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Abstract. Let A ×r H be a twisted smash coproduct for a bicomodule coalgebra A by a
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1. Introduction

Braided monoidal categories were introduced by A. Joyal and R. Street in 1986 [4]. It is
a generalization of super case. S. Majid, A. Joyal, R. Street and V. Lyubasheko have obtained
many interesting conclusions in braided monoidal categories, for example, the braided recon-
struction theorem, transmutation and bosonisation, integral, q-Fourier transform, q-Mikowski
space, random walk and so on, see [7,9,10,11,12]. In the category of usual vector spaces with
usual twist braiding, R. G. Heyneman and M. E. Sweedler introduced the definition and basic
properties of the smash coproduct of A by H in [3], R.K. Molnar gave the sufficient condition
for the smash coproducts to become bialgebras in [19, Theorem 2.14]. S. H. Wang and J. Q. Li
introduced twisted smash coproducts and gave the necessary and sufficient conditions for them
to become bialgebras in [20, Proposition 2.2]. In braided monoidal categories, J. Q. Li and Y.
H. Xu introduced the smash coproducts and show that if (B, ρ) is an H-comodule bialgebra
and H is commutative in the sense of [13,14], the smash coproduct Bρ × H is a bialgebra in
[6, Theorem1]. In this paper, we study the twisted smash coproducts in a braided monoidal
category and give a necessary and sufficient condition for a twisted smash coproduct A ×r H
to be a bialgebra in a braided monoidal category.

A monoidal category consists of a category C equipped with a functor ⊗ : C ⊗ C → C

and functorial isomorphisms ΦX,Y, Z : X⊗ (Y ⊗Z)→ (X⊗Y )⊗Z for all object X, Y, Z and a
unit object I with functorial isomorphisms lX : X → I ⊗X, rX : X → X ⊗ I for all objects X.
The Φ should obey a well-known pentagon coherence identity while the l and r obey triangle
identities of compatibility with Φ [8]. We denote id⊗ · · · ⊗ id (n tensor) by idn.

A quasisymmetry or “braiding” c is a collection of functorial isomorphisms cX,Y : X⊗Y →
Y ⊗X obeying two hexagon coherence identities. If we suppress writing c explicitly, then these
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take the form cX,Y⊗Z = cX,Z ◦ cX,Y , cX⊗Y, Z = cX,Z ◦ cY, Z ,while further identities such
as cX, I = id = cI, Y can be deduced. If c2 = id then one of the hexagons is superfluous and
we have an ordinary symmetric monoidal category or tensor category as in [1]. Categories
with braiding were formally introduced into category theory in [4] under the heading “braided
monoidal categories”, see also [17,2].

In general an algebra, coalgebra, bialgebra or Hopf algebra being in a braided monoidal
category means that the structure maps are morphisms in the category and satisfy their axioms.
In what follows, we will use a graphical calculus. All maps are written downwards from top to
bottom: a morphism f : A⊗B → C is written as -vertex, suitably labeled, while a morphism
f : A→ B ⊗ C is written as -vertex. Other morphisms too are written as vertices or nodes
with inputs and outputs according to the valency of the morphism. The unit object I in the
category is suppressed so that a morphism I → A has one output but no input and a morphism
A → I has one input but no output . Finally, c, c−1 are written as braid crossings cX,Y =

and c−1
Y,X= Functoriarity of c, c−1 under morphisms means precisely that the vertex of a

morphism may be translated through a braid crossing provided no paths are cut. The details
can be found in [16,18,5]. Throughout this chapter, we assume that (C , ⊗, I, c) is a braided
monoidal category, H, A, V ∈ obC and that

φ : A→ H ⊗A , ψ : A→ A⊗H, ρ : V → H ⊗ V,
mA : A⊗A→ A , mH : H ⊗H → H,

∆A : A→ A⊗A , ∆H : H → H ⊗H,
ηA : I → A , ηH : I → H,

εA : A→ I , εH : H → I,

sA : A→ A , sH : H → H,

s−1
A : A→ A , s−1

H : H → H

are morphisms in C .

