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Abstract. In this study we continue to investigate the ascent and descent of

valuation domains, PVDs, GCD-domains, ∗-domains, ∗∗-domains, locally ∗-
domains, URDs, UFDs, RBFDs, CK -domains, BVDs, CHFDs, and a particu-

lar case of LHFDs for domain extensions A ⊆ B relative to the

Condition 1: “Let A ⊆ B be a unitary commutative ring extension. For

each b ∈ B there exist u ∈ U(B) and a ∈ A such that b = au” and with the

further assumption that the conductor ideal A : B is a maximal ideal in A.
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1. Introduction

Following Cohn [9], an integral domain D is said to be atomic if each nonzero

nonunit element of D is a product of a finite number of irreducible elements (atoms)

of D. UFDs and Noetherian domains are well-known examples of atomic domains.

An integral domain D satisfies the ascending chain condition on principal ideals

(ACCP ) if every ascending chain of principal ideals of D becomes stationary. An

integral domain D satisfies ACCP if and only if D[{Xα}] satisfies ACCP for any

family of indeterminates {Xα} (cf. [3, page 5]) but the polynomial extension D[X]

is not necessarily an atomic domain when D is an atomic domain [17]. It is well-

known that any domain satisfying ACCP is an atomic, but the converse does not

hold (cf. [10], see also [23]).

By [3], an atomic domain D is a bounded factorization domain (BFD) if for

each nonzero nonunit element x of D, there is a positive integer N(x) such that

whenever x = x1 · · · xn as a product of irreducible elements of D, then n ≤ N(x).

Krull and Noetherian domains are BFDs ([3, Proposition 2.2]). Also in general

a BFD satisfies ACCP but the converse is not true (cf. [3, Example 2.1]).
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Following Zaks [22], an atomic domain D is a half-factorial domain (HFD) if

for each nonzero nonunit element x of D, if x = x1 · · ·xm = y1 · · ·yn with each xi, yj

irreducible in D, then m = n. UFDs are examples of HFDs and Krull domains

having divisor class group isomorphic to 0 or Z2 are HFDs. An HFD is a BFD (cf.

[3]). By [3, Page 11], if D[X] is an HFD, then certainly D is an HFD. However,

D[X] need not be an HFD if D is an HFD. For example the domain D = R+XC[X]

is an HFD, but D[Z] is not an HFD, as (X(1 + iZ))(X(1− iZ)) = X2(1 + Z2) are

decompositions into atoms of different lengths (cf. [3, Page 11]).

By [2, page 217], the elasticity of an atomic domain D is defined as

ρ(D) = sup{m/n : x1 · · · xm = y1 · · · yn, each xi, yj ∈ D is irreducible}.

Thus 1 ≤ ρ(D) ≤ ∞ and ρ(D) = 1 if and only if D is an HFD. Infact, the elasticity

measures how far an atomic domain D is being an HFD.

By [3], an integral domain D is known as an idf-domain if each nonzero element

of D has atmost a finite number of non-associate irreducible divisors. UFDs are

examples of idf-domains. But there are idf-domains which are not even atomic.

Moreover, the Noetherian domain D = R+XC[X] is an HFD but not an idf-domain

(cf. [3, Example 4.1(a)]).

By [3], an atomic domain D is a finite factorization domain (FFD) if each

nonzero nonunit element of D has a finite number of non-associate divisors. Hence

it has only a finite number of factorizations up to order and associates. An FFD is

not an HFD and vice versa. Further, an integral domain D is an FFD if and only

if D is an atomic idf-domain (cf. [3, Theorem 5.1]).

In general,

HFD ⇒ BFD ⇒ ACCP ⇒ Atomic

⇑ ⇑
UFD ⇒ FFD ⇒ idf-domain

but none of the above implication is reversible.

Following Cohn [9], an element x of an integral domain D is said to be primal

if x divides a product a1a2 ; a1, a2 ∈ D, then x can be written as x = x1x2 such

that xi divides ai, i = 1, 2. An element whose divisors are primal elements is called

completely primal. A domain D is called a pre-Schreier if every nonzero element x

of D is primal. An integrally closed pre-Schreier domain is called a Schreier domain.

