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ABSTRACT. In this paper, we investigate rings in which the prime radical is
an annihilator and present a characterization of Artinian rings satisfying this
property. We also study rings in which the singular ideal and the prime rad-
ical coincide. Finally we show that Artinian rings are the direct product of a
semiprime ring and a semiprime-free ring (ring in which every nonzero ideal
contains a nonzero nilpotent ideal) and present a result on quasi-Baer Artinian

rings.
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1. Preliminaries

We adopt the following notations and definitions for convenience. In this paper
the rings involved might not have identity unless explicitly pointed out.
Let R be a ring.

(1) R is said to be semiprime-free if every nonzero ideal contains a nonzero
nilpotent ideal of R.

(2) A C R is said to be a right annihilator if ann,(ann;(A)) = A.

(3) A C R is said to be left self-faithful if AN annj(A) = 0.

(4) For A C R, the sum of ideals N with AN N = 0 is shown by Ci(A).

(5) A right annihilator ideal means an ideal which is a right annihilator.

(6) For A, B C R, AC! B indicates that for every ideal N, AN N = 0 implies
BNN =0. If also A C B, then we write A Qé B. A QE,AI Band A ggl B
are defined similarly but the adjective "ideal” is replaced respectively, by
right annihilator ideal and right ideal.

(7) R is said to be rAI-semiprime if zero is the only nilpotent right annihilator

ideal.
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(8) A C R is said to be lI-I-closed, if for every left ideal N, A C. N implies
N=A.
(9) The prime radical of R is shown by P(R).
(10) Clearly for every ideal N with P(R) N N = 0 we have annj(N) = ann,(N).
This ideal is shown by ann(N).
(11) Clearly ann(Ci(P(R))) = ann,(Ci(P(R))). This ideal is shown by EP(R).

Lemma 1.1. Let R be a ring and N be an ideal. The following conditions are

equivalent.

(1) N is left self-faithful and ann(N) is a semiprime ideal.
(2) N contains no nonzero nilpotent ideal of R.
(3) NNnP(R) =0.

Proof. (1 = 3) Since P(R) C ann(N) and N Nann(N) = 0.

(3 = 2) Let J be an nilpotent ideal of R contained in N. Then J C NNP(R) = 0.
(2 = 1) Since (N Nann(N))? = 0, N Nann(N) = 0. Now let J be an ideal
such that J? C anny(N). Then (JN)? C N Nann(N) = 0, implying JN = 0.
Consequently J C ann(N). O

Lemma 1.2. Let R be a ring and J be an ideal containing P(R). Then the following
hold.
(1) J C ann(Cy(J)).
(2) ann(Cy(J)) is a semiprime ideal.
Ci(J

)) is a left annihilator and a right annihilator.

Proof. For every ideal N, NNJ = 0 implies that NNP(R) = 0, hence ann(N) is a
semiprime ideal by Lemma 1.1 and J C ann(N) since NNJ = 0. Thus, ann(Cr(J))

is a semiprime ideal and J C ann(Cy(J)). O

Lemma 1.3. Let R be a ring.

(1) EP(R) is a semiprime ideal and contains P(R).

(2) P(R) CLEP(R).

(3) For every ideal N, EP(R) CL N implies N C EP(R).

(4) Every nonzero ideal of R contained in EP(R) contains a nonzero nilpotent

ideal of R.

(5) If N is an ideal such that every nonzero ideal of R contained in N contains
a nonzero nilpotent ideal of R, then N C EP(R).

(6) EP(R) is a left annihilator and a right annihilator.
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Proof. (1) and (6) are by Lemma 1.2.

(2) Let N be an ideal with N NP(R) = 0. Set K = N NEP(R). Then KN =0
because N C Ci(P(R)) and K C EP(R) = ann(Cy(P(R))), implying K? = 0,
consequently K = 0 by Lemma 1.1.

(3) Let N be an ideal such that EP(R) C. N. For every ideal J, that JNP(R) =0
we have J N EP(R) = 0, implying J NN = 0, consequently N C ann(J). Thus
N C EP(R).

(4) Let J be an ideal contained in EP(R). Then, J NP(R) is a nonzero ideal, thus
it contains a nonzero nilpotent ideal of R by Lemma 1.1.

(5) By absurd suppose that N Z EP(R). There exists a nonzero ideal J contained
in N with JNEP(R) = 0. Then JNP(R) = 0, hence J contains a nonzero nilpotent

ideal of R which is a contradiction. O

Note that conditions (2) and (3) are strong enough to characterize EP(R). In
other words EP(R) is the unique ideal of R satisfying conditions (2) and (3), because
if N is an ideal satisfying (2) and (3), then N C! P(R) and P(R) C. EP(R),
implying N C! EP(R), consequently EP(R) C N, also similarly N C EP(R).

