INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA VOLUME 7 (2010) 1-11

DIVISION Z₃-ALGEBRAS

Ameer Jaber

Received: 23 September 2008; Revised: 06 August 2009 Communicated by Abdullah Harmancı

ABSTRACT. Our main purpose is to classify the finite dimensional central simple associative division \mathbb{Z}_3 -algebras over a field K of characteristic 0, and then study the existence of \mathbb{Z}_3 -involutions on \mathbb{Z}_3 -algebra $\mathcal{A} = M_{p+q+p}(\mathcal{D})$, where \mathcal{D} is a central division algebra over a field K of characteristic 0 and p, q > 0.

Mathematics Subject Classification (2000): 16W10

Keywords: division \mathbb{Z}_3 -algebras, central simple \mathbb{Z}_3 -algebras, \mathbb{Z}_3 -involutions.

1. Introduction

An associative \mathbb{Z}_n -ring $R = \bigoplus_{i=0}^{n-1} R_i$ is nothing but a $(\mathbb{Z}/n\mathbb{Z})$ -graded associative ring. A $(\mathbb{Z}/n\mathbb{Z})$ -graded ideal $I = \bigoplus_{i=0}^{n-1} I_i$ of an associative \mathbb{Z}_n -ring R is called a \mathbb{Z}_n -ideal of R. An associative \mathbb{Z}_n -ring R is simple if it has no non-trivial \mathbb{Z}_n -ideals. Let R be an associative \mathbb{Z}_n -ring with $1 \in R_0$, then R is said to be a division \mathbb{Z}_n -ring if all nonzero homogeneous elements are invertible, i.e., every $0 \neq r_\alpha \in R_\alpha$ has an inverse r_α^{-1} , necessarily in $R_{n-\alpha}$.

Let K be a field of characteristic 0 (not necessarily algebraically closed). An associative $(\mathbb{Z}/n\mathbb{Z})$ -graded K-algebra $\mathcal{A} = \bigoplus_{i=0}^{n-1} \mathcal{A}_i$ is a finite dimensional central simple \mathbb{Z}_n -algebra over a field K, if $Z(\mathcal{A}) \cap \mathcal{A}_0 = K$, where $Z(\mathcal{A}) = \{a \in \mathcal{A} \mid ab = ba \forall b \in \mathcal{A}\}$ is the center of \mathcal{A} , and the only \mathbb{Z}_n -ideals of \mathcal{A} are (0) and \mathcal{A} itself. An associative $(\mathbb{Z}/2\mathbb{Z})$ -graded K-algebra \mathcal{A} is called associative superalgebra (see [3,1,5]).

2. Examples of \mathbb{Z}_n -algebras

Example 2.1. Let $\mathcal{A} = K(\sqrt[n]{a})$ be an algebraic field extension of the field K of degree n, that is $[\mathcal{A} : K] = n$. We can make \mathcal{A} into a \mathbb{Z}_n -algebra by setting

 $\mathcal{A}_0 = K, \ \mathcal{A}_1 = K, \sqrt[n]{a}, \ \dots, \ \mathcal{A}_i = K, \sqrt[n]{a^i}, \ \dots, \ \mathcal{A}_{n-1} = K, \sqrt[n]{a^{n-1}}.$

Note that \mathcal{A} is a central simple \mathbb{Z}_n -algebra, since \mathcal{A} is a field and $\mathcal{A} \cap \mathcal{A}_0 = K$.

Example 2.2. Let ω be a fixed primitive *n*-th root of unity. For $a, b \in K^{\times}$, let $\mathcal{A} = \langle a, b \rangle_{\omega}$ be the *K*-algebra which is generated by $\{i, j\}$ which satisfy $\{i^n = a, j^n = b, ij = \omega ji\}$. Then \mathcal{A} is a vector space over *K* with basis $\{i^r j^s : 0 \leq r, s < n\}$. So \mathcal{A} has dimension n^2 as a *K*-algebra. (See [4, Section 15.4] and [2, Exercise 4.28]). This is a generalization of the quaternion algebras. We can make \mathcal{A} into \mathbb{Z}_n -algebra by setting $\mathcal{A}_l = \langle i^k j^m : k + m \equiv l \pmod{n} >_K$.

Example 2.3. A \mathbb{Z}_n -space over a field K is a left K-vector space V which is \mathbb{Z}_n -graded $V = \bigoplus_{i=0}^{n-1} V_i$. The associative algebra $\operatorname{End}_K V = \bigoplus_{i=0}^{n-1} \operatorname{End}_i V$, where $\operatorname{End}_i V := \{a \in \operatorname{End}_K V : v_j a \in V_{i+j}\},$

is an associative \mathbb{Z}_n -algebra.

Example 2.4. Let $\mathcal{D} = \bigoplus_{i=0}^{n-1} \mathcal{D}_i$ be a \mathbb{Z}_n -division algebra then $\mathcal{A} = M_k(\mathcal{D})$ can be made into \mathbb{Z}_n -algebra by setting

$$\mathcal{A}_0 = M_k(\mathcal{D}_0), \ \mathcal{A}_1 = M_k(\mathcal{D}_1), \dots, \ \mathcal{A}_{n-1} = M_k(\mathcal{D}_{n-1})$$

Example 2.5. Let \mathcal{D} be a central division algebra over a field K and let $\mathcal{A} = M_3(\mathcal{D})$. If $\mathcal{A}_0 = \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix}$, $\mathcal{A}_1 = \begin{pmatrix} 0 & 0 & * \\ * & 0 & 0 \\ 0 & * & 0 \end{pmatrix}$, $\mathcal{A}_2 = \begin{pmatrix} 0 & * & 0 \\ 0 & 0 & * \\ * & 0 & 0 \end{pmatrix}$. Then \mathcal{A} is a \mathbb{Z}_3 -algebra written by $\mathcal{A} = M_{1+1+1}(\mathcal{D})$.