By [9], any GCD-domain (an integral domain in which every pair of elements has

a greatest common divisor) is a Schreier domain but the converse is not true.
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Following Zafrullah [19], an element x of an integral domain D is said to be rigid

if whenever r, s ∈ D and r, s divide x, then s divides r or r divides s. Also, D is

said to be a semirigid domain if every nonzero element of D can be expressed as a

product of a finite number of rigid elements.

The ascent and descent of factorization properties for atomic domains, domains

satisfying ACCP, BFDs, HFDs, pre-Schreier, semirigid domains, FFDs and idf-

domains were studied in [16] and [18] for domain extension A ⊆ B where the

conductor ideal A : B is maximal in A and which satisfy Condition 1: For each

b ∈ B there exist u ∈ U(B) and a ∈ A such that b = ua, where U(B) is the group

of units of B.

The purpose of this study is to continue the investigations started in [16] and

[18] for ascent and descent of unique factorization domains (UFDs). Specific case

is of locally half-factorial domains (LHFDs), congruence half-factorial domains

(CHFDs), boundary valuation domains (BVDs), rationally bounded factorization

domains (RBFDs), Cohen-Kaplansky domains (CK-domains), valuation domains,

GCD-domains, pseudo-valuation domains (PVDs), ∗-domains, ∗∗-domains, locally

∗-domains and unique representation domains (URDs) relative to Condition 1. Also

we have compared it with the pullbacks considered in [7] and [12] to observe the

ascent and descent for some of these properties of domains.

2. Preliminaries

We restate the established results regarding ascent and descent of factorization

properties for domain extension A ⊆ B relative to the Condition 1 and under the

assumption that the conductor ideal A : B is a maximal ideal in A.

Condition 1: Let A ⊆ B be a unitary (commutative) ring extension and let

U(B) represents the set of units of B. For each b ∈ B there exist u ∈ U(B) and

a ∈ A such that b = ua.

Recall that for a unitary (commutative) ring extension A ⊆ B, the conductor of

A in B is the largest common ideal A : B = {a ∈ A : aB ⊆ A} of A and B.

The followings are a few examples of unitary (commutative) ring extensions

which satisfy Condition 1.

Example 2.1. [18, Example 1] (a) If B is a field, then the ring extension A ⊆ B

satisfies Condition 1.

(b) If B is a fraction ring of A, then the ring extension A ⊆ B satisfies Condition

1. Hence the ring extension A ⊆ B satisfying Condition 1 is a generalization of

localization.
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(c) If the ring extensions A ⊆ B and B ⊆ C satisfy Condition 1, then so does

the ring extension A ⊆ C.

(d) If the ring extension A ⊆ B satisfies Condition 1, then the extensions of rings

A + XB[X] ⊆ B[X] and A + XB[[X]] ⊆ B[[X]] satisfy Condition 1.

The following remark provides the examples of domain extensions A ⊆ B satis-

fying Condition 1 where the conductor ideal A : B is a maximal ideal of A.

Remark 2.2. (i) Let F ⊂ K be any field extension, the domain extension A =

F + XK[X] ⊆ K[X] = B and C = F + XK[[X]] ⊆ K[[X]] = D satisfy Condition

1 where the conductor ideals A : B and C : D are maximal ideals in A and C

respectively.

(ii) Let F ⊂ K be a field extension, where K is a root extension of F and K(Y )

is the quotient field of K[Y ]; then A = F + XK(Y )[[X]] ⊆ K + XK(Y )[[X]] = B

satisfies Condition 1 and A : B = XK(Y )[[X]] is the maximal ideal in A.

There are a number of examples of domain extensions A ⊆ B satisfying Condition

1, where the conductor ideal A : B is not a maximal ideal of A. This becomes clear

from the following remark.

