CANCELLATION PROPERTIES IN IDEAL SYSTEMS OF MONOIDS

Ryûki Matsuda

Received: 14 January 2010; Revised: 13 August 2010 Communicated by Abdullah Harmancı

ABSTRACT. We pursue the work by M. Fontana, K.A. Loper and R. Matsuda [2]. Let D be an integral domain, let F(D) (resp., f(D)) be the set of non-zero (resp., finitely generated) fractional ideals of D, let \star be a semistar operation on D. They showed that if \star satisfies $(FF_1)^{\star} = (FF_2)^{\star}$ implies $F_1^{\star} = F_2^{\star}$ for every $F, F_1, F_2 \in f(D)$, then \star need not satisfy $(FG_1)^{\star} = (FG_2)^{\star}$ implies $G_1^{\star} = G_2^{\star}$ for every $F \in f(D)$ and every $G_1, G_2 \in F(D)$. In this paper, we show its analogy for monoids.

Mathematics Subject Classification (2000): 13A15 Keywords: semistar operation, monoid

1. Introduction

Let D be an integral domain with quotient field K = q(D). Let $\overline{F}(D)$ be the set of non-zero D-submodules of K, let F(D) be the set of non-zero fractional ideals G of D, i.e., $G \in \overline{F}(D)$ and $dG \subset D$ for some $d \in D \setminus \{0\}$, and let f(D) be the set of nonzero finitely generated D-submodules of K. A semistar operation on D is a mapping \star : $\overline{F}(D) \longrightarrow \overline{F}(D), E \longmapsto E^{\star}$, such that the following properties hold for every $x \in K \setminus \{0\}$ and every $E, H \in \overline{F}(D)$: $(xE)^{\star} = xE^{\star}; E \subset E^{\star}; (E^{\star})^{\star} = E^{\star}; E \subset H$ implies $E^{\star} \subset H^{\star}$. Recently, M. Fontana, K.A. Loper and R. Matsuda [2] showed that if a semistar operation \star on D satisfies $(FF_1)^{\star} = (FF_2)^{\star}$ implies $F_1^{\star} = F_2^{\star}$ for every $F, F_1, F_2 \in f(D)$, then \star need not satisfy $(FG_1)^{\star} = (FG_2)^{\star}$ implies $G_1^{\star} = G_2^{\star}$ for every $F \in f(D)$ and every $G_1, G_2 \in F(D)$.

A subsemigroup S, with $0 \in S$, of a torsion-free abelian additive group is called a grading monoid (or, a g-monoid). It is known that we can define on S the notions of ideal, valuation, integral closure, (Krull) dimension, etc., and we have an ideal theory on S similar to the classical one on integral domains. In this paper, we pursue [2] and, in Section 3, we show that if a semistar operation \star on a g-monoid S satisfies $(F + F_1)^{\star} = (F + F_2)^{\star}$ implies $F_1^{\star} = F_2^{\star}$ for every $F, F_1, F_2 \in f(S)$, then \star need not satisfy $(F + G_1)^{\star} = (F + G_2)^{\star}$ implies $G_1^{\star} = G_2^{\star}$ for every $F \in f(S)$

RYÛKI MATSUDA

and every $G_1, G_2 \in F(S)$. Section 2 is a review, and in Section 4 we give some semigroup versions of some propositions in M. Fontana and K.A. Loper [1].

2. A Review

A subsemigroup S, with $0 \in S$, of a torsion-free abelian additive group is called a g-monoid. Throughout the paper, S denotes a g-monoid with $S \not\supseteq \{0\}$. For example, let L be a torsion-free abelian additive group. Then $L[X] := \{a+kX \mid a \in$ L and $0 \leq k \in \mathbb{Z}$ is a g-monoid called the polynomial semigroup of X over L, where X is an indeterminate. We use the symbol \subset (resp., \subsetneq) for the large inclusion (resp., the strict inclusion). For the general theory of g-monoids, we refer to [4] and [6]. Let S be a g-monoid, the additive group $\{s - s' \mid s, s' \in S\}$ is called the quotient group of S, and is denoted by q(S). A non-empty subset I of S is called an ideal of S if $S + I \subset I$. If $S \subsetneq q(S)$, then S has a unique maximal ideal M, and M is the set of non-units of S. Let $\overline{F}(S)$ be the set of non-empty subsets E of q(S) such that $S + E \subset E$. An element E of $\overline{F}(S)$ is called a fractional ideal of Sif $s + E \subset S$ for some $s \in S$. Let F(S) be the set of fractional ideals of S, and let f(S) be the set of finitely generated fractional ideals of S.