Theorem 2.6. Let \mathcal{D} be a central division algebra over a field K and let $\mathcal{A} = M_n(\mathcal{D})$, then \mathcal{A} can be made into \mathbb{Z}_n -algebra by setting

$$\mathcal{A}_{0} = \begin{bmatrix} * & & & \\ & \ddots & & \\ & & & * \end{bmatrix}, \ \mathcal{A}_{1} = \begin{bmatrix} 0 & \cdots & \cdots & 0 & * \\ * & 0 & \cdots & \cdots & 0 \\ 0 & * & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & * & 0 \end{bmatrix}, \\ \mathcal{A}_{2} = \begin{bmatrix} 0 & \cdots & \cdots & 0 & * & 0 \\ 0 & 0 & \cdots & \cdots & 0 & * \\ * & 0 & 0 & \cdots & \cdots & 0 \\ 0 & * & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & * & 0 & 0 \end{bmatrix}, \dots, \ \mathcal{A}_{n-1} = \begin{bmatrix} 0 & * & 0 & \cdots & 0 \\ \vdots & 0 & * & \cdots & 0 \\ 0 & \vdots & \vdots & \ddots & * \\ * & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Proof. Note that $\mathcal{A} = \bigoplus_{i=0}^{n-1} \mathcal{A}_i$ and $\mathcal{A}_1^2 \subseteq \mathcal{A}_2$, $\mathcal{A}_1^3 \subseteq \mathcal{A}_3$, ..., $\mathcal{A}_1^{n-1} \subseteq \mathcal{A}_{n-1}$, $\mathcal{A}_1^n \subseteq \mathcal{A}_0$. Therefore $\mathcal{A}_i \mathcal{A}_j \subseteq \mathcal{A}_{i+j}$ where the subscripts are taken modulo n. \Box

In the next theorem we will show that any matrix $\mathcal{A} = M_n(\mathcal{D})$, where \mathcal{D} is a division algebra, and where n = p + q + r such that p, q, r > 0, can be made into \mathbb{Z}_3 -algebra.

Theorem 2.7. Let \mathcal{D} be a division algebra and let $\mathcal{A} = M_n(\mathcal{D})$ where n = p + q + rsuch that p, q, r > 0. If $\mathcal{A}_0 = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$, $\mathcal{A}_1 = \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ 0 & y & 0 \end{pmatrix}$, $\mathcal{A}_2 = \begin{pmatrix} 0 & f & 0 \\ 0 & 0 & g \\ h & 0 & 0 \end{pmatrix}$ where $a \in M_p(\mathcal{D}), b \in M_q(\mathcal{D}), c \in M_r(\mathcal{D}), z \in M_{p \times r}(\mathcal{D}), x \in M_{q \times p}(\mathcal{D}), y \in M_{r \times q}(\mathcal{D}), f \in M_{p \times q}(\mathcal{D}), g \in M_{q \times r}(\mathcal{D}), h \in M_{r \times p}(\mathcal{D}), then \mathcal{A} is a \mathbb{Z}_3$ -algebra written by $\mathcal{A} = M_{p+q+r}(\mathcal{D}).$

Proof. Note that $\mathcal{A} = \bigoplus_{i=0}^{2} \mathcal{A}_{i}$, and $\mathcal{A}_{i}\mathcal{A}_{j} \subseteq \mathcal{A}_{i+j}$ where the subscripts are taken modulo 3. Therefore $\mathcal{A} = M_{p+q+r}(\mathcal{D})$ is a \mathbb{Z}_{3} -algebra.

Definition 2.8. Let $\mathcal{A} = \bigoplus_{i=0}^{2} \mathcal{A}_{i}$ be a \mathbb{Z}_{3} -algebra, then the \mathbb{Z}_{3} -additive map $\sigma : \mathcal{A} \to \mathcal{A}$ such that for $a_{i} \in \mathcal{A}_{i}$, $b_{j} \in \mathcal{A}_{j}$ and $r \equiv ij \mod 3$

$$\sigma(a_i b_j) = (-1)^r \sigma(b_j) \sigma(a_i)$$

is called a \mathbb{Z}_3 -antiautomorphism on \mathcal{A} .

Definition 2.9. A \mathbb{Z}_3 -involution on a \mathbb{Z}_3 -algebra \mathcal{A} is a \mathbb{Z}_3 -antiautomorphism on \mathcal{A} of order 2.