Remark 2.3. (i) Following [4, Example 5.3], let V be a valuation domain such

that its quotient field K is the countable union of an increasing family {Vi}i∈I of

valuation overrings of V. Let L be a proper field extension of K with L∗/K∗ is

infinite.

(a) The domain extension Vi + XL[[X]] ⊆ L[[X]] satisfies Condition 1 since the

extension Vi ⊆ L satisfies the Condition 1. But XL[[X]] is not a maximal ideal of

Vi + XL[[X]]. Also note that U(Vi + XL[[X]]) 6= U(L[[X]]).

(b) The domain extension Vi + XL[[X]] ⊆ K + XL[[X]] satisfies Condition 1,

but XL[[X]] is not a maximal ideal in Vi + XL[[X]]. Also, U(Vi + XL[[X]]) 6=
U(K + XL[[X]]).

(ii) The domain extension A = Z(2)+XR[[X]] ⊆ Q+XR[[X]] = B satisfies Con-

dition 1, but the conductor ideal A : B is not a maximal ideal in A.

(iii) The domain extension A = Z(2)+XR[[X]] ⊆ R[[X]] =E, satisfies Condition

1, but the conductor ideal A : E is not a maximal ideal in A.
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In the following we restate some results from [16] and [18].

Theorem 2.4. [16, Proposition 2.6] Let A ⊆ B be a domain extension which

satisfies Condition 1 and M = A : B is a maximal ideal in A.

(a) A is atomic if and only if B is atomic.

(b) If A is atomic, then ρ(A) = ρ(B).

(c) A satisfies ACCP if and only if B satisfies ACCP.

(d) A is a BFD if and only if B is a BFD.

(e) A is an HFD if and only if B is an HFD.

Theorem 2.5. [18, Theorem 1] Let A ⊆ B be a domain extension which satisfies

Condition 1 and M = A : B is a maximal ideal in A. If A is an idf-domain, then

B is an idf-domain.

Theorem 2.6. [18, Theorem 2] Let A ⊆ B be a domain extension which satisfies

Condition 1 and M = A : B is a maximal ideal in A. If A is an FFD, then B is

an FFD.

Proposition 2.7. [16, Proposition 2.7 ] Let A ⊆ B be a domain extension which

satisfies Condition 1 and M = A : B is a maximal ideal in A. If A is a pre-Schreier

ring, then B is a pre-Schreier ring.

Theorem 2.8. [16, Theorem 2.10] Let A ⊆ B be a domain extension which

satisfies Condition 1 and M = A : B is a maximal ideal in A. If A is a semirigid

domain, then B is a semirigid domain.

3. Ascent and Descent of Atomic Domains

This section is devoted to UFDs, LHFDs, CHFDs, BVDs, RBFDs and CK-

domains. We begin with the following remark.

Remark 3.1. (i) If B is a field, then the ring extension A ⊆ B satisfies Condition

1. So in this case if A is UFD, then B is obviously UFD.

(ii) If B is a fraction ring of A, then the ring extension A ⊆ B satisfies Condition

1. Obviously A is a UFD implies that B is a UFD.

(iii) If the ring extension A ⊆ B satisfies Condition 1, then the ring extension

A + XB[X] ⊆ B[X] satisfies Condition 1. Now A + XB[X] is a UFD if and only

if A = B and B is a UFD, or equivalently B[X] is a UFD.

The observations in Remark 3.1 conclude the following
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Proposition 3.2. Let A ⊆ B be a domain extension which satisfies Condition 1

and M = A : B is a maximal ideal in A. If A is a UFD , then B is a UFD.

Proof. As A is a UFD, A is atomic and pre-Schreier. Using [16, Proposition 2.6(a)

and Proposition 2.7], we get B to be atomic and pre-Schreier. Hence B is a UFD

(cf. [21, Page 1895]). ¤

Remark 3.3. The converse of Proposition 3.2 is not true. For example, the domain

extension A = R+XC[X] ⊆ C[X] = B satisfies Condition 1 and A : B = XC[X] is

a maximal ideal in A. C[X] is a UFD, but R+ XC[X] is not a UFD. Moreover as

R+XC[X] is an atomic domain but not pre-Schreier, the descent of a pre-Schreier

ring is not necessarily pre-Schreier.

