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Abstract. Given a prime number p, we study the module theory of F [G],

where F is a field of characteristic p and G is a cyclic p-group. We describe

a construction of the set of all injective homomorphisms between two finitely

generated F [G]-modules in terms of their numerical invariants. We also give

a conceptual characterization of injective F [G]-homomorphisms. Finally, we

characterize all submodules of a given finitely generated F [G]-module. These

results were applied to describe all solutions of a specific type of Galois em-

bedding problems in [8].
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1. Introduction

The main motivation of this paper comes from Galois theory, specifically Galois
embedding problems with finite abelian kernels of exponent p, where p is an odd
prime number, see [7,8]. Consider the inverse Galois problem of a group H over
a field D, that is finding a Galois extension K/D such that H ' Gal(K/D).
Sometimes, it is possible to reduce this problem to a simpler problem known as
a Galois embedding problem that can be formulated as follows: Assume that we
have a surjection π : H ³ G of groups and E/D is a solution for the inverse
Galois problem of G over D, i.e. G ' Gal(E/D). The Galois embedding problem
associated with the surjection π over the field extension E/D is the problem of
finding an embedding of the field extension E/D into a Galois extension K/D such
that H ' Gal(K/D) and the restriction of elements of Gal(K/D) to E corresponds
to the surjection π. Then, the Galois group Gal(K/E) corresponds to the kernel of
π which we denote by N . Thereby, one may consider groups in the group extension
1→N→H→G→1 correspondingly as Galois groups of the following tower of field
extensions:
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K

Gal(K/D)

Gal(K/E)

E

Gal(E/D)

D

Here, N is called the kernel of the Galois embedding problem. The tools de-
veloped in this paper enable us to study Galois embedding problems with finite
abelian kernels of exponent p over cyclic Galois extensions E/D of degree p. To
explain the idea, let E/D be such an extension, i.e. G = Gal(E/D) ' Z/pZ. The
Galois action of G on E× induces an action of G on E×/E×p. Since E×/E×p is
a group of exponent p, one can consider the Galois module structure of E×/E×p

as an Fp[G]-module structure. This Fp[G]-module structure was studied in [3,4]
and in more general setting in [5]. Using a relative version of Kummer theory as
formulated in the following theorem, we can identify the Fp[G]-module structure of
finitely generated submodules of E×/E×p with the Fp[G]-module structure of their
associated Kummer extensions.

Theorem 1.1. Let E/D be a cyclic extension of degree pl with Galois group G and
let D contain a primitive pth root of unity. Let B be a subgroup of E× containing
E×p and invariant under the Galois action of G. If B/E×p is a finitely generated
submodule of E×/E×p, then it has the same Fp[G]-module structure as Gal(EB/E),
where EB is the Kummer extension associated with B as shown in the following
diagram:

EB

Gal(EB/D)

Gal(EB/E)

E

G

D

(1)

For the proof of the above theorem and necessary definitions and notations see
[7], although it appeared briefly in [6] too. It was shown in [9] that EB is Galois
over D. Therefore, knowing all finitely generated Fp[G]-submodules of E×/E×p

amounts to characterizing all finite Kummer extensions of E of exponent p, which
are also Galois over D. These extensions are all possible answers of the Galois
embedding problems associated with the group extensions 1→N→H→G→1 over
E/D, where N , the kernel of the Galois embedding problem, is a finite abelian



MODULE HOMOMORPHISMS OF GROUP ALGEBRAS OF CYCLIC p-GROUPS 61

group of exponent p. If the group E×/E×p is finite, for instance when E is a
p-adic field, one can apply the results of the present paper to describe all Fp[G]-
submodules of E×/E×p, hence all solvable Galois embedding problems with finite
abelian kernels of exponent p over the field extension E/D.

Although, for our application in [8], we only need to consider the group algebra
of the cyclic group Z/pZ over Fp, we prove all statements in a slightly more general
setting. In this paper, we assume p is a prime number and G is the cyclic group of
order q = pl for some positive integer l and F is a field of characteristic p.