Let $V = \bigoplus_{i=0}^{n-1} V_i$ be a left \mathbb{Z}_n -space over a field K. A symmetric \mathbb{Z}_n -form on V is a \mathbb{Z}_n -bilinear form

$$(,)$$
 : $V \times V \to K$, $V = V_0 \perp V_1 \perp \ldots \perp V_{n-1}$,

which is symmetric on V_{2r} and skew-symmetric on V_{2r+1} . The symmetric \mathbb{Z}_n -form (,) on V is nondegenerate if

$$(v_i, V) = \{0\} \Rightarrow v_i = 0 \text{ and } (V, v_i) = \{0\} \Rightarrow v_i = 0.$$

Theorem 2.10. A nondegenerate symmetric \mathbb{Z}_3 -form (,) on a finite dimensional \mathbb{Z}_3 -space V over a field K, induces a \mathbb{Z}_3 -involution * on $\operatorname{End}_K V$ via

$$(v_i a_k, v_j) = (-1)^{kj} (v_i, v_j a_k^*) \ \forall v_i, v_j \in V.$$

Proof. Let $a_{\alpha}, b_{\beta} \in \text{End}_{K}V$, then

$$\begin{aligned} (v_i a_{\alpha} b_{\beta}, v_j) &= (-1)^{(\alpha+\beta)j} (v_i, v_j (a_{\alpha} b_{\beta})^*) \\ &= (-1)^{\beta j} (v_i a_{\alpha}, v_j b_{\beta}^*) \\ &= (-1)^{\alpha(\beta+j)} (-1)^{\beta j} (v_i, v_j b_{\beta}^* a_{\alpha}^*). \end{aligned}$$

AMEER JABER

Which implies that $(-1)^{(\alpha+\beta)j}(v_i, v_j(a_{\alpha}b_{\beta})^*) = (-1)^{\alpha(\beta+j)}(-1)^{\beta j}(v_i, v_jb_{\beta}^*a_{\alpha}^*)$. We will show that

$$\alpha(\beta+j) \mod 3 + \beta j \mod 3 = (\alpha+\beta)j \mod 3 + \alpha\beta \mod 3 \quad (1)$$

case by case on α .

If $\alpha = 0$, then (1) becomes $\beta j \mod 3 = \beta j \mod 3$. If $\alpha = 1$, then (1) becomes

$$(\beta + j) \mod 3 + \beta j \mod 3 = (1 + \beta)j \mod 3 + \beta \mod 3$$
 (2)

we show that (2) is true case by case on j.

If j = 0, then (2) becomes $\beta \mod 3 = \beta \mod 3$.

If j = 1, then (2) becomes $(\beta + 1) \mod 3 + \beta \mod 3 = (\beta + 1) \mod 3 + \beta \mod 3$. If j = 2, then (2) becomes

$$(\beta+2) \mod 3 + 2\beta \mod 3 = (2+2\beta) \mod 3 + \beta \mod 3 \tag{3}$$

and we will show that (3) is true case by case on β .

If $\beta = 0$, then (3) becomes 2 mod $3 = 2 \mod 3$. If $\beta = 1$, then (3) becomes 2 mod $3 = 1 \mod 3 + 1 \mod 3$. If $\beta = 2$, then (3) becomes 1 mod $3 + 1 \mod 3 = 2 \mod 3$. If $\alpha = 2$, then (1) becomes

 $2(\beta+j) \mod 3 + \beta j \mod 3 = (2+\beta)j \mod 3 + 2\beta \mod 3$ (4)

and we will show that (4) is true case by case on j. If j = 0, then (4) becomes $2\beta \mod 3 = 2\beta \mod 3$. If j = 2, then (4) becomes $2(\beta + 2) \mod 3 + 2\beta \mod 3 = 2(\beta + 2) \mod 3 + 2\beta \mod 3$.

If j = 1, then (4) becomes

$$2(\beta+1) \mod 3+\beta \mod 3 = (2+\beta) \mod 3+2\beta \mod 3 \tag{5}$$

and we will show that (5) is true case by case on β .

If $\beta = 0$, then (5) becomes 2 mod $3 = 2 \mod 3$.

If $\beta = 1$, then (5) becomes 1 mod $3 + 1 \mod 3 = 2 \mod 3$.

If $\beta = 2$, then (5) becomes 2 mod $3 = 1 \mod 3 + 1 \mod 3$.

Therefore, in all cases we have

$$(-1)^{(\alpha+\beta)j}(v_i, v_j(a_{\alpha}b_{\beta})^*) = (-1)^{\alpha(\beta+j)}(-1)^{\beta j}(v_i, v_jb_{\beta}^*a_{\alpha}^*)$$

= $(-1)^{(\alpha+\beta)j}(-1)^{\alpha\beta}(v_i, v_jb_{\beta}^*a_{\alpha}^*),$

which implies that $(v_i, v_j(a_\alpha b_\beta)^*) = (-1)^{\alpha\beta}(v_i, v_j b_\beta^* a_\alpha^*)$, for all $v_i \in V_i$, and hence

$$(v_i, v_j(a_\alpha b_\beta)^* - (-1)^{\alpha\beta} v_j b_\beta^* a_\alpha^*) = 0 \quad \forall v_i \in V_i$$

and because of the nondegenerancy of the \mathbb{Z}_3 -form (,) on V, we have

$$v_j(a_\alpha b_\beta)^* = (-1)^{\alpha\beta} v_j b_\beta^* a_\alpha^*.$$

3. Division \mathbb{Z}_3 -algebras

We start this section by proving a structure theorem on \mathbb{Z}_3 -division algebras which is a restate of Division Superalgebra Theorem, see [5, P. 438], but first we need the following lemma. The proof of this lemma is exactly the same as the proof of [6, Lemmata 3,5].