By [5], an integral domain D is a locally half-factorial domain (LHFD) if each

of its localization DS is an HFD. By the same [5], there is an example of Dedekind

HFD D with divisor class group Z6, but with a non HFD localization.

Now, if we put the restriction the multiplicative system is S = D − P, where P

is a prime ideal in D. We may represent the ring DS with one maximal ideal as

DP and with the further assumption that the domain D is an HFD.

Proposition 3.4. Let B be a domain extension of an HFD A such that A ⊆ B

satisfies Condition 1 and A : B is a maximal ideal in A. If BPB is an HFD, then

AP is an HFD, for each prime ideal P of A.

Proof. Let P be a prime ideal of A. By [16, Proposition 2.2(c)], PB is a prime

ideal in B with PB
⋂

A = P . Suppose that BPB is an HFD. We first note that

AP ⊆ BPB satisfies Condition 1. Let x/s ∈ BPB where x ∈ B and s ∈ B − PB.

Choose u, v ∈ U(B) with xu, sv ∈ A. Then sv ∈ A − P ; for sv ∈ P implies

s = svv−1 ∈ PB. So (x/s)(u/v) ∈ AP where u/v ∈ U(B) = U(BPB). Note that

this also shows that BPB = AP B = BA−P . So AP ⊆ BPB satisfies Condition

1. By [16, Proposition 2.6(e)] AP is an HFD if AP : BPB is a maximal ideal of

AP , that is, if AP : BPB = PAP . If AP = BPB , then AP is an HFD. So we can

assume that AP 6= BPB and hence AP : BPB ⊆ PAP . Now P = A : B implies

PAP = (A : B)P ⊆ AP : BA−P = AP : BPB . So we have AP : BPB = PAP . ¤

By [8], an atomic domain D is a congruence half-factorial domain (CHFD) of

order r, where 1 < r ∈ Z+, if the equality
∏m

i=1 xi =
∏n

i=1 yi, where xi and yi are

irreducible elements in D, implies n ≡ m(modr). Obviously an HFD is a CHFD.
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Theorem 3.5. Let A ⊆ B be a domain extension which satisfies Condition 1 and

M = A : B is a maximal ideal in A. If B is a CHFD of order r, then A is a CHFD

of order r.

Proof. Assume that B is a CHFD of order r. This means B is atomic and by

[16, Proposition 2.6(a)], A is atomic. Now for any 0 6= a ∈ A − U(A) we have

a =
∏m

i=1 xi, where the xi’s are irreducible elements in A. Suppose that there

exists another factorization
∏n

i=1 yi of a, where yi’s are irreducible elements in A.

Since the xi’s and yi’s are irreducible elements in B (cf. [16, Theorem 2.5(d)],

we have two irreducible factorizations of a in B. Since B is a CHFD, we have

n ≡ m(modr), where r > 1. Hence A is a CHFD. ¤

By [14, Definition 12], the domain extension A ⊆ B is said to satisfy the property

(∗) if for any 0 6= b ∈ B (1) b = ua, where u ∈ U(B) and a ∈ A, and (2) b =

ua = u1a1 (u, u1 ∈ U(B) and a, a1 ∈ A) implies that u/u1 ∈ U(A).

Now, if our Condition 1 is replaced by property (∗) then the converse of Theorem

3.5 is obtained.

Theorem 3.6. Let A ⊆ B be a domain extension which satisfies (∗) and M = A : B

is a maximal ideal in A. If A is a CHFD of order r, then B is a CHFD of order r.

