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Abstract. Let R be a ring. The ring R is called right almost nil-injective, if

for any a ∈ N(R), there exists a left ideal Xa of R such that lr(a) = Ra⊕Xa.

In this paper, we give some characterizations and properties of almost nil-

injective rings, which is a proper generalization of AP-injective ring and almost

mininjective ring. And we study the regularity of right almost nil-injective ring,

and in the same time, when every simple singular right R−module is almost

nil-injective, we also give some properties of R .
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1. Introduction

Throughout the paper, R will be an associative ring with identity and all modules

are unitary right R-modules. For a ∈ R, r(a) and l(a) denote the right annihilator

and the left annihilator of a, respectively. We write Zr(R)(Zl(R)), N(R), J(R) for

the right(left) singular ideal, the set of nilpotent elements, Jacobson radical.

Generalizations of injectivity have been discussed in many papers(see [3], [4],

[8]-[10], [11]-[14], [15]-[19]). A right R-module M is called principally injective (or

P-injective), if every R-homomorphism from a principal right ideal of R to M can

be extended to an R-homomorphism from R to M . Equivalently, lMrR(a) = Ma

for all a ∈ R. This notion was introduced by Camillo [2] for commutative rings.

In [11], Nicholson and Yousif studied the structure of principally injective rings

and gave some applications. They also continued to study rings with some other

kind of injectivity, namely, mininjective rings [12]. A ring R is called right min-

injective if kR is simple, k ∈ R, lr(k) = Rk. In [16], Jun-chao Wei and Jian-hua

Chen first introduced and characterized a left nil-injective ring, and gave many

properties. A ring R is called right nil-injective, if a ∈ N(R), lr(a) = Ra. In

[14], Page and Zhou introduced an almost principally injective (or AP-injective)
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module. Let M be a right R-module with S = End(MR). The module M is called

AP-injective, if for any a ∈ R, there exists an S-submodule Xa of M such that

lMrR(a) = Ma⊕Xa as left S-modules. They also studied right AP-injective rings

and gave some characterizations and properties which generalized results of Nichol-

son and Yousif. In [17], Wongwai introduced an almost mininjective module. Let

MR be a right R-module with S = End(MR). The module M is called almost

mininjective, if for any simple right ideal kR of R, there exists an S-submodule Xk

of M such that lMrR(k) = Mk ⊕ Xk as left S-modules. He also studied almost

mininjective rings.

In this paper, we consider rings which are more general than nil-injective rings,

an idea parallel to the notion of AP-injective rings and almost mininjective rings.

In the second section, we give some characterizations of right almost nil-injective

rings, for example: let R be a right almost nil-injective ring. (1) If kR ∼= eR with

k ∈ N(R), e2 = e, then kR = gR, for some g = g2. (2) If a ∈ N(R), and (aR)R

is projective, then aR = eR with e2 = e ∈ R. (3) P (R) ⊆ Zr(R). (4) If R is an

NI-ring, then N(R) ⊆ Zr(R). (5) If R is a 2-prime ring, then N(R) ⊆ Zr(R).

In the third section, we study regularity of right almost nil-injective rings. For

example: If R is right quasi-duo, the following conditions are equivalent for a ring R.

(1) Every right R−module is almost nil-injective. (2) Every cyclic right R−module

is almost nil-injective. (3) Every simple right R−module is almost nil-injective. (4)

Every element of N(R) is strongly regular. (5) R is n−regular.

2. Characterizations of right almost nil-injective rings

Definition 2.1. Let MR be a module with S = End(MR). The module M is called

right almost nil-injective, if for any k ∈ N(R), there exists an S-submodule Xk of

M such that lMrR(k) = Mk ⊕Xk as left S-modules. If RR is almost nil-injective,

then we call R a right almost nil-injective ring.

Example 2.2. (1) The ring Z of integers is almost nil-injective which is not AP-

injective.

(2) Let F be a field, and R =

(
F F

0 F

)
. Let 0 6= x ∈ F , and k =

(
0 x

0 0

)
. Then

kR is a simple right ideal of R, and lr(k) = R 6= Rk =

(
0 F

0 0

)
. Therefore R

is not mininjective. We have lr(k) = Rk ⊕
(

F 0

0 F

)
. Now let 0 6= x ∈ F and
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s =

(
0 0

0 x

)
. Then sR =

(
0 0

0 F

)
is a simple right ideal of R, and lr(s) = Rs⊕0.