Lemma 3.1. If $\mathcal{A} = \mathcal{A}_0 + \mathcal{A}_1 + \mathcal{A}_2$ is a central simple unital \mathbb{Z}_3 -algebra over K then either \mathcal{A} is simple as an algebra or \mathcal{A}_0 is simple and $\mathcal{A}_1 = \mathcal{A}_0 u$ and $\mathcal{A}_2 = \mathcal{A}_0 u^2$, with $u \in Z(\mathcal{A}) \cap \mathcal{A}_1$ and $u^3 = 1$.

Theorem 3.2 (Division \mathbb{Z}_3 -algebra Theorem). If $\mathcal{D} = \mathcal{D}_0 + \mathcal{D}_1 + \mathcal{D}_2$ is a finite dimensional central division \mathbb{Z}_3 -algebra over the field K of characteristic 0, then exactly one of the following holds where throughout C denotes a central division algebra over K and $\omega \in K$ denotes a primitive third root of unity.

(i) $\mathcal{D} = \mathcal{D}_0 = \mathcal{C}$, *i.e.*, $\mathcal{D}_1 = \{0\}$, $\mathcal{D}_2 = \{0\}$. (ii) $\mathcal{D} = \mathcal{C} \otimes_K K[u]$, $u^3 = \lambda \in K^{\times}$, $\mathcal{D}_0 = \mathcal{C} \otimes_K K$, $\mathcal{D}_1 = \mathcal{C} \otimes_K Ku$, $\mathcal{D}_2 = \mathcal{C} \otimes_K Ku^2$. (iii) $\mathcal{D} = \mathcal{C}$, $\mathcal{D}_0 = C_{\mathcal{D}}(u)$, the centralizer of u in \mathcal{C} ,

$$\mathcal{D}_1 = \{ c \in \mathcal{D} : cu = \sigma(u)c \},\$$
$$\mathcal{D}_2 = \{ c \in \mathcal{D} : cu = \sigma^2(u)c \},\$$

for some Galois extension $K[u] \subset \mathcal{C}$ of order 3 with Galois automorphism σ . (iv) $\mathcal{D} = M_3(\mathcal{C}) = \mathcal{C} \otimes_K M_3(K)$, $\mathcal{D}_0 = \mathcal{C} \otimes_K K[u], \ \mathcal{D}_1 = \mathcal{C} \otimes_K K[u]W_1, \ \mathcal{D}_2 = \mathcal{C} \otimes_K K[u]W_1^{-1}$,

 $\mathcal{D}_0 = \mathcal{C} \otimes_K K[u], \ \mathcal{D}_1 = \mathcal{C} \otimes_K K[u] W_1, \ \mathcal{D}_2 = \mathcal{C} \otimes_K K[u] W_1^{-1},$ $where \ u = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \lambda & 0 & 0 \end{pmatrix}, \ W_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \ W_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} \in M_3(K), \ \lambda \notin K^3.$

Proof. Let $\mathcal{D} = \mathcal{D}_0 + \mathcal{D}_1 + \mathcal{D}_2$ be a central division \mathbb{Z}_3 -algebra over K, and let $\mathcal{D}_1 \neq \{0\}$, then $\mathcal{D}_2 \neq \{0\}$. If $0 \neq v \in \mathcal{D}_1$, then $\mathcal{D}_0 v \subseteq \mathcal{D}_1 = \mathcal{D}_1 v^{-1} v \subseteq \mathcal{D}_0 v$, and $\mathcal{D}_0 v^{-1} \subseteq \mathcal{D}_2 = \mathcal{D}_2 v v^{-1} \subseteq \mathcal{D}_0 v^{-1}$. Therefore $\mathcal{D}_1 = \mathcal{D}_0 v$ and $\mathcal{D}_2 = \mathcal{D}_0 v^{-1}$ for any $0 \neq v \in \mathcal{D}_1$.

For any $a \in \mathcal{D}_0$, $va = a^{\psi_v}v$, where $a^{\psi_v} = vav^{-1}$, and $\psi_v|_{\mathcal{D}_0}$ is an automorphism of \mathcal{D}_0 as an algebra over $K = Z(\mathcal{D}) \cap \mathcal{D}_0$. Since any element of \mathcal{D}_1 is of the form $c_0v, c_0 \in \mathcal{D}_0$, the restriction of ψ_v to $Z(\mathcal{D}_0)$ does not depend on the particular choice of $v \in \mathcal{D}_1$.

AMEER JABER

Assume first that $\psi_v|_{\mathcal{D}_0}$ is an inner automorphism of \mathcal{D}_0 , say $\psi_v|_{\mathcal{D}_0} = \psi_c$, where $c \in \mathcal{D}_0$ (up to multiplication by an element of $Z(\mathcal{D}_0)$). Therefore $vav^{-1} = cac^{-1}$ implies that $c^{-1}vav^{-1}c = a$ for all $a \in \mathcal{D}_0$. Letting $u = c^{-1}v \in \mathcal{D}_1$ then $u^{-1} \in \mathcal{D}_2$ and $uau^{-1} = a$ for all $a \in \mathcal{D}_0$, so u centralizes \mathcal{D}_0 . Since $\mathcal{D}_1 = \mathcal{D}_0 u$, $\mathcal{D}_2 = \mathcal{D}_0 u^{-1}$, u centralizes \mathcal{D}_1 and \mathcal{D}_2 . Thus $u \in Z(\mathcal{D})$ and $u^3 \in Z(\mathcal{D}) \cap \mathcal{D}_0$, say $u^3 = \lambda \in K^{\times}$. Letting $\mathcal{C} = \mathcal{D}_0$, $\mathcal{D} = \mathcal{C} \otimes_K K[u]$. Note that \mathcal{D} is simple as an algebra if and only if $\lambda \notin K^3$. If $\lambda \in K^3$, we may assume that $\lambda = 1$. This is the only case where \mathcal{D} is not simple as an algebra.