Here, we summarize the content of this paper. In the rest of this section, we
describe all ideals of the group algebra F [G] and all indecomposable F [G]-modules
(Proposition 1.2). We also introduce some notations and two sets of numerical
invariants for finitely generated F [G]-modules. In Section 2, we describe some cri-
teria in terms of linear algebra over F to determine when F [G]-homomorphisms
between two finitely generated F [G]-modules are injective or surjective (Lemmas
2.1 and 2.5). In Section 3, we address the problem of the existence of injective
and surjective F [G]-homomorphisms with respect to numerical invariants of the
F [G]-modules under consideration (Propositions 3.1 and 3.2). As the main result
of this section, we develop a constructive method to characterize all injective ho-
momorphisms between two finitely generated F [G]-modules (Theorem 3.12). In
Section 4, we propose a conceptual framework to study F [G]-modules and F [G]-
homomorphisms. This section is concluded with a characterization of all injective
F [G]-homomorphisms in terms of a specific family of linear maps between finite di-
mensional vector spaces over F (Theorem 4.6). Finally, in the last section, we use
the results of Sections 1, 2 and 3 to characterize all submodules of a given finitely
generated F [G]-module in terms of its numerical invariants (Theorem 5.5). The
reader can modify most of the statements of this paper and their proofs to gen-
eralize them to the case that F [G]-modules are not necessarily finitely generated,
although this condition is necessary in Sections 3 and 5.

Let G be generated by σ. In the group algebra F [G], we set x = σ−1 and define
A := F [x]/xq. Then, we have the following basic observations:

Proposition 1.2. (i) F [G] ' A.
(ii) Every polynomial in A whose constant term is nonzero is invertible.
(iii) Every ideal of A is of the form 〈xm〉 for some 0 ≤ m ≤ q.
(iv) Let B be an indecomposable F [G]-module of dimension m over F . Then,

0 ≤ m ≤ q and B ' 〈xq−m〉 ' A/〈xm〉.

Proof. (i) Since the characteristic of F is p, we have σq − 1 = (σ − 1)q. Thus,
F [G] ' F [σ]

〈σq−1〉 ' F [σ]
〈(σ−1)q〉 = F [x+1]

〈xq〉 ' F [x]
〈xq〉 .
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(ii) For a given polynomial h(x) = 1 + c1x + · · · + cnxn, set g(x) = h(x) − 1.
Then using the fact that g(x)q = 0, we have

h(x)(1− g(x) + g(x)2 − · · · ± g(x)q) = (1 + g(x))(1− g(x) + g(x)2 − · · · ± g(x)q)

= 1− g(x)q

= 1.

This shows h(x) is invertible and so is every polynomial with nonzero constant
term.

(iii) It is well known that A is a principal ideal domain. Let I be an ideal of A

generated by a polynomial P (x) = amxm + am+1x
m+1 + ... + anxn, where am 6= 0

and m ≤ n ≤ q − 1. If n > m, write P (x) = xm(am + am+1x + ... + anxn−m).
By Part (ii), am + am+1x + ... + anxn−m has an inverse, say Q(x). Thus, we have
xm = P (x)Q(x) ∈ I. On the other hand, P (x) ∈ 〈xm〉. These facts prove that
I = 〈xm〉.

(iv) Let B be an indecomposable F [G]-module whose dimension over F is m.
By Part (i), B is an A-module, and since B is finite dimensional, it is finitely
generated. On the other hand, by the decomposition theorem of principal ideal
domains, [2, page 402], B is isomorphic to a direct sum of cyclic A-modules. Now,
since B is indecomposable, its decomposition has exactly one cyclic module which
is isomorphic to A/I for some ideal I of A. By Part (iii), we have B ' A/〈xm〉
where 0 ≤ m ≤ q. The map defined by 1 7→ xq−m gives an isomorphism from
A/〈xm〉 onto 〈xq−m〉 ⊆ A. ¤

In the above proposition, we used the same notation for x and the class of x in
A, and we will keep using this notation in the rest of this paper. The proof of Part
(iv) of the above proposition has been taken from [1].