Lemma 1.4. Let R be a ring. The following conditions are equivalent.
(1) R is semiprime-free.
(2) P(R) C! R.
(3) EP(R) = R.

Proof. (2 = 1) Let J be a nonzero ideal. J N P(R) contains a nonzero nilpotent
ideal of R by Lemma 1.1, because it is a nonzero ideal.

(1 = 2) Let N be a nonzero ideal. N contains a nonzero nilpotent ideal J of R,
then J C N NP(R), implying N NP(R) # 0.

(2 & 3) By Lemma 1.3. O

Lemma 1.5. Let R be a ring. If P(R) N Ci(P(R)) = 0, then R/Ci(P(R)) is a

semiprime-free ring.

Proof. Let J be an ideal of R = R/Ci(P(R)). Then J NP(R) # 0, thus J N P(R)
contains a nonzero nilpotent ideal of R by Lemma 1.1. On the other hand (J N
P(R))/C1(P(R)) # 0. Consequently, J contains a nonzero nilpotent ideal of R. [

Lemma 1.6. Let R be a ring and N be an ideal such that every ideal of R contained
in N is idempotent. Then, for every ideals J and P, NN P =0and JNP =0
implies (N +J)N P =0.
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Proof. Set No={ae€ N |3be Ja+be P}. Let k € (N+J)NP. There exist
a € N and b € J with k = a + b. Since a € Ny, there exists a;,c; € Ny such that
a = Z?:l c;a; because Ny is idempotent. Now there is b; € J with a; +b; € P,
then ¢;(a; + b;) = 0, implying

a—+ Zczbl = ZQ‘CLZ‘ -+ Zczbl = Zci(ai +b1) = O
i=1 i=1 i=1 i=1
Thus, a € J consequently k = 0. Therefore (N + J)N P =0. O

Lemma 1.7. Let R be a ring. If P is an ideal such that every ideal having zero
intersection with P is idempotent, then P N Cy(P) = 0.

Proof. There is an ideal N maximal with respect to the property PN N = 0.
Clearly N C Ci(P). Now let J be an ideal such that PNJ = 0. Then, PN(N+J) =
0 by Lemma 1.6, implying N+.J = N by the maximality of N, consequently J C N.
Thus Ci(P) = N, implying P N Ci(P) = 0. O

Clearly a ring R with essential prime radical (P(R) Ci! R) is semiprime-free.

The following lemma consider the other way.

Lemma 1.8. Let R be a semiprime-free ring. If for every right ideal J with J N
P(R) =0, we have J C:A1 J + RJ, then R is with essential prime radical.

Proof. Let J be a right ideal such that J N P(R) = 0. Then, ann,(J) N J =
0 and ann,(J) is a right annihilator ideal, thus (J + RJ) N ann,(J) = 0, hence
(J+ RJ)NP(R) =0, because P(R) C ann,(J), implying J C J+ RJ = 0. O

Lemma 1.9. Let R be a ring. For every right ideal N and n > 1, ann (N) CUI
ann, (N"™).

Proof. It is enough to prove the claim for n = 2. Let J be a left ideal contained
in ann,(N?) such that J Nann,(N) = 0. Then, NJ C J Nann,(N) = 0, hence
J C ann,(N), consequently J = 0. O

2. Results

Theorem 2.1. Let R be a ring. If R/P(R) is left Artinian, then R = EP(R) &
Ci(P(R)).

Proof. First we claim that every ideal N with NNP(R) = 0 is idempotent, because
R/P(R) is a semisimple left Artinian ring, thus N/P(R) is idempotent, hence N C
N2 @P(R) implying N2 = N. Thus, P(R)NCi(P(R)) = 0 by Lemma 1.7, implying
EP(R)NCi(P(R)) = 0 by Lemma 1.3. Set R = R/EP(R). Showing C;(P(R)) C. R
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completes the proof because R is a semisimple left Artinian ring by Lemma 1.3,
implying C1(P(R)) = R. Let J be an ideal of R such that JNCi(P(R)) = 0. Then,
JNCi(P(R)) C EP(R), thus J N Cy(P(R)) = 0, hence J C EP(R), consequently

J=0. ]

Proposition 2.2. Every ring R in which R/P(R) is left Artinian, is the direct

product of a semiprime ring and a semiprime-free ring.

Proof. We have R = EP(R) ® Ci(P(R)). On the other hand R/C(P(R)) is a
semiprime-free ring by Lemma 1.5, and R/EP(R) is a semiprime ring by Lemma
1.3. (I

Recall that a ring R is quasi-Baer if every right annihilator ideal is a right direct

summand [1].

Proposition 2.3. Let R be a nonzero left faithful quasi-Baer ring with ACC on

right annihilator ideals. Then, R is not right essential extension of P(R).