Assume next that $\sigma = \psi_v|_{\mathcal{D}_0}$ is not an inner automorphism of \mathcal{D}_0 over K. If σ is not the identity then K is the fixed subfield of $Z(\mathcal{D}_0)$, which implies that $Z(\mathcal{D}_0)$ is a Galois extension of K of order 3 with Galois automorphism σ . We may choose $u \in Z(\mathcal{D}_0)$ such that $Z(\mathcal{D}_0) = K[u]$, $u^3 = \lambda \notin K^3$ with $\sigma(u) \neq u \in K[u]$. Now, $(av)u = a\sigma(u)v = \sigma(u)(av)$ implies that $\sigma(vu) = v\sigma(u) = \sigma(\sigma(u)v) = \sigma^2(u)v$ and hence $av^2u = av\sigma(u)v = a(v\sigma(u))v = a(\sigma^2(u)v)v = \sigma^2(u)(av^2)$ for all $a \in \mathcal{D}_0$. Therefore $\mathcal{D}_0 = C_{\mathcal{D}}(u)$, the centralizer of u in \mathcal{D} , and $\mathcal{D}_1 = \{c \in \mathcal{D} : cu = \sigma(u)c\} =$ $\mathcal{D}_0v, \mathcal{D}_2 = \{c \in \mathcal{D} : cu = \sigma^2(u)c\} = \mathcal{D}_0v^2$. If \mathcal{D} is a division algebra then $\mathcal{D} = \mathcal{D}_0 + \mathcal{D}_1 + \mathcal{D}_2$ as above.

If \mathcal{D} is not a division algebra then since \mathcal{D}_0 is not central simple over K = $Z(\mathcal{D}) \cap \mathcal{D}_0$ then, by Lemma 3.1, \mathcal{D} is a central simple algebra over K. Let $J \neq \{0\}$ be a right ideal of \mathcal{D} . If $0 \neq a_0 + a_1 + a_2 \in J$ then at least one of $a_i \neq 0$ and multiplying by a_i^{-1} on the right, $1 + b_1 + b_2 \in J$ for some $b_1 \in \mathcal{D}_1, b_2 \in \mathcal{D}_2$. Hence $(1+b_1+b_2)\mathcal{D} \subseteq J$. If J contains an element $0 \neq a'_0 + a'_1 + a'_2 \notin (1+b_1+b_2)\mathcal{D}$ then arguing as above, we obtain an element $1 + b'_1 + b'_2 \in J$, $b'_1 + b'_2 \neq b_1 + b_2$. In that case $0 \neq b_1 - b'_1 + b_2 - b'_2 \in J$, where $b_1 - b'_1 \in \mathcal{D}_1$ and $b_2 - b'_2 \in \mathcal{D}_2$. If $b_1 - b'_1 = 0$ or $b_2 - b'_2 = 0$, then $1 \in J$ and hence $J = \mathcal{D}$. If $b_1 - b'_1 \neq 0$ and $b_2 - b'_2 \neq 0$, then multiplying $b_1 - b'_1 + b_2 - b'_2$ by $(b_1 - b'_1)^{-1}$, $1 + c_1 \in J$ and $c_1 \neq 0$. If J contains an element $0 \neq a_0'' + a_1'' + a_2'' \notin (1 + c_1)\mathcal{D}$, then arguing as above, we obtain an element $1+c'_1 \in J, c'_1 \neq c_1$. In that case $0 \neq c_1-c'_1 \in J$ and hence $1 \in J$ which must be the whole of \mathcal{D} . Therefore a descending chain of nonzero right ideals in \mathcal{D} has length at most 3 and \mathcal{D} is isomorphic to $M_3(\mathcal{C})$, where \mathcal{C} is a central division algebra over K. If K[u] were to embed in \mathcal{C} then $\mathcal{D}_0 = C_{\mathcal{D}}(u) \supseteq M_3(\mathcal{C})$ which is not a division algebra. Therefore K[u] does not embed in \mathcal{C} but rather the algebraic extension K[u] of order 3 embeds in $M_3(K)$ and u, W_1, W_2 can be chosen as

$$u = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \lambda & 0 & 0 \end{pmatrix}, W_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, W_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} = W_1^{-1}, \lambda \notin K^3$$

where

$$\mathcal{D}_0 = \mathcal{C} \otimes K[u], \ \mathcal{D}_1 = \mathcal{C} \otimes K[u]W_1, \ \mathcal{D}_2 = \mathcal{C} \otimes K[u]W_2.$$

4. \mathbb{Z}_3 -Involution

In this section we will obtain more information on the \mathbb{Z}_3 -involutions of the central simple \mathbb{Z}_3 -algebra $\mathcal{A} = M_{p+q+r}(\mathcal{D})$, where \mathcal{D} is a central division algebra over a field K of characteristic 0, and p, q, r > 0.