Now, we set up the notations that will be used in the rest of this paper. Consider
two fixed finitely generated F [G]-modules decomposed into direct sums of cyclic
modules as follows:

M = B1 ⊕ · · · ⊕Br

L = C1 ⊕ · · · ⊕ Cs,

where Bi = 〈xq−li〉 has dimension li and Cj = 〈xq−kj 〉 has dimension kj for some
1 ≤ li, kj ≤ q. Whenever it is useful, we will also assume that summands of
each F [G]-module are in decreasing order with respect to their dimensions over
F . Therefore, for given finitely generated F [G]-modules M and L, positive integers
(l1, · · · , lr) and (k1, · · · , ks) are complete sets of invariants of M and L respectively.
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Example 1.3. Let q = 32 and M = 〈x〉 ⊕ 〈x3〉 ⊕ 〈x5〉 ⊕ 〈x5〉 ⊕ 〈x6〉. Then r = 5
and the numerical invariants (8, 6, 4, 4, 3) determine the F [G]-module structure of
M up to isomorphism.

There is yet another set of invariants for a finitely generated F [G]-module. For
k = 1, · · · , q, let kM (resp. kL) be the number of cyclic summands of M (resp.
L) of dimension greater than or equal to k. We also denote the direct sum of
such summands of M (resp. L) by M(k) (resp. L(k)). We always have 1M = r

and M(1) = M . Clearly, the q-tuple (1M , · · · , qM ) (resp. (1L, · · · , qL)) is another
complete set of invariants of M (resp. L). It has two advantages. First, it has
the constant length q. In other words, it encodes the order of the group G as well.
Second, its components are in a decreasing order.

Example 1.4. Let M be as Example 1.3. Then, one easily computes (1M , · · · , 9M )
= (5, 5, 5, 4, 2, 2, 1, 1, 0). Moreover, we have M(1) = M(2) = M(3) = 〈x〉 ⊕ 〈x3〉 ⊕
〈x5〉 ⊕ 〈x5〉 ⊕ 〈x6〉, M(4) = 〈x〉 ⊕ 〈x3〉 ⊕ 〈x5〉 ⊕ 〈x5〉, M(5) = M(6) = 〈x〉 ⊕ 〈x3〉,
M(7) = M(8) = 〈x〉 and M(9) = 0.

Remark 1.5. Assume the numerical invariant (l1, · · · , lr) of M is given. As in
Example 1.4, one can compute the numerical invariant (1M , · · · , qM ) by the formula
kM =

∑
li≥k 1 for all 1 ≤ k ≤ q. Moreover, we have M(k) = ⊕li≥k〈xq−li〉 for all

1 ≤ k ≤ q.
Conversely, let the numerical invariant (1M , · · · , qM ) of M be given. Then, the

number r of cyclic summands of M is the greatest integer appearing in the q-tuple
(1M , · · · , qM ). l1 is the place of the last nonzero component of (1M , · · · , qM ), i.e.
l1 = k if and only if kM 6= 0 and (k + 1)M = 0 (provided that k + 1 ≤ q). Then,
l1 = l2 = · · · = ln1 , where n1 = kM . Now, let k′M be the first distinct number
before kM in the sequence (1M , · · · , qM ). Then, ln1+1 = · · · = ln1+n2 = k′, where
n2 = k′M − kM . In this way, one can inductively compute the numerical invariants
(l1, · · · , lr) using the numerical invariants (1M , · · · , qM ), as in the next example.

Example 1.6. Let M be an F [G]-module that (1M , · · · , qM ) = (10, 9, 6, 6, 6, 5, 5, 2).
Then, |G| = q = 8 = 23 and so p = 2. Moreover, r = 10 and one easily computes
(l1, · · · , l10) = (8, 8, 7, 7, 7, 5, 2, 2, 2, 1). Hence,

M =




2⊕

j=1

〈1〉

⊕




3⊕

j=1

〈x〉

⊕ 〈x3〉 ⊕




3⊕

j=1

〈x6〉

⊕ 〈x7〉.