If a mapping $E \mapsto E^*$ from $\overline{F}(S)$ to $\overline{F}(S)$ satisfies the following conditions, then \star is called a semistar operation on S: For every $a \in q(S)$ and every $E, H \in \overline{F}(S)$, we have $(a + E)^* = a + E^*, E \subset E^*, (E^*)^* = E^*, E \subset H$ implies $E^* \subset H^*$. The mapping $E \mapsto q(S)$ from $\overline{F}(S)$ to $\overline{F}(S)$ is a semistar operation on S, and is called the e-semistar operation. The mapping $E \mapsto E$ from $\overline{F}(S)$ to $\overline{F}(S)$ is a semistar operation on S, and is called the d-semistar operation. For every $E \in \overline{F}(S)$, set $E^{-1} := (S : E) := \{x \in q(S) \mid x + E \subset S\}$, and set $\emptyset^{-1} = q(S)$. The mapping $E \mapsto E^{v} := (E^{-1})^{-1}$ is a semistar operation on S, and is called the v-semistar operation.

Let \star be a semistar operation on a g-monoid S, set f := f(S), g := F(S), $h := \overline{F}(S)$. Let $x \in \{f, g, h\}$, and let $E \in x$. We define that E is \star -x.y. cancellative (or, \star -x.y.), for $y \in \{f, g, h\}$, if $(E + E_1)^* \subset (E + E_2)^*$ implies $E_1^* \subset E_2^*$ for every $E_1, E_2 \in y$ (cf., M. Fontana and K.A. Loper [1, Section 2]). We define that \star is x.y. cancellative (or, x.y.), with x, $y \in \{f, g, h\}$, if E is \star -x.y. for every $E \in x$.

Let Γ be a totally ordered abelian additive group, and let v be a mapping from q(S) onto Γ . If v(a + b) = v(a) + v(b) for every $a, b \in q(S)$, then v is called a valuation. Γ is called the value group of v, and the set $V := \{a \in q(S) \mid v(a) \ge 0\}$ is called the valuation semigroup belonging to v. If $V \supset S$, then V is called a valuation oversemigroup of S.

A semistar operation \star is called a w-semistar operation if there is a set $\{V_{\lambda} \mid \lambda \in \Lambda\}$ of valuation oversemigroups of S such that $E^{\star} = \cap_{\lambda}(E+V_{\lambda})$ for every $E \in \overline{F}(S)$. If $\{V_{\lambda} \mid \lambda \in \Lambda\}$ is the set of all valuation oversemigroups of S, the w-semistar operation defined by $\{V_{\lambda} \mid \lambda \in \Lambda\}$ is called the b-semistar operation.

We will review a part of [7] for the convenience.

Remark 2.1. ([7, §5]) (1) Let \star be a semistar operation on *S*. The following conditions are equivalent: \star is h.h., \star is h.g., \star is h.f., and \star coincides with e.

- (2) h.h. implies g.h.
- g.h. implies g.g.
- g.g. implies g.f.
- g.h. implies f.h.
- g.g. implies f.g.
- g.f. implies f.f.
- f.h. implies f.g.
- f.g. implies f.f.

Proposition 2.2. $([7, \S5])$ (1) g.h. need not imply h.h.

- (2) g.f. need not imply g.g.
- (3) f.h. need not imply g.f.

3. An f.f. semistar operation which is not f.g.

Lemma 3.1. Let S be a subset of $\overline{F}(S)$ with $S \ni q(S)$ such that, for every $x \in q(S)$ and every $E \in S$, $x + E \in S$. For every $H \in \overline{F}(S)$, set $H^* := \cap \{E \in S \mid E \supset H\}$. Then the mapping $H \longmapsto H^*$ is a semistar operation on S.

The proof is similar to that of [3, (32.4) Proposition] and \star in this case is called the semistar operation defined by S.

Lemma 3.2. (cf., [6, (19.6)]) Let P be a prime ideal of S. Then there is a valuation oversemigroup V of S such that $P = M \cap S$, where M is the maximal ideal of V.