Definition 1.1. H is called a Hopf algebra in C if the following conditions hold:

HH HH HH(1) H HHηH ηH

= ==

H H H HH

a b

HH HH HH

(2)

H HH

= ==

H H H HH

a b

εH εH
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H
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H

H

H

H

H

= =

==

H H

H H H H

H H

φ

ηH

εHεHεHεH

(3)
a b

c d

ηH ηH ηH

= =

H

H

H

H

S S

H

H

εH

ηH

(4)

Fig.1.

Definition 1.2. Let H be a Hopf algebra in C and A a coalgebra in C .

(i) (A, φ) is a left H-comodule in C if the following conditions are satisfied:

(1)

= =

Fig.2.

(2)
A A A A

φ φ

φ φ

H H A H H A
A AεH

(ii) (A, ψ) is a right H-comodule in C if the following conditions are satisfied:
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(1)

= =

Fig.3.

(2)
A A A A

ψ ψ

ψ ψ

A A AHHH H AεH

(iii) (A, φ) is a left H-comodule in C and (A, ψ) a right H-comodule in C . (A, φ, ψ) is
an H-bicomodule in C if the following conditions are satisfied:

=

Fig.4.

A A

AAH H H H

ψ

φ

φ

ψ

Definition 1.3. Let H be a Hopf algebra in C and (A, φ) a left H-comodule in C .

(i) A is called a left H-comodule algebra in C if it is an algebra in C and the following
conditions hold:

= =

Fig.5.

A A A A

AAH H H HA A

ηH ηA

φ

φ φ

φ

ηA

(ii) A is called a left H-comodule coalgebra in C if it is a coalgebra in C and the following
conditions hold:
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Fig.6.

= =

(2)(1)
A A A A

AAAAH H H H

φ
φ φ

φ

εA

εA

ηH

Definition 1.4. Let H be a Hopf algebra in C and (A, ψ) a right H-comodule in C . A is
called a right H-comodule coalgebra in C if the following conditions hold:

Fig.7.

= =

(2)(1)
A A A A

A A A AH H H H

ψ
ψ ψ

ψ

εA

εA

ηH

Definition 1.5. Let H be a Hopf algebra in C and A a coalgebra in C . A is called an
H-bicomodule coalgebra in C if the following conditions hold:

(i) (A, φ, ψ) is an H-bicomodule in C .

(ii) A is not only left H-comodule coalgebra with the left comodule coaction φ in C but
also right H-comodule coalgebra with the right comodule coaction ψ in C .

Definition 1.6. [13,14] Let H be a bialgebra in the braided monoidal category C . We say
that mop : H ⊗H → H is an opposite multiplication for H if it makes H into a bialgebra in C

and all left H-comodule V (with left comodule coaction ρ) in C such that

(mop ⊗ id) ◦ (id⊗ ρ) = (m⊗ id) ◦ (id⊗ cV,H) ◦ (id⊗ cH,V ) ◦ (cH,H ⊗ id) ◦ (id⊗ ρ).

Definition 1.7. The bialgebra H in C is called braided commutative if mop = m.

Definition 1.8. [9,15] If H is a Hopf algebra in C , then the antipode, denoted by S, is an
anti-(co)algebra morphism by Fig8.(1) and Fig8.(2) respectively:
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=S

S S

(1)

a

=

b

S

H H

H H

H H H H

εH εH

=

H

HH

S

H

HH

SS

(2)
a

Fig.8.

A

=

ηH

S

ηH

b

Proposition 1.9. Let H be a Hopf algebra in C and A an H-bicomodule coalgebra in C .
Then the object A⊗H becomes a coalgebra in C by the comultiplication

∆A×r H= (id⊗m⊗ id2) ◦ (id2 ⊗m⊗ id2) ◦ (id3 ⊗ cA,H ⊗ id)

◦(id4 ⊗ s⊗ id) ◦ (id3 ⊗ ψ ⊗ id) ◦ (id2 ⊗ cA,H ⊗ id)

◦(id⊗ φ⊗ id2) ◦ (∆A ⊗∆H)

< 1 >

and the counit εA ⊗ εH , denoted by B = A×r H.