Since kR and sR are only simple right ideals of R, then R is almost mininjective.

N(R) =

(
0 F

0 0

)
, let 0 6= u ∈ F . Then R

(
0 u

0 0

)
=

(
0 Fu

0 0

)
=

(
0 F

0 0

)
.

On the other hand, lr(

(
0 u

0 0

)
) =

(
0 F

0 F

)
6=

(
0 F

0 0

)
. Hence R is not right

nil-injective, and R is not almost nil-injective.

(3) Let R =

(
0 F

0 F

)
, where F is a field. Then N(R) =

(
0 F

0 0

)
. Let 0 6= x ∈ F ,

and k =

(
0 x

0 0

)
. lr(k) = R 6= Rk =

(
0 0

0 0

)
. Therefore R is not right nil-

injective. But lr(k) = Rk ⊕R, so R is right almost nil-injective.

Theorem 2.3. The following conditions are equivalent for a ring R.

(1) R is a right almost nil-injective ring.

(2) If a ∈ N(R), then lr(a) = Ra⊕Xa.

(3) If k ∈ N(R), a ∈ R, then l(aR ∩ r(k)) = (Xka)l + Rk with ka ∈ N(R), and

(Xka : a)l ∩ Rk ⊂ l(a) for all a ∈ R, where (Xka : a)l = {x ∈ R : xa ∈ Xka} if

ka 6= 0, and (Xka : a)l = l(aR) if ka = 0.

Proof. (1)⇔(2) is clear.

(2)⇒(3) If ka = 0, then aR ⊆ r(k), so (3) follows. If ka 6= 0, and ka ∈ N(R), then

for any x ∈ l(aR ∩ r(k)), we have r(ka) ⊆ r(xa), and so xa ∈ lr(xa) ⊆ lr(ka) =

R(ka) ⊕Xka. Write xa = rka + y, where r ∈ R, and y ∈ Xka. Then (x − rk)a =

y ∈ Xka, so x − rk ∈ (Xka : a)l. It follows that x ∈ (Xka : a)l + Rk. Conversely,

it is clear that Rk ⊆ l(aR ∩ Rk). Let y ∈ (Xka : a)l. Then ya ∈ Xka ⊆ lr(ka). If

as ∈ aR ∩ r(k), then kas = 0, and so yas = 0. Hence y ∈ l(aR ∩ r(k)). This shows

that (Xka : a)l ⊆ l(aR ∩ r(k)). If sk ∈ (Xka : a)l ∩Rk, then ska ∈ Xka ∩Rka = 0.

Hence sk ∈ l(a).

(3)⇒(2) Let a = 1. ¤

Theorem 2.4. If R is right almost nil-injective, so is eRe for all e2 = e ∈ R

satisfying ReR = R.

Proof. Write S = eRe, and let k ∈ N(S), so k ∈ N(R). By the assumption,

there exists a left ideal Xk of R such that lr(k) = Rk ⊕ Xa. It is easy to see

that elS(rS(k)) = lSrS(k), eRk = eRek and eXk is a left ideal of eRe. Then

lSrS(k) = (eRe)k ⊕ eXk. Therefore eRe is right almost nil-injective by Theorem

2.3. ¤
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Corollary 2.5. [16, Theorem 2.17] If R is right nil-injective, so is eRe for all

e2 = e ∈ R satisfying ReR = R.

Theorem 2.6. Let R be a right almost nil-injective ring. Then R is right almost

mininjective.

Proof. Assume kR is any minimal right ideal of R. If (kR)2 = 0, then k ∈ N(R).

By hypothesis and Theorem 2.3, lr(k) = Rk ⊕ Xa, where Xa is a left ideal of R,

we are done. If (kR)2 6= 0, then kR = eR, e2 = e ∈ R. Write e = kc, c ∈ R.

Then k = ek = kck. Set g = ck. then g2 = g, k = kg, and Rg = Rk. Hence

r(g) = r(k). Hence Rk = Rg = lr(g) = lr(k). Therefore R is a right almost

mininjective ring. ¤

Remark 2.7. We have {right AP-injective rings} ⊂ {right almost nil-injective

rings} ⊂ {right almost mininjective rings}.
Theorem 2.8. Let R be a right almost nil-injective ring. If kR ∼= eR with k ∈
N(R), e2 = e, then kR = gR, for some g = g2.