Proof. Assume that A is a CHFD of order r. This means A is atomic and by [16,

Proposition 2.6(a)], B is atomic. For any 0 6= z ∈ B − U(B), let z =
∏m

i=1 xi =∏n
i=1 yi, where the xi’s and yi’s are irreducible elements in B. Then by (*) and

[16, Theorem 2.5(c)] z =
∏m

i=1 aiui =
∏n

i=1 civi, where ui’s, vi’s are units in B

and ai’s, ci’s are irreducible elements in A. Say
∏m

i=1 ui = u,
∏n

i=1 vi = v ∈ U(B),

so we have u
∏m

i=1 ai = v
∏n

i=1 ci and therefore (u/v)
∏m

i=1 ai =
∏n

i=1 ci. Since

u/v ∈ U(A), hence ((u/v)a1

∏m
i=2 ai =

∏n
i=1 ci implies n ≡ m(modr), as A is a

CHFD of order r. Thus B is a CHFD. ¤

Let D be an HFD with quotient field K. If D 6= K, then by [15], we define the

boundary map δD : K∗ → Z by δD(α) = t − s, where α = (x1 · · · xt)/(y1 · · · ys)

with xi’s, yj ’s irreducible elements in D.

By [15], an integral domain D with quotient field K, is called boundary valuation

domain (BV D) if D is an HFD and for any α ∈ K∗ with δD(α) 6= 0, either α ∈ D

or α−1 ∈ D, where δD is a boundary map defined on D.

Theorem 3.7. Let A ⊆ B be a domain extension which satisfies Condition 1 and

M = A : B is a maximal ideal in A, KA and KB denote the quotient fields of A

and B respectively. If A is a BVD, then B is a BVD.
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Proof. A is a BVD implies A is an HFD. Then by [16, Theorem 2.6(e)] B is an

HFD. For a ∈ K∗
B , we have a = (b/d), where b, d ∈ B − 0 This implies a =

(b/d) = ((ab′)/(cd′)), where a, c ∈ A, b′, d′ ∈ U(B). This means α = (b/d) =

((a1 · · · asb
′)/(c1 · · · ctd

′)), where a1, ..., as, c1, ..., ct are irreducible elements in A

and by [16, Theorem 2.5(d)] are also irreducible elements in B. Obviously u =

((b′)/(d′)) ∈ U(B) and therefore a = (b/d) = (a/c)u = ((a1 · · · as)/(c1 · · · ct))u.

Since δB(α) 6= 0 implies δA(a/c) 6= 0, therefore either a/c ∈ A or c/a ∈ A. This

implies (a/c)u ∈ B or (c/au) ∈ B. Hence B is a BVD. ¤

By [2], an integral domain D is called a rationally bounded factorization domain

(RBFD) if D is an atomic domain and ρ(D) < ∞.

Proposition 3.8. Let A ⊆ B be a domain extension which satisfies Condition 1

and M = A : B is a maximal ideal in A. Then A is an RBFD if and only if B is

an RBFD.

Proof. Follows from [16, Proposition 2.6(a,b,d)]. ¤

By [1], an atomic domain D is said to be a Cohen-Kaplansky domain (CK-

domain) if it has finitely many non-associate irreducible elements. A semilocal PID

is an example of CK-domain. Hence a DVR is a CK-domain. But R+ XC[[X]] is

a one dimensional local domain which is not a CK-domain (cf.[1, page 27]). This

means for a domain extension A ⊆ B satisfying Condition 1 such that M = A : B

is a maximal ideal in A, the descent is not possible for a CK-domain. Although if

K ⊂ F is a finite field extension, then K + XL[[X]] is a local CK-domain (cf.[1,

page 18]).

4. Ascent and Descent of Non-atomic Domains

In this section we discuss the ascent and descent of valuation domains, PVDs,

GCD-domains, URDs, ∗-domains, ∗∗-domains and locally ∗-domains in domain

extensions A ⊆ B relative to the Condition 1.

By [13, page 12], an integral domain D with quotient field K, is said to be a

valuation domain if it satisfies either of the (equivalent) condition:

(1) For any two elements x, y ∈ D, either x divides y or y divides x.

(2) For any element x ∈ K, either x ∈ D or x−1 ∈ D.