Remark 1.7. The above discussion suggests that all statements regarding M and
L could be stated in terms of at least one of these two types of numerical invariants.
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Let ϕ : M→L be an F [G]-homomorphism. We use the same notation for the
restriction of ϕ to each summand of M . For i = 1, ..., r (resp. j = 1, ..., s), let
bi (resp. cj) be the generator of Bi (resp. Cj) in M (resp. in L) defined by

(0, ..., 0,

i th place︷ ︸︸ ︷
xq−li , 0, ..., 0)t (resp. (0, ..., 0,

j th place︷ ︸︸ ︷
xq−kj , 0, ..., 0)t). We sometimes consider

M and L respectively as submodules of Ar and As in the obvious way.

Remark 1.8. We note that xlibi = 0 in Bi, and so, the image of Bi under ϕ is
annihilated by xli . Thus, it is contained in

(⊕s
j=1〈xq−li〉) ∩ L (as a submodule of

As).

2. Injectivity and surjectivity of homomorphisms

For an F [G]-module K, let KG denote the submodule of G-invariant elements
of K. Although, the following lemma holds in greater generality in terms of socles
of modules the present formulation is sufficient for our purpose.

Lemma 2.1. Let ϕ : M→L be an F [G]-homomorphism and let ϕ̃ : MG→LG

denote the restriction of ϕ to MG. Then, ϕ is injective if and only if ϕ̃ is injective.

Proof. Assume ϕ is not injective. Then ϕ(m) = 0 for some non zero m ∈ M .
Let n be the largest integer such that xnm 6= 0. Then (σ − 1)(xnm) = x(xnm) =
xn+1m = 0, so xnm ∈ MG and we have ϕ̃(xnm) = ϕ(xnm) = xnϕ(m) = 0. This
shows ϕ̃ is not injective too. The converse is clear. ¤

We will see in Lemma 2.5 that the above lemma can be considered as a statement
dual to Nakayama’s lemma. In the following, we associate a linear map to every
F [G]-homomorphism between two finitely generated F [G]-modules. This linear
map can be thought of as the restriction of the homomorphism to fixed submodules
as Lemma 2.1. This allows us to reduce the study of injective F [G]-homomorphisms
to the linear algebra problem of determining one-to-one linear maps between vector
spaces over F .

Definition 2.2. Let ϕ : M→L be an F [G]-homomorphism. We define a linear
map ϕ : F r→F s by setting ϕ(ei) := xli−1ϕ(bi) and extending it linearly, where
{e1, ...er} is the standard basis of F r.

Remark 2.3. In the above definition, we considered the isomorphism F s ' 〈xq−1〉s
for the target of ϕ.

Remark 2.4. As before, let ϕ̃ denote the restriction of ϕ to MG with LG as its
target. Then, ϕ̃ as an F -linear map is the same as ϕ. To see this, we first note
that MG = BG

1 ⊕ · · ·⊕BG
r . On the other hand, for i = 1, · · · , r, BG

i is generated
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by xli−1bi = (0, ..., 0,

i th place︷︸︸︷
xq−1 , 0, ..., 0)t, and so it has dimension 1 over F . Thus, we

have ϕ̃(xli−1bi) = ϕ(xli−1bi) = xli−1ϕ(bi) = ϕ(ei).

Although the interpretation of ϕ as the restriction of ϕ to MG is simpler, the
way we defined it in the above definition is constructive and it helps to construct
injective F [G]-homomorphisms using some specific matrices.