Proof. There exists a maximal right annihilator ideal (). Then, there exists a
right ideal N such that R = @ & N. On the other hand @ is a prime ideal, hence
P(R) C @, consequently N NP(R) = 0. O

Theorem 2.4. Let R be a quasi-Baer left Artinian ring with identity. If for every
right ideal J with JNP(R) = 0, we have J CIAY RJ, then R is semisimple.

Proof. By Proposition 2.2, assuming R is semiprime-free, it is enough to show that

R = 0 and that can be obtained by applying Lemma 1.8 and Proposition 2.3. O

Theorem 2.5. A quasi-Baer left Artinian ring with identity in which every right

annihilator ideal is left self-faithful, is semisimple.

Proof. By Theorem 2.4, it s enough to show that for every right ideal .J, J CXAT R.J.
Let K be a right annihilator ideal such that J N K = 0. Then K C ann,(J), thus
Knann(ann, (J)) = 0 because ann, (J) is a right annihilator ideal, hence KNRJ = 0
because RJ C ann(ann,(J)). O

Proposition 2.6. Let R be a nonzero left faithful quasi-Baer and idempotent ring.
If P(R) is nilpotent, then every mazimal right annihilator ideal is a minimal prime

ideal.

Proof. Let Q be maximal right annihilator ideal. There exists a right ideal N such
that R = Q & N. If @ is not a minimal prime ideal, then @ is contained in no
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minimal prime ideal because @ is a prime ideal, consequently N C P(R). On the
other hand there exists n > 1 such that P(R)"™ = 0, implying R = R" = Q+N" = Q

which is a contradiction. O

Proposition 2.7. Let R be a ring. The following conditions are equivalent.
(1) R is rAI-semiprime.
(2) Zero is the only right annihilator ideal with zero square.
(3) Ewery right annihilator ideal is right self-faithful.

Proof. (2 = 3) Let N be a right annihilator ideal. N Nann,(N) is a right annihi-
lator ideal with zero square, implying N Nann,(N) = 0.

(3 = 1) Temporary suppose that there exists a nonzero nilpotent right annihi-
lator ideal N. There exists n > 2 such that N* = 0 and N"! # 0. Then
N"=1 C Nnann,(N) =0 which is a contradiction.

(1 = 2) It is obvious. O

Theorem 2.8. A left Artinian ring is left nonsingular if and only if is rAI-

semiprime.

Proof. (=) Let N be a right annihilator ideal with zero square. We show that
annj(N) CII' R. Let J be a left ideal with annj(N) N J = 0, then ann;(N)J = 0,
thus J C ann,(ann(N)) = N C ann(N), implying J = 0. Thus, N C ann,(N) C
Z(rR) = 0.

(<) It is easy to see that annj(Z(gR)) is the intersection of essential left annihila-
tors. Thus, ann)(Z(gR)) is an essential left ideal, then ann, (ann(Z(rR))) C Z(rR),
implying Z(rR) = ann,(annj(Z(gR))). Thus Z(gR) is a right annihilator ideal.
On the other hand Z(gR) is nilpotent by [4, p. 252, Theorem 7.15]. Therefore
Z(rR) = 0. O

Recall that a ring R is called semiprimary if R/P(R) is a left Artinian ring and
P(R) is nilpotent [4].

Theorem 2.9. Let R be a semiprimary and idempotent ring. If P(R) is a right
annshilator, then R is the only left faithful ideal.

Proof. Let N be a left faithful ideal. We claim that N/P(R) is left faithful, because
if K is an ideal with KN C P(R), then ann;(P(R))KN = 0, hence ann(P(R))K =
0, implying K C ann,(ann;(P(R))) = P(R). Thus R = N + P(R) because R/P(R)
is a semisimple left Artinian ring. On the other hand, there exists n > 1 such that
P(R)" =0, then R=R" = (N +P(R))* C N +P(R)" = N. O
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Corollary 2.10. Let R be a semiprimary and idempotent ring. If P(R) is a right
annihilator, then every left and right self-faithful left annihilator ideal, is a Tight

direct summand.

Proof. Let N be a left and right self-faithful left annihilator ideal. N @ ann,(N)
is a left faithful ideal. Thus R = N @ ann,(N) by Theorem 2.9. O

Corollary 2.11. In a QF-ring, every left and right self-faithful left annihilator

ideal is a right direct summand.

For a semiprimary R, P(R) is a prime ideal if and only R/P(R) is simple, also if
and only if every ideal is either left faithful or nilpotent. These rings are investigated
in [4] and a nice theorem, [4, p. 349, Theorem (23.10)] is obtained. Also this idea is
generalized as rings in which for every ideal N, a power of NN is left self-faithful and
[3, Theorem 8] is obtained and shown that the prime radical is a right annihilator
[3, Lemma 5].