Example 4.1. Let $\mathcal{A} = M_{1+1+1}(K)$ be a \mathbb{Z}_3 -algebra then the \mathbb{Z}_3 -additive map $\sigma : \mathcal{A} \to \mathcal{A}$ defined by

$$\sigma(\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}) = \begin{pmatrix} c & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & a \end{pmatrix}, \quad \sigma(\begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix}) = \begin{pmatrix} 0 & 0 & -c \\ b & 0 & 0 \\ 0 & a & 0 \end{pmatrix}, \quad \sigma(\begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{pmatrix}) = \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & a \\ -c & 0 & 0 \end{pmatrix}$$

is a \mathbb{Z}_3 -involution on \mathcal{A} .

Theorem 4.2. Let \mathcal{D} be a division algebra, and let $\mathcal{A} = M_{p+q+p}(\mathcal{D})$, p, q > 0 be a \mathbb{Z}_3 -algebra with $\mathcal{A}_0 = M_p(\mathcal{D}) \oplus M_q(\mathcal{D}) \oplus M_p(\mathcal{D})$ and

$$\mathcal{A}_{1} = \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix}, \quad \mathcal{A}_{2} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & y \\ z & 0 & 0 \end{pmatrix}$$

with $a, y \in M_{q \times p}(\mathcal{D})$, $b, x \in M_{p \times q}(\mathcal{D})$, $c, z \in M_{p \times p}(\mathcal{D})$. If \mathcal{D} has an involution \neg , then * defined by

$$\begin{pmatrix} f & x & c \\ a & g & y \\ z & b & h \end{pmatrix}^* = \begin{pmatrix} \tilde{h} & \tilde{y} & -\tilde{c} \\ \tilde{b} & \tilde{g} & \tilde{x} \\ -\tilde{z} & \tilde{a} & \tilde{f} \end{pmatrix}$$

is a \mathbb{Z}_3 -involution on \mathcal{A} , where for any matrix a over \mathcal{D} , $\tilde{a} = \bar{a}^t$, t the transpose.

Proof. If \mathcal{D} has an involution $\bar{}$, then for any $a \in M_p(\mathcal{D})$ or $a \in M_q(\mathcal{D})$, $\tilde{a} = \bar{a}^t$, t the transpose, defines involutions on $M_p(\mathcal{D})$ and on $M_q(\mathcal{D})$. Moreover if $a \in M_{p \times q}(\mathcal{D})$ $(M_{q \times p}(\mathcal{D}))$, then $\tilde{a} \in M_{q \times p}(\mathcal{D})$ $(M_{p \times q}(\mathcal{D}))$.

Let
$$\begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 & z \\ x & 0 & 0 \\ 0 & y & 0 \end{pmatrix}$ be two matrices in \mathcal{A}_1 , then

$$\begin{bmatrix} \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & z \\ x & 0 & 0 \\ 0 & y & 0 \end{pmatrix} \Big]^* = \begin{pmatrix} 0 & cy & 0 \\ 0 & 0 & az \\ bx & 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & \tilde{a}\tilde{z} & 0 \\ 0 & 0 & \tilde{c}\tilde{y} \\ -\tilde{b}\tilde{x} & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \tilde{z}\tilde{a} & 0 \\ 0 & 0 & \tilde{y}\tilde{c} \\ -\tilde{x}\tilde{b} & 0 & 0 \end{pmatrix}.$$

And

$$-\begin{pmatrix} 0 & 0 & z \\ x & 0 & 0 \\ 0 & y & 0 \end{pmatrix}^{*} \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix}^{*} = -\begin{pmatrix} 0 & 0 & -\tilde{z} \\ \tilde{y} & 0 & 0 \\ 0 & \tilde{x} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -\tilde{c} \\ \tilde{b} & 0 & 0 \\ 0 & \tilde{a} & 0 \end{pmatrix}$$
$$= -\begin{pmatrix} 0 & -\tilde{z}\tilde{a} & 0 \\ 0 & 0 & -\tilde{y}\tilde{c} \\ \tilde{x}\tilde{b} & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \tilde{z}\tilde{a} & 0 \\ 0 & 0 & \tilde{y}\tilde{c} \\ -\tilde{x}\tilde{b} & 0 & 0 \end{pmatrix}$$

Which implies that $(XY)^* = -Y^*X^*$ for all $X, Y \in \mathcal{A}_1$. Moreover

$$\begin{bmatrix} \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & y & 0 \\ 0 & 0 & z \\ x & 0 & 0 \end{pmatrix}]^* = \begin{pmatrix} 0 & 0 & az \\ bx & 0 & 0 \\ 0 & cy & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & 0 & -\widetilde{az} \\ \widetilde{c}\widetilde{y} & 0 & 0 \\ 0 & \widetilde{bx} & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & -\widetilde{z}\widetilde{a} \\ \widetilde{y}\widetilde{c} & 0 & 0 \\ 0 & \widetilde{x}\widetilde{b} & 0 \end{pmatrix}.$$

And

$$-\begin{pmatrix} 0 & y & 0 \\ 0 & 0 & z \\ x & 0 & 0 \end{pmatrix}^* \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{pmatrix}^* = -\begin{pmatrix} 0 & \tilde{z} & 0 \\ 0 & 0 & \tilde{y} \\ -\tilde{x} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \tilde{b} & 0 \\ 0 & 0 & \tilde{a} \\ -\tilde{c} & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & -\tilde{z}\tilde{a} \\ \tilde{y}\tilde{c} & 0 & 0 \\ 0 & \tilde{x}\tilde{b} & 0 \end{pmatrix}.$$