Lemma 3.3. ([5, p.163]) Every w-semistar operation on S is an f.h. semistar operation.

Let *D* be an integral domain. The semigroup ring of *S* over *D* is denoted by D[X; S]. D[X; S] is the ring of elements $\sum_{\text{finite}} a_i X^{s_i}$ for every $a_i \in D$ and $s_i \in S$. For every element $f = \sum a_i X^{t_i} \in D[X; q(S)]$ with $a_i \neq 0$ and $t_i \neq t_j$ for $i \neq j$, the fractional ideal $\cup_i (S + t_i)$ of *S* is denoted by $e_S(f)$ (or, by e(f)). *S* is canonically regarded as a subset of D[X; S]. **Lemma 3.4.** ([5, Proposition 4]) Let \star be an f.f. semistar operation on S, and set $S^D_{\star} := \{ \frac{f}{q} \mid f, g \in D[X; S] \setminus \{0\} \text{ with } e(f)^{\star} \subset e(g)^{\star} \} \cup \{0\}.$

(1) S^D_{\star} is an extension domain of D[X;S] with $q(S^D_{\star}) = q(D[X;S]); S^D_{\star} \cap q(S) = S^{\star}.$

- (2) S^D_{\star} is a Bezout domain.
- (3) For every $F \in f(S)$, $(FS^D_{\star}) \cap q(S) = F^{\star}$ and $FS^D_{\star} = F^{\star}S^D_{\star}$.

 S^D_{\star} is called the Kronecker function ring of S with respect to \star and D, and is denoted also by $\operatorname{Kr}(S, \star, D)$ (or, by $\operatorname{Kr}(S, \star)$).

Let v be a valuation on q(S). For every $f = a_1 X^{s_1} + \cdots + a_n X^{s_n} \in D[X; S] \setminus \{0\}$ with each $a_i \neq 0$ and $s_i \neq s_j$ for every $i \neq j$, we set $w(f) := \inf_i v(s_i)$. Then w is a valuation on the quotient field q(D[X; S]) of D[X; S] called the trivial extension of v to q(D[X; S]).

Let $\{X_{\lambda} \mid \lambda \in \Lambda\}$ be a set of indeterminates, and let $S[X_{\lambda} \mid \lambda \in \Lambda]$ be the polynomial semigroup of $\{X_{\lambda} \mid \lambda \in \Lambda\}$ over a g-monoid S. For every element $f = s + \sum_{\lambda} k_{\lambda} X_{\lambda} \in S[X_{\lambda} \mid \lambda \in \Lambda]$ with $s \in S$ and every $0 \leq k_{\lambda} \in \mathbb{Z}$, set w(f) := v(s). Then w is a valuation on the quotient group $q(S[X_{\lambda} \mid \lambda \in \Lambda])$ of $S[X_{\lambda} \mid \lambda \in \Lambda]$, and is called the trivial extension of v to $q(S[X_{\lambda} \mid \lambda \in \Lambda])$.

Lemma 3.5. ([5, Proposition 8]) Let \star be an f.f. semistar operation on S, and let W be a valuation overring of Kr(S, \star , D). Then the restriction V of W to q(S) is a valuation oversemigroup of S, and W is the trivial extension of V to q(D[X;S]).

Lemma 3.6. ([5, Proposition 9]) Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be a set of valuation oversemigroups of S. Let w be the w-semistar operation on S defined by the family $\{V_{\lambda} \mid \lambda \in \Lambda\}$, and let W_{λ} be the trivial extension of V_{λ} to q(D[X,S]). Then $Kr(S, w) = \cap_{\lambda} W_{\lambda}$.

Let \star be a semistar operation on S. We recall that \star is f.f. if $(F+F_1)^{\star} = (F+F_2)^{\star}$ implies $F_1^{\star} = F_2^{\star}$ for every $F, F_1, F_2 \in f(S)$, and \star is f.g. if $(F+G_1)^{\star} = (F+G_2)^{\star}$ implies $G_1^{\star} = G_2^{\star}$ for every $F \in f(S)$ and every $G_1, G_2 \in F(S)$.