In graphical notation < 1 > is depicted as follows:

=

Fig.9.

B

B B

A

A AH H

H

s

φ

ψ

Proof. The proof is given in Fig.10. The first and last equality follow by the definitions of the
comultiplication in B = A ×r H. The second uses Fig.1(3)a. The third follows by Fig.8(1)a.
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The fourth by Fig.3(1) and functoriality. The fifth uses associativity of mH and functoriality.
The sixth follows by Fig.8(2)a. The seventh uses Fig.4, functoriality and coassociativity of A
and H. The eighth uses associativity of mH and functoriality. The ninth follows by Fig.7(1)
and functoriality. The tenth follows by Fig.4 and Fig.2(1). The eleventh follows by Fig.4 and
Fig.6(1). The twelfth uses functoriality. The thirteenth uses Fig.4 and functoriality to arrange
the diagram for the last step. Thus the comultiplication is coassociative.

= =

B

B B B

A A

A A A A A A

H H

HHH H H H

φ

ψ
s

φ

ψ
s

φ

ψ
s

φ

ψ
s

= =

A A

A A A A A A

H H

H H H H H H

φ
ψ

s s

φ

ψ
s

φ

ψ
ψs s

φ

ψ
s
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= =

A A

A A A A A A

H H

H H H H H H

φ

ψ
ψ
s

φ

ψ
s s

φ

ψ
ψ
s

φ

ψ
s

= =

A A

A A A A A A

H H

H H H H H H

ψ
φ

ψ

s

ψ
φ

s

ψ ψ

s

φ
ψ
s

φ

= =

A A

A A A A A A

H H

H H H H H H

ψ

φ
φ ψ

s

s

ψ

s

ψ
φ φ

φ s
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= =

A A

A A A AA A

H H

H H H H H H

ψ

s

φ

ψ
φ s

ψ
φ s

ψ
φ s

= =

A

A AA

H

H H H

B

B B B

φ

ψ
s

φ

ψ
s

Fig.10.
It is obvious that εA ⊗ εH is counit element. This completes the proof. �

For convenience, the coalgebra in Proposition 1.9 is called a right twisted smash coproduct
in C . For the sake of the following Example 1.10, the right twisted smash coproduct is regarded
as a smash coproduct which is twisted by the right H-comodule coaction.

Example 1.10. Let A be a left H-comodule coalgebra in C with the trivial right H-comodule
coaction in C , then A is an H-bicomodule coalgebra in C . A simple proof shows that A×r H
is actually a smash coproduct A× H. This implies that the smash coproduct in C is a special
case of the right twisted smash coproduct.

Similarly, let A be an H-bicomodule coalgebra in C . A left twisted smash coproduct
B′ = Hl × A is defined as a vecter space H ⊗A with comultiplication

∆Hl×A= (id2 ⊗m⊗ id) ◦ (id2 ⊗m⊗ id2) ◦ (id⊗ cH,A ⊗ id3)

◦(id⊗ s⊗ id4) ◦ (id⊗ φ⊗ id3) ◦ (id⊗ cH,A ⊗ id2)

◦(id2 ⊗ ψ ⊗ id) ◦ (∆H ⊗∆A)

< 2 >
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and the counit εH ⊗ εA. We obtain that B′ = Hl × A is a coassociative coalgebra by a smilar
method to that in the proof of Proposition 1.9.

In graphical notation < 2 > is depicted as follows:

=

Fig.11.

B′

B′ B′

H

H H

A

A A

ψ

φ
s

In this paper, we mainly study the structure of right twisted smash coproducts in C .

Define πH : A×rH −→ H and πA : A×rH −→ A by πH = εA⊗ idH and πA = idA⊗ εH .
Then one can easily check that πA and πH are coalgebra morphism in C .

Proposition 1.11. The following two equations are satisfied:

= =

Fig.12.

(1) (2)
A A A A

AAA A

HH H H

HHHH

φ

ψ
s

φ

ψ
s

φ

ψ
s

εH εA
εA εH

Proof. It is obvious. �

2. The bialgebra A ×r H in C

Now we give the main theorem of this section.