Theorem 4.1. Let A ⊆ B be a domain extension which satisfies Condition 1. If

A is a valuation domain, then B is a valuation domain.
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Proof. Suppose A be a valuation domain. Let x, y ∈ B, then there exist x1, y1 ∈
A, u, v ∈ U(B) such that x = ux1, y = vy1. As A is a valuation domain, x1 divides

y1 or y1 divides x1. If x1 divides y1 in A, then there exists a ∈ A such that y1 = ax1.

We may write y = vy1 = vau−1ux1 = cx, where vau−1 = c ∈ B. Hence x divides y

in B. Similarly, if y1 divides x1 in A, then y divides x in B. Thus B is a valuation

domain. ¤

Following [7], let A and B be any commutative rings with A ⊆ B, and I = A : B

be the common nonzero conductor ideal of B into A. Setting D = A/I and E =

B/I, we obtain the natural surjections π1 : B −→ E and π2 : A −→ D and the

inclusions i1 : D ↪→ E and i2 : A ↪→ B. These maps yield a commutative diagram

A = π−1
1 (D) D

B E

-π2

?
ı2

?
ı1

-π1

called a conductor square ¤, which defines A as a pullback of π1 and i1.

The conductor square ¤ of Boynton [7] is a special case of the pullback of type

¤ of Houston and Taylor [12] in which I is any nonzero common ideal of A and B.

The pullbacks considered in this study are in fact a Boynton’s [7] conductor

square where we assume that the conductor ideal I = A : B is a maximal ideal in

A.

Remark 4.2. The converse of Theorem 4.1 is not true, as in the pullback

A = R+ XC[[X]] → A/(A : B) ' R
↓ ↓

B = C[[X]] → B/(A : B) ' C

C[[X]] is a valuation domain, but R + XC[[X]] is not a valuation domain

and obviously the domain extension A ⊆ B satisfies Condition 1. Moreover as

qf(A/(A : B)) 6= qf(B/(A : B)), it does not satisfy the assumption of [12, Theo-

rem 1.3], though A : B is a maximal and hence a prime ideal in B.

In [11], an integral domain D with quotient field K, is said to be a pseudo-

valuation domain (PV D) if, whenever P is a prime ideal in D and xy ∈ P , where

x, y ∈ K, then x ∈ P or y ∈ P . A valuation ring is a PVD, but converse is not

necessarily true.
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An element d of a ring R is said to be a proper divisor of an element b of R if

b = md for some non unit m of R. A commutative ring R with identity is said to be

a PV R if and only if for every a, b ∈ R, either a divides b or d divides a for every

proper divisor d of b (cf. [6, Proposition 4]).

Theorem 4.3. Let A ⊆ B be a (unitary) commutative ring extension which satis-

fies Condition 1 and M = A : B is a maximal ideal in A. If A is a PVR, then B

is a PVR.

Proof. Let b1, b2 ∈ B such that b1 = a1u1, b2 = a2u2, where a1, a2 ∈ A and

u1, u2 ∈ U(B). Since A is a PVR, by [6, Proposition 4(d)] either a1 divides a2 in

A or if c divides a2 in A (where c is the proper divisor) implies c divides a1 in A.

Obviously a1 divides a2 implies b1 divides b2 in B. Now suppose b1 does not divide

b2 in B (then of course a1 does not divide a2 in A), so c divides a1 in A implies c

divides b1 in B, whereas c divides b2 in B. Hence B is a PVR. ¤

We do not know the ascent of GCD-domains for domain extensions A ⊆ B

which satisfies Condition 1 such that M = A : B is a maximal ideal in A. The

domain extension A = Z + XQ[X] ⊆ Q[X] = B satisfies Condition 1, but the

conductor ideal XQ[X] is not a maximal ideal in A. Of course A and B both

are GCD-domains. On the other hand the descent is not possible, as: A = Q +

XR[X] ⊆ R[X] = B satisfies Condition 1 and A : B = XR[X] is maximal ideal in

A. Obviously B is a GCD-domain, but A is not a GCD-domain.

By [20], a unique representation domain (URD) is a GCD-domain whose nonzero

nonunit elements are expressible as a product of finitely many packets (by a packet

x, we mean for every factorization x = ab; a divides b2 or b divides a2(cf. [20,

Lemma 4])). The finite product of mutually coprime packets resembles the canon-

ical representation upa1
1 · · · pan

n of an element in a UFD, where u is a unit and pi’s

are non-associate primes and a1, a2, .., an ∈ Z+(see [20, Page 19]).