Proof. Let kR ∼= eR with k ∈ N(R), e2 = e. By [17, Theorem 3.2], there exists

an idempotent f ∈ R such that kf = k and r(k) = r(f). Then f ∈ lr(f) = lr(k) =

Rk ⊕Xk, where Xk is a left ideal of R. Write f = rk + x, where r ∈ R, x ∈ Xk.

Then rk = rkf = rkrk + rkx, and so rk− rkrk = rkx ∈ Rk ∩Xk = 0. Set g = rk,

we see that g2 = g. Since k = kf = krk + kx, k − krk = kx ∈ Rk ∩ Xk = 0,

and hence k = kg. It follows that Rg = Rk, and Rg is a direct summand of Rf ,

so Rk is a direct summand of Rf . Then Rf = Rk ⊕ Y for some left ideal Y of

R, and f = sk + y, where s ∈ R, y ∈ Y . Thus k = kf = ksk + ky, and hence

k − ksk = ky ∈ Rk ∩ Y = 0. Then kR = ksR and ks = (ks)2. ¤

Corollary 2.9. Let R be a right nil-injective ring. If kR ∼= eR with k ∈ N(R),

e2 = e, then kR = gR for some g = g2.

Lemma 2.10. Suppose M is a right R−module with S = End(MR). If lMrR(a) =

Ma ⊕ Xa, where Xa is a left S−submodule of MR. Set f : aR → M a right

R-homomorphism, then f(a) = ma + x with m ∈ M , x ∈ Xa.

Proof. Since f(a)rR(a) = f(arR(a)) = f(0) = 0, then rR(a) ⊆ rR(f(a)), thus

lMrR(f(a)) ⊆ lMrR(a) = Ma⊕Xa, and f(a) ∈ lMrR(f(a)), hence f(a) = ma + x

with m ∈ MR, x ∈ Xa. ¤

A ring R is said to be NI (see [16]), if N(R) forms an ideal of R. A ring R is

said to be 2-prime if N(R) = P (R), where P (R) is the prime radical of R. A ring

R is called reduced if N(R) = 0.
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Theorem 2.11. Let R be a right almost nil-injective ring. Then the following

statements hold.

(1) If a ∈ N(R), and (aR)R is projective, then aR = eR with e2 = e ∈ R.

(2) P (R) ⊆ Zr(R).

(3) If R is an NI-ring, then N(R) ⊆ Zr(R).

(4) If R is a 2-prime ring, then N(R) ⊆ Zr(R).

Proof. (1) Since (aR)R is projective, r(a) = gR, g2 = g ∈ R. By hypothesis and

Theorem 2.3, R(1 − g) = l(gR) = lr(a) = Ra ⊕Xa. Write 1 − g = ca + x, where

c ∈ R, x ∈ Xa. Then a = a(1 − g) = aca + ax, a − aca = ax ∈ Ra ∩Xa = 0, so

a = aca. Let e = ac, then a = ea, e2 = e, and aR = eR.

(2) If b ∈ P (R) and b /∈ Zr(R), then there exists a nonzero right ideal I of R such

that I ∩ r(b) = 0. Let 0 6= c ∈ I. Then bc 6= 0, and bc ∈ P (R) ⊆ N(R), so lr(bc) =

Rbc⊕Xbc, where Xbc is a left ideal of R. Set f : bcR → R via bcr 7→ cr, r ∈ R. Then

f is a well-defined right R-homomorphism. Thus c = f(bc) = ubc + x by Lemma

2.10, where u ∈ R, x ∈ Xbc, and so bc = bubc+bx, (1−bu)bc = bx ∈ Rbc∩Xbc = 0,

i.e. (1 − bu)bc = 0, but 1 − bu is invertible, thus bc = 0, a contradiction. Hence

b ∈ Zr(R), and so P (R) ⊆ Zr(R).

(3) The proof is similar to that of (2).

(4) Follows by (3). ¤

Corollary 2.12. [16, Corollary 2.7] Let R be a right nil-injective ring. Then the

following statements hold.

(1) If a ∈ N(R), and (aR)R is projective, then aR = eR with e2 = e ∈ R.

(2) P (R) ⊆ Zr(R).

(3) If R is an NI-ring, then N(R) ⊆ Zr(R).

(4) If R is a 2-prime ring, then N(R) ⊆ Zr(R).