Theorem 2.1. Let A be a bialgebra and an H-bicomodule coalgebra in C .
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(i) The right twisted smash coproduct coalgebra B = A ×r H in C equipped with the tensor
product algebra structure in C makes B = A ×r H into a bialgebra, if the following conditions
hold:

(1)

= =

(2)
ηA ηH ηH

s

φ

ψ

φ

φ

H H

HHHH

A A

AAAA

==

(3) (3)′A A A A

AAAA

H H H H

HHHH

ψ

s

ψ
s

ψ

s

ψ
s

(4)

=

Fig.13.

A A A A

A AH H

φ

ψ

s

φ

ψ

s

φ

ψ

s

(ii) Assume that ψ◦ηA = ηA⊗ηH , then the right twisted smash coproduct coalgebra A×r H
in C equipped with the tensor product algebra structure in C makes A×r H into a bialgebra in
C if and only if conditions (1), (2), (3), (3)′ and (4) in (i) hold.

Proof. (i) We show the proof in Fig.14. The first and last equality follow by the definitions of
the comultiplication in B = A×r H. The second follows by Fig.4 and functoriality. The third
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follows by Fig.13(3). The fourth, the seventh, the ninth and the thirteenth uses associativity
of mH and functoriality. The fifth follows by Fig.13(2). The sixth uses functoriality, Fig.3,
and Fig.13(3). The eighth follows by Fig.13(3)′. The tenth follows by Fig.13(4). The eleventh
uses associativity of mH , functoriality and Fig.13(3). The twelfth uses associativity of mH and
Fig.13(3). The fourteenth uses Fig.1(3)a. This show that ∆A×r H is an algebra morphism in
C with respect to the comultiplication on A ×r H and tensor product algebra structure on
A ×r H in C .

=

B B

B B

A A

A A

H H

H H

φ

ψ
s

φ

ψ
s

==

A A A A

A A A A

H H H H

HHHH

φ
ψ
s

ψ
φ

s

ψ
s

ψ
φ

s

φ
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==

A A A A

A A A A

H H H H

H H H H

φ
ψ
s

φ
ψ
s

==

A A A A

A A A A

H H H H

H H H H

φ
ψ
s

φ

ψ
s

= =

Fig.14.

A A

A A

H H

H H

B B

B B

φ

ψ
hs



26 WENZHENG ZHAO, SHENGJIE GAO, TIANSHUI MA

It is not hard to verify that εA×r H = εA ⊗ εH is an algebra morphism in C by (1). Thus
(i) holds.

(ii) “⇐= ” see (i).

“ =⇒ ” Let B = A ×r H be a bialgebra, we have that

=

Fig.15.

=

B

BBBBB

B

B

B

B

B

B

Fig.16.

ηB ηB ηB

By Fig.15, we have that

=

Fig.17.

ηA ηH ηA ηH ηA ηH

A A A AH H H H

φ

ψ
s

Applying εA ⊗ id⊗ id⊗ εH to the bottom of relation Fig.17, we obtain(1).

By Fig.16, we have that
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=

Fig.18.

A A A A

AAAA

H H H H

HHHH

φ

ψ
s

φ

ψ
s

φ

ψ
s

Applying εA ⊗ id⊗ id⊗ εH to the bottom of relation Fig.18, we obtain

=

Fig.19.

A A A A

A A

H H H H

H H

φ

ψ
s

φ

ψ
s

φ

ψ
s

Applying id⊗ ηH ⊗ id⊗ ηH to the top of relation Fig.19, we obtain (4).

Using the fact ψ ◦ ηA = ηA ⊗ ηH and (1), we have φ ◦ ηA = ηH ⊗ ηA. Hence we obtain
(id⊗ ψ) ◦ φ ◦ ηA = ηH ⊗ ηA ⊗ ηH . Applying ηA ⊗ id⊗ id⊗ id to the top of relation Fig.19 and
using (id⊗ ψ) ◦ φ ◦ ηA = ηH ⊗ ηA ⊗ ηH , we obtain
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=

Fig.20.