Example 3.7. Let u_1, u_2, u_3, \cdots be an infinite set of indeterminates over a torsionfree abelian additive group L, let $S := L[u_1, u_2, u_3, \cdots]$ be the polynomial semigroup over L, that is, $S = \{a + k_1u_1 + k_2u_2 + \cdots + k_nu_n \mid a \in L, 0 \le k_i \in \mathbb{Z}, and$ $0 < n \in \mathbb{Z}\}$. Then S is a g-monoid, and $M := \{a + k_1u_1 + k_2u_2 + \cdots + k_nu_n \mid k_i > 0$ for some $i\}$ is the unique maximal ideal of S. Consider the following subset of $\overline{F}(S)$: $S := \{F^{\mathrm{b}}, x + M, q(S) \mid x \in q(S), F \in f(S)\}$, where b is the b -semistar operation on S. Let \star be a semistar operation on S defined by S. We claim that \star is an f.f. semistar operation which is not an f.g. semistar operation. **Proof.** Since S is integrally closed, we have $S^{\mathbf{b}} = S$ ([5, Corollary 10 (1)]). By Lemma 3.1, the set S defines a semistar operation \star on S. Lemma 3.2 implies that $P^{\mathbf{b}} = P$ for every prime ideal P of S. Let $F \in \mathbf{f}(S)$, and let $x \in \mathbf{q}(S)$ with $F \subset x + M$. Since $F^{\mathbf{b}} \subset (x + M)^{\mathbf{b}} = x + M^{\mathbf{b}} = x + M$, we have $F^{\star} = F^{\mathbf{b}}$, especially $S^{\star} = S$. Since the b-semistar operation is an f.h. semistar operation by Lemma 3.3, it follows that \star is an f.f. semistar operation.

Set $I := (u_1, u_2) = (u_1 + S) \cup (u_2 + S)$. Clearly, I is a finitely generated prime ideal of S. Hence $I^* = I^{\rm b} = I$. We prove that $(I + M)^* = I^*$. This will show that \star is not f.g., because $(I + M)^* = (I + S)^*$ but $M^* = M \neq S = S^*$. We will prove that any fractional ideal in S which contains I + M also contains I.

(1) Suppose that $I+M \subset x+M$ for some element $x \in q(S)$. Then $-x+I+M \subset M$. Set $x = a + l_1u_1 + l_2u_2 + l_3u_3 + \cdots$ with $a \in L$ and every $l_i \in \mathbb{Z}$. Since $-x + u_1 + u_3 \in -x + I + M \subset M$, we have $l_2 \leq 0$ and $l_i \leq 0$ for every $i \geq 4$. Since $-x + u_2 + u_4 \in -x + I + M \subset M$, we have $l_1 \leq 0$ and $l_3 \leq 0$. Hence $l_i \leq 0$ for every i, hence $-x \in S$. There are two possibilities.

(1a) If x is not in S, then -x is in M and so $I \subset S \subset x + M$.

(1b) If x is in S, then x + M = M, and so $I \subset x + M$.

(2) Suppose that $F \in f(S)$ is such that $I + M \subset F^{\mathrm{b}} = F^{\star}$. We extend everything to the b-Kronecker function ring of S.

We have $I\operatorname{Kr}(S, \operatorname{b})M\operatorname{Kr}(S, \operatorname{b}) \subset F^{\operatorname{b}}\operatorname{Kr}(S, \operatorname{b}) = F\operatorname{Kr}(S, \operatorname{b})$ (Lemma 3.4 (3)). Since $\operatorname{Kr}(S, \operatorname{b})$ is a Bezout domain (Lemma 3.4 (2)) and so both $I\operatorname{Kr}(S, \operatorname{b})$ and $F\operatorname{Kr}(S, \operatorname{b})$ are principal ideals. Then we have $M\operatorname{Kr}(S, \operatorname{b}) \subset F\operatorname{Kr}(S, \operatorname{b})(I\operatorname{Kr}(S, \operatorname{b}))^{-1}$, the latter fractional ideal being principal. There are two possibilities.

(2a) $\operatorname{Kr}(S, b) \subset F\operatorname{Kr}(S, b)(I\operatorname{Kr}(S, b))^{-1}$. This implies that $I\operatorname{Kr}(S, b) \subset F\operatorname{Kr}(S, b)$, which implies that $I = I^{b} \subset F^{b}$ by Lemma 3.4 (3).