3. Regularity of right almost nil-injective rings

Call a ring R n-regular if a ∈ aRa for all a ∈ N(R)(see [16]). A ring R is said to

be left NPP if RRa is projective for all a ∈ N(R), right NPP ring can be defined

similarly. By [1, Exercise 15.12], every n-regular ring is left NPP and right NPP.

Theorem 3.1. The following conditions are equivalent for a ring R.

(1) R is n-regular.

(2) R is a right almost nil-injective right NPP ring.

Proof. (1)⇒(2) is clear by [16, Theorem 2.18].

(2)⇒(1) Suppose that a ∈ N(R). By Theorem 2.3, lr(a) = Ra⊕Xa. Since R is a
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right NPP ring, r(a) = (1 − e)R, e2 = e ∈ R. Therefore Re = lr(a), e = ra + x,

where r ∈ R, x ∈ Xa. So a = ae = ara + ax, (1 − ar)a = ax ∈ Ra ∩Xa = 0, and

a = ara. Hence R is n-regular. ¤

Recall a ring R is said to be a Baer ring, if for any nonempty subset X ⊆ R,

r(X) is generated by an idempotent.

Theorem 3.2. Let R be a Baer ring. Then R is right almost nil-injective if and

only if R is n-regular.

Proof. (⇒) For any 0 6= a ∈ N(R), then lr(a) = Ra⊕Xa. Since r(a) is nonempty,

r(a) = Re, e2 = e ∈ R by the assumption, lr(a) = (1 − e)R = Ra ⊕ Xa, thus

there exists r ∈ R, x ∈ Xa such that 1 − e = ra + x, a = a(1 − e) = ara + ax,

(1− ar)a = ax ∈ Ra ∩Xa = 0, a = ara, and so R is n-regular.

(⇐) By [16, Theorem 2.18]. ¤

Corollary 3.3. Let R be a Baer ring. Then R is right nil-injective if and only if

R is n-regular.

Proof. By Theorem 3.2 and [16, Theorem 2.18]. ¤

Theorem 3.4. Let R be a right nonsingular, right almost nil-injective ring, and

l(I∩K) = l(I)+ l(K) for each pair right ideals I and K of R. Then R is n-regular.

Proof. For any 0 6= a ∈ N(R), there exists a left ideal Xa of R such that lr(a) =

Ra ⊕ Xa. r(a) is not essential in R since R is right nonsingular. So there exists

a right ideal K 6= 0, such that r(a) ⊕ L is essential in R. By the assumption,

l(r(a)) + l(L) = l(r(a) ∩ L) = R, and lr(a) ∩ l(L) ⊆ l(r(a) + L). For any x ∈
l(r(a) + L), then x(r(a) + L) = 0, i.e. r(a) + L ⊆ r(x) ⊆ R, thus r(x) is essential

in R, then r(x) = 0 since R is nonsingular. Hence lr(a) ∩ l(L) ⊆ l(r(a) + L) = 0.

Thus R = l(r(a) ⊕ l(L) = Ra⊕Xa ⊕ l(L), let Ra = Re, e2 = e ∈ R, then e = ra,

r ∈ R, and a = ae = ara, so R is n-regular. ¤

Corollary 3.5. Let R be a right nonsingular, right nil-injective ring, and l(I∩K) =

l(I) + l(K) for each pair right ideals I and K of R. Then R is n-regular.

A ring R is called an ERT ring, if every essential right ideal of R is a two-sided

ideal.

Corollary 3.6. Suppose R is a semiprime ERT ring, right almost nil-injective

ring, and l(I ∩K) = l(I) + l(K) for each pair right ideals I and K of R. Then R

is n-regular.
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Theorem 3.7. If R is a left nonsingular, right almost nil-injective ring, then the

center C(R) of R is n−regular.

Proof. Since R is left nonsingular, then there exists a left maximal quotient ring

S of R such that it is regular (see [5, Corollary 2.31]), then C(S) is also regular