A nonzero right ideal N of a ring R is said to be right self-prime, if Ng is a
prime module, in other words if for every nonzero right ideal J contained in NV,
ann, (J) = ann, (V). Below, the sum of right self-prime right ideals is shown by E.
It is easy to see that ann, (V) is a prime ideal for every right self-prime right ideal
N. Thus, P(R) C ann,(E).

Proposition 2.12. Let R be a ring with ACC on right annihilator ideals. Then,
ECIR.

Proof. Let J be a nonzero right ideal. J contains a nonzero right ideal N such
that ann, (V) is maximal respect to this condition. It can be see easily that N is a

right self-prime, implying £ N J # 0. (]

Theorem 2.13. Let R be a ring with DCC on left annihilators. FEvery right essen-
tial left annihilator ideal is left essential if and only if Z(rR) = ann,(F). In this
case Z(rR) = P(R) and P(R) is a right annihilator.

Proof. (=) Clearly R is with ACC on right annihilators so R is with ACC on right
annihilator ideals. Thus, E CI!' R by Proposition 2.12, hence annj(ann,(E)) CI' R,
implying annj(ann,(E)) C! R, consequently P(R) C ann,(E) C Z(zR). On the
other hand Z(gR) is nilpotent by [4, p. 252, Theorem 7.15], implying Z(rR) C
P(R).

(<) Let N be a right essential left annihilator ideal. For every right self-prime
right ideal N N J # 0, thus ann,(N) C ann,(N N J) = ann,(J), hence ann,(N) C
ann, (F) = Z(rR), implying ann(Z(gR)) C N. Thus N is left essential. O
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A ring R is called reversible if ab = 0 implies ba = 0 for all a,b € R [2]. Below,
we consider rings in which AB = 0 implies BA = 0 for all ideals A and B. It is

easy to see that in this case, for every ideal N, ann(N) = ann,(N).

Theorem 2.14. Let R be a ring with DCC on left annihilators. If AB = 0 implies
BA =0 for all ideals A and B, then, Z(rR) = P(R) and P(R) is a right annihilator.

Proof. By [4, p. 252, Theorem 7.15], it is enough to show that Z(rR) is a
semiprime ideal. Let N be an ideal such that N? C Z(zR). Then annj(Z(rR)) C
annj(N?), thus anny(N?2) CI R, hence ann, (N2?) C! R, implying ann,(N) C! R
by Lemma 1.9, consequently annj(N) CI' R. Therefore N C ann,(annj(N)) C
Z(rR). O

The following is an application for Theorem 2.1.

Theorem 2.15. Let R be a left faithful (right faithful) semiprimary ring. If P(R)

is a nonzero prime ideal, then R is semiprime-free.

Proof. There exist a semiprime ring S and a semiprime-free ring ) such that
R = Sx @ by Proposition 2.12. It is enough to show that S = 0. By absurd suppose
that it is not so. Since P(S x Q) = P(S) x P(Q) =0 x P(Q), S x 0 Z P(S x Q)
implying 0 x @ C P(S x Q) because P(S x Q) is a prime ideal, consequently
P(Q) = Q. Thus @ is nilpotent contradicting the fact that R is left faithful (right
faithful). O

As an example, let F' be a field of characteristic 3 and Dg be the dihedral group
of degree 6. We show that F[Dg] is semiprime-free. By Theorem 2.15, it is enough
to show that P(F[Dg]) is a prime ideal. We know that Dg = {e,a,a?, b, ab,a?b}
with a® = b? = e and ba = a~1b. Set K = {e,a,a’}, L = {e,b} and

P = {ze +ya+ za® + ub+vab+wa®b |z +y+x=0&u+v+w =0}
The map Dg — L given by a’b* — b* is a group epimorphism and the kernel is
K. Thus the map 6 : F[Dg] — F[L] given by
O(xe+ya+za® +ubt+vab+wa®b) = z6(e)+yb(a)+20(a*)+ub(b)+v0(ab) +wh(a®b) =

(t+y+a)e+ (ut+v+wd
is a ring epimorphism with Ker(f) = P. On the other hand F[L] is a prime ring
by [5 p. 6, Theorem 2.5]. Consequently, P is a prime ideal and P(F[Dg]) C P. On
the other hand in F[K] we have,

(e—a)P=(e—a)eta+a®)=0
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implying e — a € P(F[K]), also the calculation
(e — a)(we + ya + za® + ub 4+ vab + wa’b) =

(x—2)e+ (y —x)a+ (z —y)a® + (u — w)b + (v — u)ab + (w — u)a?b
implies (e —a)F[Dg] = P, consequently P = (e — a)F[Dg] C P(F[Dg]) by [5, p. 84,
Theorem 20.2]. Therefore P(F[Dg]) = P. Now in fact F[Dg] is a local ring by [4,
p. 349, Theorem 23.10] because dimp(F[Dg]) = 6.
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