(2b) $\operatorname{Kr}(S, \mathbf{b}) \not\subset F\operatorname{Kr}(S, \mathbf{b})(I\operatorname{Kr}(S, \mathbf{b}))^{-1}$. Rename the principal fractional ideal $F\operatorname{Kr}(S, \mathbf{b})(I\operatorname{Kr}(S, \mathbf{b}))^{-1}$ as J. We know that $M\operatorname{Kr}(S, \mathbf{b}) \subset J$.

If $J \subset \operatorname{Kr}(S, b)$, then we may assume that $M\operatorname{Kr}(S, b)$ is contained in a proper principal ideal of $\operatorname{Kr}(S, b)$. If $J \not\subset \operatorname{Kr}(S, b)$, then $J \cap \operatorname{Kr}(S, b) \subsetneq \operatorname{Kr}(S, b)$. Moreover, it is also finitely generated by [3, Proposition 25.4 (1)], hence principal in $\operatorname{Kr}(S, b)$.

In either case $M\mathrm{Kr}(S, \mathbf{b})$ is contained in a proper principal ideal of $\mathrm{Kr}(S, \mathbf{b})$. Assume that $\varphi \in \mathrm{Kr}(S; \mathbf{b})$ is a non-zero non-unit element such that $M\mathrm{Kr}(S, \mathbf{b}) \subset \varphi\mathrm{Kr}(S, \mathbf{b})$. We have $\varphi \in q(D[X; S_0])$, where $S_0 = L[u_1, \cdots, u_r]$ for some r. Since φ is a non-unit in $\mathrm{Kr}(S, \mathbf{b})$, there must be a valuation overring W of $\mathrm{Kr}(S, \mathbf{b})$ such that φ is a non-unit in W. By Lemma 3.5, there is a valuation oversemigroup V of S such that W is the trivial extension of V to q(D[X; S]). Let V_0 be the contraction of V to $q(S_0)$. Note that q(S) is the quotient group of the polynomial semigroup $q(S_0)[u_{r+1}, u_{r+2}, \cdots]$. Let V' be the trivial extension of V_0 to q(S), and let W' be the trivial extension of V' to q(D[X;S]). Clearly, V' is a valuation oversemigroup of S, hence $W' \supset \operatorname{Kr}(S, \operatorname{b})$. Let v (resp., w, v_0, v', w') be the valuation belonging to V (resp., W, V_0, V', W'). Since φ is a non-unit of W, we have $w(\varphi) > 0$. By the definition of W', we have $w'(\varphi) = w(\varphi) > 0$. Let i > r. By the definition of V', we have $v'(u_i) = 0$, and hence $w'(X^{u_i}) = 0$. On the other hand, $X^{u_i} \in M\operatorname{Kr}(S, \operatorname{b}) \subset \varphi\operatorname{Kr}(S, \operatorname{b}) \subset \varphi W'$, hence $w'(X^{u_i}) \geq w'(\varphi)$; a contradiction.

4. A Note on M. Fontana and K.A. Loper [1]

M. Fontana and K.A. Loper [1] studied cancellation properties in ideal systems of integral domains. In this Section, we give some semigroup versions of some propositions in [1].

Proposition 4.1. Let $F \in f(S)$ which is d-f.f., where d is the d-semistar operation on S. Then F is principal.

Proof. We may assume that I := F is an ideal of S. Suppose that I is not principal. Let M be the maximal ideal of S. If I + S = I + M, then there is a finitely generated ideal J with $J \subset M$ such that $I \subset I + J$. Then S = J; a contradiction. Hence $I + M \subsetneq I$. Choose an element $x \in I$ with $x \notin I + M$. Since I is not principal, we have $(x) \subsetneq I$. Choose an element $y \in I$ with $y \notin (x)$, and put a := x + y. Then clearly, we have $a \notin (2x)$. There is a maximal member J in the set of ideals that do not contain a, and then $2x \in J$. Since $J \not\supseteq a$, and since I is d-f.f., I + J does not contain I + a. Hence there is $b \in I$ with $b + a \notin I + J$. The case where $b \in (x)$: Then $b + a \in (y + 2x) \subset I + J$; a contradiction.

Let \star be a semistar operation on S. We set, for every $E \in \overline{F}(S)$, $E^{\star_f} := \bigcup \{F^{\star} \mid F \in f(S) \text{ with } F \subset E\}$. If $\star = \star_f$, then \star is called of finite type.