(see [6, Theorem 1.14]). For any a ∈ N(C(R)) ⊆ N(C(S)), there exists s ∈ C(S)

such that a = asa = sa2 = a2s, thus r(a) = r(a2), l(a) = l(a2). So Ra ⊕ Xa =

lr(a) = lr(a2) = Ra2⊕Xa2 , Xa, Xa2 ⊆R R. Then there exists r ∈ R, x ∈ Xa2 such

that a = ra2 + x, a2 = ara2 + ax, ax = (1 − ar)a2 ∈ Ra2 ∩Xa2 = 0, a2 = ara2,

(1 − ar) ∈ l(a2) = l(a), 0 = (1 − ar)a = a − ara, a = ara = a2r. Let u = ar2,

then a = a2r = a(a2r)r = a2ar2 = a2u. For any x ∈ R, a2(xu − ux) = 0, so

xu−ux ∈ r(a2) = r(a), 0 = a(xu−ux) = a2(xr2−r2x), (xr2−r2x) ∈ r(a2) = r(a),

0 = a(xr2−r2x) = xar2−ar2x = xu−ux. Thus xu = ux, u ∈ C(R), and a = aua,

so C(R) is n-regular. ¤

Theorem 3.8. If every ring homomorphism image of R is almost nil-injective as

a right R-module, then the center C(R) of R is n-regular.

Proof. Let a ∈ N(C(R)), then r(a) is a two-sided ideal. Thus R/r(a) is an almost

nil-injective right R-module. Let f : aR → R/r(a) be defined by f(as) = s + r(a).

Then f is a well-defined R-homomorphism. Write R/r(a) = M , since R/r(a) is

almost nil-injective, lMrR(a) = Ma ⊕Xa, where Xa is a left S−submodule of M .

By Lemma 2.10, there exists b, x ∈ R such that 1+r(a) = f(a) = ba+r(a)+x+r(a).

Thus 1−ba+r(a) = x+r(a) ∈ M∩Xa = 0, 1−ba ∈ r(a); whence a−aba ∈ ar(a) = 0,

and so a = aba for some b ∈ R. Now it is well known that there exists c ∈ C(R)

such that a = aca. Therefore C(R) is n-regular. ¤

Corollary 3.9. If every ring homomorphism image of R is nil-injective as a right

R-module, then the center C(R) of R is n-regular.

Theorem 3.10. If R is right quasi-duo, the following conditions are equivalent for

a ring R.

(1) Every right R−module is almost nil-injective.

(2) Every cyclic right R−module is almost nil-injective.

(3) Every simple right R−module is almost nil-injective.

(4) Every element of N(R) is strongly regular.

(5) R is n−regular.

Proof. Obviously (1)⇒ (2)⇒ (3) and (4)⇒ (5). And by [16, Theorem 2.18], (5)

implies (1). Thus it remains to prove that (3) implies (4). For any 0 6= a ∈
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N(R), we will show that aR + r(a) = R. Suppose not. Then there exists a

maximal right ideal K of R containing aR+r(a). Since R/K is almost nil-injective,

lR/KrR(a) = (R/K)a + Xa, Xa ≤ R/K. Let f : aR → R/K be defined by

f(ar) = r + K. Since aR + r(a) ⊆ K, f is a well-defined R−homomorphism. Thus

there exists c ∈ R, x ∈ Xa such that 1 + K = ca + K + x by Lemma 2.10, then

1−ca+K = x ∈ R/K∩Xa = 0, 1−ca ∈ K, and ca ∈ K since R is right quasi-duo,

and so 1 ∈ K, which is a contradiction. Therefore aR+r(a) = R. So a is a strongly

regular element. ¤

Corollary 3.11. If R is right quasi-duo, the following conditions are equivalent

for a ring R.

(1) Every right R−module is nil-injective.

(2) Every cyclic right R−module is nil-injective.

(3) Every simple right R−module is nil-injective.

(4) Every element of N(R) is strongly regular.

(5) R is n−regular.

Recall that a ring R is called right weakly continuous [13], if J(R) = Zr(R),

R/J(R) is regular and idempotents can be lifted modulo J(R). A ring R is called

MERT, if every maximal essential right ideal is a two-sided ideal.

Lemma 3.12. [18, Lemma 2.1] If Zr(R) contains no nonzero nilpotent element,

then Zr(R) = 0.

Theorem 3.13. Suppose R is an MERT ring, the following statements are equiv-

alent.

(1) R is von Neumann regular.

(2) R is a right weakly continuous ring whose every simple singular right R−module

is almost nil-injective.

Proof. (1) ⇒(2) Observe that if R is von Neumann regular, then every right

R−module is almost nil-injective by Lemma 3.10. So we are done.

