). Then annl(Z(RR)) ⊆
annl(N2), thus annl(N2) ⊆lI

e R, hence annr(N2) ⊆lI
e R, implying annr(N) ⊆lI

e R

by Lemma 1.9, consequently annl(N) ⊆lI
e R. Therefore N ⊆ annr(annl(N)) ⊆

Z(RR). ¤

The following is an application for Theorem 2.1.

Theorem 2.15. Let R be a left faithful (right faithful) semiprimary ring. If P(R)

is a nonzero prime ideal, then R is semiprime-free.

Proof. There exist a semiprime ring S and a semiprime-free ring Q such that

R ∼= S×Q by Proposition 2.12. It is enough to show that S = 0. By absurd suppose

that it is not so. Since P(S × Q) = P(S) × P(Q) = 0 × P(Q), S × 0 6⊆ P(S × Q)

implying 0 × Q ⊆ P(S × Q) because P(S × Q) is a prime ideal, consequently

P(Q) = Q. Thus Q is nilpotent contradicting the fact that R is left faithful (right

faithful). ¤

As an example, let F be a field of characteristic 3 and D6 be the dihedral group

of degree 6. We show that F [D6] is semiprime-free. By Theorem 2.15, it is enough

to show that P(F [D6]) is a prime ideal. We know that D6 = {e, a, a2, b, ab, a2b}
with a3 = b2 = e and ba = a−1b. Set K = {e, a, a2}, L = {e, b} and

P = {xe + ya + za2 + ub + vab + wa2b | x + y + x = 0 & u + v + w = 0}
The map D6 −→ L given by aibk −→ bk is a group epimorphism and the kernel is

K. Thus the map θ : F [D6] −→ F [L] given by

θ(xe+ya+za2+ub+vab+wa2b) = xθ(e)+yθ(a)+zθ(a2)+uθ(b)+vθ(ab)+wθ(a2b) =

(x + y + x)e + (u + v + w)b

is a ring epimorphism with Ker(θ) = P . On the other hand F [L] is a prime ring

by [5 p. 6, Theorem 2.5]. Consequently, P is a prime ideal and P(F [D6]) ⊆ P . On

the other hand in F [K] we have,

(e− a)3 = (e− a)(e + a + a2) = 0
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implying e− a ∈ P(F [K]), also the calculation

(e− a)(xe + ya + za2 + ub + vab + wa2b) =

(x− z)e + (y − x)a + (z − y)a2 + (u− w)b + (v − u)ab + (w − u)a2b

implies (e−a)F [D6] = P , consequently P = (e− a)F [D6] ⊆ P(F [D6]) by [5, p. 84,

Theorem 20.2]. Therefore P(F [D6]) = P . Now in fact F [D6] is a local ring by [4,

p. 349, Theorem 23.10] because dimF (F [D6]) = 6.
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