Proposition 4.2. (A semigroup version of [1, Proposition 4]) Let \star be a semistar operation on S, and let $F \in f(S)$. The following conditions are equivalent.

- (1) F is \star -f.f.
- (2) F is \star_f -f.f.
- (3) F is \star_f -f.g.
- (4) F is \star_f -f.h.

Proof. Assume that \star is f.f. of finite type. Let $F \subset (F + H)^*$ for $F \in f(S)$ and $H \in \overline{F}(S)$. We need only to prove that $0 \in H^*$. There is $F_1 \in f(S)$ with $F_1 \subset H$ such that $F \subset (F + F_1)^*$. Then $0 \in F_1^* \subset H^*$.

Let \star be a semistar operation on S. A valuation oversemigroup V of S is called a \star -valuation oversemigroup if $F^{\star} \subset F + V$ for every $F \in f(S)$, and set $E^{b(\star)} := \cap \{E + V \mid V \text{ is a }\star\text{-valuation oversemigroup of } S\}$ (cf., [1, Section 2]).

Proposition 4.3. (A semigroup version of [1, Proposition 7]) Let \star be a semistar operation on S. Consider the following five propositions.

- (1) \star is an f.f. semistar operation.
- (2) \star is an f.g. semistar operation.
- (3) \star is an f.h. semistar operation.
- (4) \star is a w-semistar operation.
- (5) $\star = \mathbf{b}(\star).$

Then $(5) \Longrightarrow (4) \Longrightarrow (3) \Longrightarrow (2) \Longrightarrow (1).$

Proof. The only implication which is not trivial is $(4) \Longrightarrow (3)$. This is proved in [5, p.163].

Example 4.4. (A semigroup version of [1, Example 14])

- (1) There is a w-semistar operation which is not of finite type.
- (2) There is a w-semistar operation \star such that $\mathbf{b}(\star) \neq \star$.

For example, let V be a valuation semigroup with maximal ideal M, set S := V, and let $\{P_{\lambda} \mid \lambda \in \Lambda\}$ be the set of prime ideals P of S with $P \subsetneq M$, and set $V_{\lambda} := S_{P_{\lambda}}$ for every λ . Assume that $M = \bigcup_{\lambda} P_{\lambda}$. Let \star be the w-semistar operation defined by the set $\{V_{\lambda} \mid \lambda \in \Lambda\}$. Then $V^{\star} = V$ and $M^{\star} = V$. We have that $\{V_{\lambda} \mid \lambda \in \Lambda\} \cup \{V\}$ is the set of \star -valuation oversemigroups of S. It follows that $b(\star) = d, b(\star) \neq \star$, and that W is not of finite type.

Example 4.5. (A semigroup version of [1, Example 15]) There is an f.h. semistar operation which is not a w-semistar operation.

For example, let V be a 1-dimensional valuation semigroup with maximal ideal M. Assume that M is not finitely generated. Let v be the v-semistar operation on V. We have $V^{v} = V$ and $M^{v} = V$. Suppose that v is a w-semistar operation. Then v is the w-semistar operation defined by the set $\{V\}$. Hence $M^{v} = M$; a contradiction. Therefore v is not a w-semistar operation. Since every $F \in f(V)$ is principal, v is an f.h. semistar operation.

Acknowledgement. The author thanks the referee for the useful suggestions and Professor Toshitaka Terasaka for his assistance.

RYÛKI MATSUDA

References

- M. Fontana and K.A. Loper, Cancellation properties in ideal systems: a classification of e.a.b. semistar operations, J. Pure Appl. Algebra, 213 (2009), 2095-2103.
- [2] M. Fontana, K.A. Loper and R. Matsuda, Cancellation properties in ideal systems: an e.a.b. not a.b. star operation, Arabian J. Sci. Eng., 35 (2010), 45-49.
- [3] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [4] R. Gilmer, Commutative Semigroup Rings, The Univ. Chicago Press, 1984.
- R. Matsuda, Kronecker function rings of semistar-operations on semigroups, Math. J. Toyama Univ., 19 (1996), 159-170.
- [6] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd. ed., Kaisei, Tokyo, 2002.
- [7] R. Matsuda, Note on g-monoids, Math. J. Ibaraki Univ., 42 (2010), 17-41.

R. Matsuda

2241-42 Hori, Mito Ibaraki 310-0903, Japan e-mail: rmazda@adagio.ocn.ne.jp