Now, we give a similar criterion for surjectivity of an F [G]-homomorphism. Let
I be the augmentation ideal of A, i.e. the ideal generated by x = σ − 1 in A.
For an F [G]-module K, we set KG = K/IK. For every F [G]-homomorphism
ϕ : M→L, we have ϕ(IM) ⊆ IL. Thus, ϕ induces a map ϕ̂ : MG→LG defined
by ϕ̂(m + IM) := ϕ(m) + IL. Since L is finitely generated and I is nilpotent the
following lemma follows from Nakayama’s lemma:

Lemma 2.5. ϕ : M→L is surjective if and only if ϕ̂ : MG→LG is surjective.

Proof. Obviously, the surjectivity of ϕ implies the surjectivity of ϕ̂.
Conversely, let ϕ̂ be surjective and let R = ϕ(M). Then, by surjectivity of ϕ̂, we

have L = R + IL. By Nakayama’s lemma R = L. Therefore, ϕ is surjective. ¤

The above lemma holds in greater generality in terms of radicals of modules, but
the above formulation is adequate for our purpose. The map ϕ̂, as a linear map
over F , can be constructed as follows:

Definition 2.6. Let ϕ : M→L be an F [G]-homomorphism. We associate a linear
map ϕ : F r→F s with ϕ by setting

ϕ(ej) :=




a1jx
k1−1

...
asjx

ks−1


 ,

where {e1, ...er} is the standard basis of F r and ϕ(bj) =




a1j

...
asj


. We used the

isomorphism
(〈xq−1〉)s ' F s for the target of ϕ.

Remark 2.7. The maps ϕ̂ and ϕ are equal as F -linear maps. To see this, we
first note that MG = M/IM = B1/IB1⊕ · · ·⊕Br/IBr and each Bj/IBj is one
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dimensional and generated by bj . Thus, we have

ϕ̂(bj + IM) = ϕ(bj) + IL

=




s∑

i=1




0
...

aij

...
0




← (i th place)




+ (IC1⊕ · · ·⊕ICs)

=
s∑

i=1




0
...

aij

...
0




+ ICi.

This shows that all terms of degree more than q − ki in the ith component of
ϕ̂(bj + IM) can be considered zero. On the other hand, there is no term of degree
less than q − ki in the ith component of ϕ̂(bj + IM). Thus, the ith component of
ϕ̂(bj + IM) as an element of F is equal to the coefficient of xq−ki in aij . This is
exactly the ith component of ϕ(ej) as an element of F , because terms with degree
greater than xq−ki in aij vanish due to the factor xki−1 and again there is no term
of degree less that q − ki in aij .

3. Characterization of injective homomorphisms

From linear algebra, we know that there is an injective linear map from F r

into F s if and only if r ≤ s. By Lemma 2.1, this is a necessary condition for the
existence of an injective homomorphism from M into L too. But, it is not sufficient,
e.g. A cannot be embedded into 〈x〉. Here, we describe a sufficient condition for the
existence of injective homomorphisms between two given finitely generated F [G]-
modules. Afterwards, we shall describe the set of all injective F [G]-homomorphisms
between them in terms of the cartesian product of two specific families of matrices.

Proposition 3.1. There is at least one injective homomorphism from M into L if
and only if kM ≤ kL for k = 1, ..., q.

Proof. Assume the components of M and L are in decreasing order with respect
to their dimension over F . Let ϕ : M→L be an injective homomorphism. For
k = 1, · · · , q, let ιk denote the natural embedding of M(k) into M . Then, ϕιk :
M(k)→L is injective too. If li ≥ k, then according to Definition 2.2, ϕιk(ei) =
ϕ(ei) = xli−1ϕ(bi). Therefore, if Cj has dimension less than k, the jth component
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of xli−1ϕ(bi) is zero. So, for 1 ≤ i ≤ r, if li ≥ k, then only first kL components
of ϕιk(ei) can be nonzero. Now, by Lemma 2.1, the injectivity of ϕιk implies that
kM ≤ kL. Conversely, let kM ≤ kL for k = 1, · · · , q. Then, r ≤ s and it is easy
to see that li ≤ ki for 1 ≤ i ≤ r. Therefore, one can embed summands of M into
summands of L correspondingly. This gives us an injective homomorphism from
M into L. ¤

The following proposition answers the same question about the existence of sur-
jective homomorphisms between two finitely generated F [G]-modules:

Proposition 3.2. There is at least one surjective homomorphism from M onto L

if and only if kM ≥ kL for k = 1, ..., q.