(2) ⇒(1) Suppose that Zr(R) 6= 0. Then by Lemma 3.12, there exists a nonzero

nilpotent element a ∈ Zr(R). Claim that Zr(R) + r(a) = R. If not, there exists

a maximal essential right ideal M containing Zr(R) + r(a). Thus R/M is almost

nil-injective, and lR/MrR(a) = (R/M)a⊕Xa, Xa ≤ R/M . Let f : aR → R/M be

defined by f(ar) = r + M . Then f is a well-defined R−homomorphism. So there

exists r ∈ R, x ∈ Xa such that 1+M = ra+M+x, 1−ra+M = x ∈ R/M∩Xa = 0.

Hence 1 − ra ∈ M . Since R is an MERT ring, ra ∈ M , then 1 ∈ M , which is a
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contradiction. Therefore Zr(R) + r(a) = R. Hence we can write 1 = c + d for some

c ∈ Zr(R), d ∈ r(a). Thus a = ac, a(1 − c) = 0. Since c ∈ Zr(R) = J(R), 1− c is

invertible. Thus a = 0, which is also a contradiction. Therefore Zr(R) = 0. ¤

Recall a ring R is a ZI ring (see [7]), if for a, b ∈ R, ab = 0 implies aRb = 0.

Every idempotent in ZI rings is central.

Theorem 3.14. Let R be a ZI ring. If every simple singular right (or left)

R−module is almost nil-injective, then R is reduced, and RbR + r(b) = R for

any b ∈ N(R).

Proof. Let a2 = 0. Suppose a 6= 0. Then there exists a maximal right ideal

M of R containing r(a). By the proof of [7, Lemma 3], M is an essential right

ideal of R. Thus R/M is almost nil-injective, and lR/MrR(a) = (R/M)a ⊕ Xa,

Xa ≤ R/M . Let f : aR → R/M be defined by f(ar) = r + M . Note that f is a

well-defined R−homomorphism. Then 1+M = f(a) = ca+M +x, c ∈ R, x ∈ Xa,

1− ca+M = x ∈ R/M ∩Xa = 0, 1− ca ∈ M . Since R is a ZI ring, ca ∈ r(a), then

1 ∈ M , which is a contradiction. Therefore a = 0, and R is reduced.

Suppose that there exists c ∈ R such that RcR + r(c) 6= R, then there exists a

maximal right ideal M of R containing RbR+r(b). By the proof of [7, Lemma 3], M

is an essential right ideal of R. Thus R/M is almost nil-injective, and lR/MrR(b) =

(R/M)b⊕Xb, Xb ≤ R/M . Let f : bR → R/M be defined by f(br) = r + M . Note

that f is a well-defined R−homomorphism. Then 1 + M = f(b) = db + M + x,

c ∈ R, x ∈ Xb, 1− db + M = x ∈ R/M ∩Xb = 0, 1− db ∈ M , db ∈ M , so 1 ∈ M ,

which is a contradiction. Therefore RbR + r(b) = R for any b ∈ N(R). ¤

Lemma 3.15. If R is a ring whose every simple singular right R−module is almost

nil-injective, then J(R) ∩ Z(R) contains no nonzero nilpotent elements.

Proof. Take any b ∈ J(R) ∩ Z(R) with b2 = 0. If b 6= 0, then RbR + r(b) is an

essential right ideal of R. Thus RbR + r(b) = R by the proof of Theorem 3.14,

hence b = db for some d ∈ RbR ⊆ J(R), (1 − d)b = 0. Since d ∈ J(R), 1 − d is

invertible. This implies b = 0, which is a required contradiction. ¤

Theorem 3.16. If R is a ring whose every simple singular right R−module is

almost nil-injective, then J(R) ∩ Z(R) = 0.

Proof. Suppose J(R)∩Z(R) 6= 0, then there exists 0 6= b ∈ J(R)∩Z(R) such that

b2 = 0. We will prove RbR + r(b) = R. If not, as the proof in Lemma 3.15, there is

a maximal essential right ideal M of R containing RbR+r(b). Thus R/M is almost
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nil-injective, and lR/MrR(b) = (R/M)b ⊕Xb, Xb ≤ R/M . Let f : bR → R/M be

defined f(br) = r+M . Note that f is well-defined. Thus 1+M = f(b) = cb+M+x,

c ∈ R, x ∈ Xb, 1 − cb + M = x ∈ R/M ∩ Xb = 0, cb ∈ RbR ⊆ M , so 1 ∈ M ,

which is a contradiction. This prove RbR + r(b) = R, and hence b = db for some

d ∈ RbR ⊆ J(R). This implies b = 0, which is a required contradiction. ¤
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