H H H H

H H

A A

A A

φ

ψ

s

φ

ψ

s

Applying (id⊗ id⊗ s2) ◦ (id⊗ ψ) to the top of relation Fig.20, we obtain (2).

Similarly, applying id⊗ id⊗ ηA ⊗ id to the top of relation Fig.19 and using (1), we have

=

Fig.21.

A A

A A

H H H H

H H

φ

ψ

s

φ

ψ

s

i.e.
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=

Fig.22.

H H H H

H H

A A

A A

φ

ψ

s

φ

ψ

s

Applying (s ⊗ id ⊗ id) ◦ (φ ⊗ id) to the top of relation Fig.22, we obtain (3), i.e. (3)′. This
completes the proof. �

Proposition 2.2. In the situation of the Theorem 2.1, If A is actually a Hopf algebra in C

then so is A ×r H. The antipode on A ⊗H is defined by

sA×rH= cA,H ◦ (sH ⊗ sA) ◦ (mH ⊗ id) ◦ (id⊗mH ⊗ id) ◦ (id2 ⊗ cA,H)

◦(id3 ⊗ sH) ◦ (id2 ⊗ ψ) ◦ (id⊗ cA,H) ◦ (φ⊗ id)
< 3 >

In graphical notation < 3 > is depicted as follows:

=

Fig.23.

B A H

A H

s

φ

ψ
sH

sH sA

Proof. We prove the theorem in Fig.24. The first equality follows by the definitions of sB and
the comultiplication in B = A×rH . The second uses functoriality and Fig.8(2)a. The third uses
functoriality, Fig.4, and Fig.3(1). The fourth follows by Fig.8(1)a. The fifth uses associativity
of mH and functoriality. The sixth uses the antipode axiom as in Fig.1(4), Fig.8(1)b, Fig.1(1)b,
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Fig.3(2). and functoriality. The seventh uses associativity of mH . The eighth uses the antipode
axiom as in fig.1(4) and Fig.1(1)b. The ninth follows by Fig.2(1) and functoriality. The tenth
follows by Fig.1(4) and Fig.2(2). The last follows by Fig.1(4) .

= =

B

B

A A

A A

H H

H H

s

φ

ψ

φ

ψ

φ

ψ

φ

ψ

sH sH

sH

sHsH

sH

sH

sH sA sA

= = =

A A A

A A A

H H H

HHH

φ

ψ

φ

φ

ψ

φ

φ

ψ

sA sA
sA

sHsH

sH

sH

sH

sH

sH

sH

sH

sH

sH

sH sH
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= = =

A A A

A A A

H

H H H

HH

φ

φ

φ

φ

φ

φsA sA sA sAsH sH

sH

sH sH

εH

= = =

A H

A H

A H

A H

fig.24.

A H

A H

φ εH

εH εH

sA

sAsH
ηH

εA

ηA ηH

Similarly, the following equation holds:

=

B

B

A H

A H

s

εA εH

ηA ηH

This completes the proof. �

If ψ is trivial in C , then (3) holds and conditions (1) and (4) in Theorem 2.1 are satisfied
if and only if A is a left H-comodule algebra in C . Thus we have:

Corollary 2.3. Let A be a bialgebra and a left H-comodule coalgebra in C . Then the smash
coproduct coalgebra A×H in C equipped with the tensor product algebra structure in C makes
A×H into a bialgebra in C if and only if A is a left H-comodule algebra in C and (2) holds.

By Corollary 2.3 we have the following result.
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Corollary 2.4. [6, Theorem 1,Theorem 2] Let H be a commutative Hopf algebra in C in the
sense of Definition 1.7 with respect to A as an H-comodule bialgebra in C . Then the tensor
product algebra structure on A × H in C equipped with the smash coproduct structure in C

makes A×H into a bialgebra.

Furthermore, if A is a Hopf algebra in C , then A×H is also a Hopf algebra in C with the
sA×H defined by

sA×H = (sA ⊗ sH) ◦ cH,A ◦ (mH ⊗ id) ◦ (id⊗ cA,H) ◦ (φ⊗ id)

Acknowledgment. The authors would like to thank the referee for the valuable suggestions
and comments.
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