Proof. Let kM ≥ kL for k = 1, ..., q. Then, one notes that if j ≥ i then 〈xq−i〉 '
〈xq−j〉
〈xq−j+i〉 . This means that any cyclic module can be considered as a quotient of
cyclic modules of higher dimensions. For the converse, namely, when there is a
surjective homomorphism ϕ : M→L, one can consider the composition of ϕ with
natural surjections πk : L→L(k). Then the statement follows from Lemma 2.5 and
Remark 2.7. ¤

In Definition 2.2, we associated a linear map ϕ to every homomorphism ϕ. Then,
using Lemma 2.1, we were able to determine when ϕ is injective by studying the
injectivity of ϕ. Now, we are going in the reverse direction, namely, we start with a
linear map T between two vector spaces over F and an F [G]-homomorphism S of
specific form and we construct an F [G]-homomorphism ΦT,S . Afterwards, we will
explain the necessary condition on T that implies the injectivity of ΦT,S . This also
means that the injectivity of ΦT,S has nothing to do with S. It provides us with a
method, based on linear algebra over F , to construct all injective homomorphisms
between two F [G]-modules using F -linear maps.

Definition 3.3. Let Msr(F ) (resp. Msr(I)) denote the set of all s×r matrices
with entries in F (resp. I = 〈x〉 ⊆ A). For given T = (tij) ∈ Msr(F ) and
S = (sij) ∈ Msr(I), we define an s×r matrix ΦT,S with entries in A as follows:

ΦT,S := ((tij + sij)xnij ),

where nij ’s are defined by

nij :=

{
lj − ki if lj > ki

0 if lj ≤ ki

and are called the correction numbers associated with M and L. Further, xnij ’s are
called the correction powers associated with M and L.
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Lemma 3.4. If we consider elements of M and L as column vectors with respect
to the cyclic decompositions of M and L, then the matrix multiplication by ΦT,S

(from left) defines an F [G]-homomorphism from M into L.

Proof. Clearly, ΦT,S is an F [G]-homomorphism from Ar into As. We must show
that the restriction of ΦT,S to M (considered as a submodule of Ar) maps elements
of M into L (considered as a submodule of As). It is enough to check this for some
bj , the generator of the jth cyclic summand of M . By definition, we have

ΦT,S(bj) =




(t1j + s1j)xn1j xq−lj

...
(tsj + ssj)xnsj xq−lj


 . (2)

If we denote the least degree of terms occurring in the ith component of 2 by di,
then by the definition of correcting numbers we always have di ≥ q− ki. Thus, the
ith component of 2 belongs to Ci, the ith cyclic summand of L. This shows that
ΦT,S(bj) ∈ L. ¤

It is seen in the above discussion that ΦT,S becomes a homomorphism from M

into L because of the correction powers, hence the name. In the following example,
we illustrate the content of the above definition and lemma.

Example 3.5. Assume q = 32, F = F3, M = 〈x〉⊕ 〈x5〉 and L = 〈1〉⊕ 〈x2〉⊕ 〈x7〉.
Then, r = 2, s = 3, l1 = 8, l2 = 4, k1 = 9, k2 = 7, k3 = 2 and the matrix (nij) of
correcting numbers is 


0 0
1 0
6 2


 .

For T =




2 1
1 0
0 1


 and S =




x2 + 2x x3

x5 x8 + x6

x4 + 2x2 x7


, we have

ΦT,S =




x2 + 2x + 2 x3 + 1
x6 + x x8 + x6

2x8 x2


 ,

ΦT,S(b1) = ΦT,S

(
x

0

)
=




x3 + 2x2 + 2x

x7 + x2

0


 ∈ L,

ΦT,S(b2) = ΦT,S

(
0
x5

)
=




x8 + x5

0
x7


 ∈ L.
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We also note that some terms in some entries of S vanish during the process of
defining ΦT,S and have no effect in ΦT,S . For instance, by replacing S with S′ =


x2 + 2x x3

x5 x8 + x6

2x2 0


, we still get the same homomorphism. In other words,

ΦT,S = ΦT,S′ . We address this issue in Lemma 3.10 and Definition 3.11.