Remark 4.4. Let A ⊆ B be a domain extension such that x ∈ A is a packet. So

for every factorization x = x1x2; x1 divides x2
2 in A or x2 divides x2

1 in A. This

implies x1 divides x2
2 in B or x2 divides x2

1 in B. Hence x is a packet in B.

Proposition 4.5. Let A ⊆ B be a domain extension which satisfies Condition 1

such that B is a GCD-domain. If A is a URD, then B is a URD.

Proof. For b ∈ B, we have b = au, where u ∈ U(B) and a ∈ A. Now A is a

URD, so a = vxa1
1 · · · xan

n , where v ∈ U(A) and the xi’s are packets in A. Thus
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b = (vu)xa1
1 · · · xan

n , where vu ∈ U(B) and the xi’s are packets in B. Hence B is a

URD. ¤

Remark 4.6. Let A be an integral domain and S be a multiplicative system in

A.

(i) If A is a URD, then B = S−1A is URD (cf. [20, Propositions 6 ]). So the

domain extension A ⊆ B satisfies Condition 1.

(ii) Let A be a URD such that B = A + XS−1A[X] is a GCD-domain, then

B = A+XS−1A[X] is a URD (cf. [20, Propositions 7 ]). But the domain extension

A ⊆ B does not satisfy Condition 1.

(iii) Let A be a UFD, then B = A+XS−1A[X] is a URD for every multiplicative

system S (cf. [20, Corollary 3]). But the domain extension A ⊆ B does not satisfy

Condition 1.

(iv) If B = A + XS−1A[X] is URD, then A is URD (cf. [20, Propositions 7 ]).

But the domain extension A ⊆ B does not satisfy Condition 1.

We recall the following from [21].

Let D be an integral domain.

property-∗ : (∩i(ai))(∩j(bj)) = ∩i, j(aibj) for all ai, bj ∈ D, where i = 1, .. , m

and j = 1, .., n.

property-∗∗ : ((a) ∩ (b))((c) ∩ (d)) = (ac) ∩ (ad) ∩ (bc) ∩ (bd), where a, b, c,

d ∈ D∗.

An integral domain D is called ∗-domain (respectively ∗∗-domain) if it satisfies

property-∗ (respectively property-∗∗). D is said to be a locally ∗-domain if for each

maximal ideal M , DM has property-∗.

Theorem 4.7. Let A be a PVD which is not a valuation domain. Let A ⊆ B is a

domain extension which satisfies Condition 1 and M = A : B is a maximal ideal

in A.

(1) If A is a ∗-domain, then B is a ∗-domain.

(2) If A is a locally ∗-domain, then B is a locally ∗-domain.

(3) If A is a ∗∗-domain, then B is a ∗∗-domain.

Proof. (1) By [21, Theorem 4.4] A is pre-Schreier and B is a pre-Schreier (cf. [16,

Proposition 2.7]). Thus the result follows by [21, page 1896].

(2) By [21, Theorem 2.1], A is a ∗-domain. From part (1), B is a ∗-domain.

Hence B is a locally ∗-domain by [21, Theorem 2.1].
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(3) Let A be a ∗∗-domain. This implies A is a pre-Schreier ring, by [21, Theorem

4.4] and hence B is a pre-Schreier ring due to [16, Proposition 2.7]. By Theorem

4.3 B is a PVD and [21, Theorem 4.4] yields B is a ∗∗-domain. ¤
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