Which implies that $(XY)^* = -Y^*X^*$ for all $X, Y \in \mathcal{A}_2$. Finally, let $X = \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix}$ be a general matrix in \mathcal{A}_1 and $Y = \begin{pmatrix} 0 & y & 0 \\ 0 & 0 & z \\ x & 0 & 0 \end{pmatrix}$ a general matrix in \mathcal{A}_2 , then

$$(XY)^* = \begin{pmatrix} cx & 0 & 0 \\ 0 & ay & 0 \\ 0 & 0 & bz \end{pmatrix}^* = \begin{pmatrix} \tilde{bz} & 0 & 0 \\ 0 & \tilde{ay} & 0 \\ 0 & 0 & \tilde{cx} \end{pmatrix}$$
$$= \begin{pmatrix} \tilde{z}\tilde{b} & 0 & 0 \\ 0 & \tilde{y}\tilde{a} & 0 \\ 0 & 0 & \tilde{x}\tilde{c} \end{pmatrix}$$

and
$$Y^*X^* = \begin{pmatrix} 0 & \tilde{z} & 0 \\ 0 & 0 & \tilde{y} \\ -\tilde{x} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -\tilde{c} \\ \tilde{b} & 0 & 0 \\ 0 & \tilde{a} & 0 \end{pmatrix} = \begin{pmatrix} \tilde{z}\tilde{b} & 0 & 0 \\ 0 & \tilde{y}\tilde{a} & 0 \\ 0 & 0 & \tilde{x}\tilde{c} \end{pmatrix} = (XY)^*.$$

Similarly, $(YX)^* = X^*Y^*.$

Theorem 4.3. Let \mathcal{D} be a division algebra. If $\mathcal{A} = M_{p+q+r}(\mathcal{D})$, p, q, r > 0 is a \mathbb{Z}_3 -algebra with $\mathcal{A}_0 = M_p(\mathcal{D}) \oplus M_q(\mathcal{D}) \oplus M_r(\mathcal{D})$ and

$$\mathcal{A}_{1} = \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix}, \quad \mathcal{A}_{2} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & y \\ z & 0 & 0 \end{pmatrix}$$

with $a \in M_{q \times p}(\mathcal{D})$, $y \in M_{q \times r}(\mathcal{D})$, $x \in M_{p \times q}(\mathcal{D})$, $b \in M_{r \times q}(\mathcal{D})$, $c \in M_{p \times p}(\mathcal{D})$, $z \in M_{r \times p}(\mathcal{D})$. Let $A = M_p(\mathcal{D}) \oplus \{0\} \oplus M_r(\mathcal{D})$ if * is a \mathbb{Z}_3 -involution on \mathcal{A} with $(A, *|_A)$ is simple then p = r, \mathcal{D} has an involution -, and $(\mathcal{A}, *)$ is isomorphic to $M_{p+q+p}(\mathcal{D})$ with the \mathbb{Z}_3 -involution * given by

$$\begin{pmatrix} f & x & c \\ a & g & y \\ z & b & h \end{pmatrix}^* = \begin{pmatrix} \tilde{h} & \frac{\tilde{y}}{\bar{\alpha}} & -\mu\tilde{c} \\ \frac{\tilde{b}}{\bar{\alpha}} & \tilde{g} & \alpha\tilde{x} \\ -\tilde{\mu}\tilde{z} & \bar{\alpha}\tilde{a} & \tilde{f} \end{pmatrix},$$
(6)

for $\mu, \alpha \in K$ such that $\mu \tilde{\mu} = 1$ and $\frac{\alpha}{\bar{\alpha}} = \mu$, where $\tilde{a} = \bar{a}^t$ for any matrix a over \mathcal{D} , t the transpose. If $\tilde{}$ is of the first kind then μ and α may be chosen equal to 1. Conversely if \mathcal{D} has an involution $\bar{}$ then (6) defines a \mathbb{Z}_3 -involution on the simple \mathbb{Z}_3 -algebra $M_{p+q+p}(\mathcal{D})$.

Proof. In recent work on the primitive \mathbb{Z}_3 -algebras which has yet to appear, we prove that a \mathbb{Z}_3 -algebra $M_n(\mathcal{D})$ has a \mathbb{Z}_3 -involution if and only if \mathcal{D} has. In this case since $\mathcal{D} = \mathcal{D}_0$, \mathcal{D} has an involution - then $\tilde{a} = \bar{a}^t$ for any matrix a over \mathcal{D} , t the transpose, extends to involutions on $M_p(\mathcal{D})$ and on $M_q(\mathcal{D})$. Since $(A, *|_A)$ is simple by assumption, $M_r(\mathcal{D})$ is anti-isomorphic to $M_p(\mathcal{D})$ and r = p. Up to isomorphism, $(A, *|_A)$ is given by $(M_p(\mathcal{D}) \oplus \{0\} \oplus M_p(\mathcal{D}), *)$ with $(a, 0, b)^* = (\tilde{b}, 0, \tilde{a})$. The proof for p > q goes along the same lines we may let $p \leq q$. Letting

$$f_{11} = \sum_{i=1}^{p} e_{ii} \qquad f_{22} = \sum_{i=p+1}^{p+q} e_{ii} \qquad f_{33} = \sum_{i=p+q+1}^{p+q+p} e_{ii}$$
$$f_{12} = \sum_{i=1}^{p} e_{i \ p+i} \qquad f_{13} = \sum_{i=1}^{p} e_{i \ p+q+i}$$
$$f_{21} = \sum_{i=1}^{p} e_{p+i \ i} \qquad f_{23} = \sum_{i=1}^{p} e_{p+i \ p+q+i}$$

AMEER JABER

$$f_{31} = \sum_{i=1}^{p} e_{p+q+i \ i} \qquad f_{32} = \sum_{i=1}^{p} e_{p+q+i \ p+i}$$

We have

$$\mathcal{A}_{0} = M_{p}(\mathcal{D})f_{11} \oplus M_{q}(\mathcal{D})f_{22} \oplus M_{p}(\mathcal{D})f_{33},$$

$$\mathcal{A}_{1} = M_{p}(\mathcal{D})f_{13} \oplus (M_{q}(\mathcal{D})f_{21} + f_{21}M_{p}(\mathcal{D})) \oplus (M_{p}(\mathcal{D})f_{32} + f_{32}M_{q}(\mathcal{D}))$$

$$\mathcal{A}_{2} = M_{p}(\mathcal{D})f_{31} \oplus (M_{p}(\mathcal{D})f_{12} + f_{12}M_{q}(\mathcal{D})) \oplus (M_{q}(\mathcal{D})f_{23} + f_{23}M_{p}(\mathcal{D}))$$

$$f_{11}^{*} = f_{33}, \ f_{33}^{*} = f_{11}, \ f_{22}^{*} = f_{22}.$$

Hence

$$f_{13}^* = (f_{11}f_{13}f_{33})^* = f_{11}f_{13}^*f_{33},$$

and

$$f_{13}^* = cf_{13}, \qquad \text{for some } c \in M_p(\mathcal{D})$$

For any $a \in M_p(\mathcal{D})$,

$$(af_{13})^* = ((af_{11})f_{13})^* = cf_{13}\tilde{a}f_{33} = c\tilde{a}f_{13}$$

While

$$(af_{13})^* = (f_{13}(af_{33}))^* = \tilde{a}f_{11}cf_{13} = \tilde{a}cf_{13}.$$

Therefore $c \in Z(M_p(\mathcal{D}))$. Moreover $f_{13} = f_{13}^{**} = (cf_{13})^* = \tilde{c}cf_{13}$ implies $\tilde{c}c = I_p$. So $c = -\mu \in K$ with $\mu \tilde{\mu} = 1$. Similarly $f_{31}^* = df_{31}, d \in Z(M_p(\mathcal{D}))$. But

$$f_{33} = f_{11}^* = (f_{13}f_{31})^* = f_{31}^*f_{13}^* = (df_{31})(cf_{13}) = dcf_{33}$$

which implies that dc = 1, and hence $d = c^{-1} = \tilde{c} = -\tilde{\mu}$. Therefore

$$(af_{13})^* = -\tilde{a}\mu f_{13}$$
 and $(af_{31})^* = -\tilde{a}\tilde{\mu}f_{31}$.

Moreover

$$f_{12}^* = \alpha f_{23}, \quad f_{23}^* = \beta f_{12}$$

for some $\alpha, \beta \in K$ with $\alpha\beta = \mu$, since $(f_{12})^{**} = (\alpha f_{23})^* = \bar{\alpha}(f_{23})^* = \bar{\alpha}\beta f_{12} = f_{12}$, then $\bar{\alpha}\beta = 1$, so $\beta = \frac{1}{\bar{\alpha}}$ and $\frac{\alpha}{\bar{\alpha}} = \mu$.

Similarly, $f_{21}^* = \gamma f_{32}$, $f_{32}^* = \delta f_{21}$ for some $\gamma, \delta \in K$ with $\gamma \delta = \tilde{\mu}$ which implies that $\overline{\gamma \delta} = \mu = \alpha \beta$, so we may take $\gamma = \bar{\alpha}$ and $\delta = \bar{\beta} = \frac{1}{\alpha}$. Therefore

$$\begin{pmatrix} f & x & c \\ a & g & y \\ z & b & h \end{pmatrix}^* = \begin{pmatrix} \tilde{h} & \frac{\tilde{y}}{\bar{\alpha}} & -\mu\tilde{c} \\ \frac{\tilde{b}}{\alpha} & \tilde{g} & \alpha\tilde{x} \\ -\tilde{\mu}\tilde{z} & \bar{\alpha}\tilde{a} & \tilde{f} \end{pmatrix},$$

for $a, y \in M_{q \times p}(\mathcal{D}), x, b \in M_{p \times q}(\mathcal{D}), c, z \in M_{p \times p}(\mathcal{D})$. The converse of the theorem is proved in Theorem 4.2.

10

References

- A. Elduque and O. Villa, The existence of superinvolutions, J. Algebra, 319 (2008), 4338-4359.
- [2] B. Farb and R. K. Dennis, Noncommutative Algebra, Springer-Verlag, Graduate Texts in Mathematics, 144, New York, 1993.
- [3] A. A. Jaber, Existence of pseudo-superinvolutions of the first kind, Int. J. Math. Math. Sci., (2008), Article ID 386468, 12 pages. doi:10.1155/2008/386468.
- [4] R. Pierce, Associative Algebras, Springer-Verlag, Graduate Texts in Mathematics, 88, New York, 1982.
- [5] M. L. Racine and E. I. Zelmanov, Simple Jordan superalgebras with semisimple even part, J. Algebra, 270 (2003), 374-444.
- [6] C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math., 213 (1963), 187-199.

Ameer Jaber

Department of Mathematics, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan e-mail: ameerj@hu.edu.jo