Definition 3.6. (i) For j = 1, ..., r and i = 1, ..., s, the (i, j)th correcting coefficient
associated with M and L is defined by

mij :=

{
1 if lj ≤ ki

0 if lj > ki

(ii) Let T = (tij) ∈ Msr(F ). The correction of T with respect to M and L is the
matrix defined by T c := (mijtij).

Remark 3.7. We note that mij = 1 if nij = 0 and mij = 0 if nij 6= 0.

Example 3.8. With assumptions of Example 3.5, the matrix (mij) of correcting
coefficient and correction of T are respectively




1 1
0 1
0 0


 ,




2 1
0 0
0 0


 .

Lemma 3.9. ΦT,S = T c.

Proof. Let T and S be as Definition 3.3. Then, we have

ΦT,S(bj) = xq−lj




xn1j t1j

...
xnsj tsj


 + xq−lj




xn1j s1j

...
xnsj ssj


 . (3)

Thus, considering the standard basis {e1, · · · , er} for F r, the jth column of ΦT,S is

equal to xlj−1ΦT,S(bj) = xq−1




xn1j t1j

...
xnsj tsj


 + xq−1




xn1j s1j

...
xnsj ssj


. Due to the fact

that each entry of S comes from I, the second term is zero. Hence, Remarks 2.3

and 3.7, the jth column of ΦT,S is equal to




m1jt1j

...
msjtsj


 and this is exactly the jth

column of T c in the standard basis. ¤

The above lemma shows that in order to construct injective homomorphism
between two F [G]-modules using Definition 3.3, only those matrices T ∈ Msr(F )
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are needed that are injective after correction. We denote the subset of Msr(F )
consisting of all matrices that are injective after correction with respect to M and
L by Iac(M,L).

Like entries of T , some terms of some entries of S may vanish during the con-
struction of ΦT,S , so they have no effect in the value of ΦT,S .

Lemma 3.10. A term in the (i, j)th entry of S has effect in the value of ΦT,S if
and only if its degree is less than min{lj , ki}.

Proof. First, we note that min{lj , ki} = lj − nij . Let T and S be as Lemma 3.9.
Then, 3 shows that to compute ΦT,S(bj), we multiply xq−lj+nij to sij , so terms of
degree greater than or equal to lj − nij in sij vanish and consequently they have
no effect in the value of ΦT,S . ¤

Definition 3.11. A matrix S ∈ Msr(I) is called non-vanishing with respect to M

and L, if the degree of the (i, j)th entry of S is less than lj −nij for all i = 0, · · · , s

and j = 1, · · · , r. The subset of Msr(I) consisting of all non-vanishing matrices
with respect to M and L is denoted by Nvm(M, L).

The set of all injective F [G]-homomorphisms from M into L is denoted by
Hominj

G (M, L).

Theorem 3.12. (i) Every F [G]-homomorphism from M into L is equal to ΦT,S

for some T ∈ Msr(F ) and S ∈ Nvm(M,L).
(ii) There is a bijective correspondence between Hominj

G (M,L) and the cartesian
product Iac(M,L)×Nvm(M, L).

Proof. (i) Let ϕ be an F [G]-homomorphism from M into L. Let ϕ = (fij) denote
the matrix form of ϕ corresponding to the generating set {bj}r

j=1 of M . We know
that ϕ(bj) ∈ (〈xq−lj 〉)s ∩ L = ⊕s

i=1〈xq−hij 〉, where hij = min{lj , ki}. So, we have

ϕ(bj) =




xq−h1j P1j(x)
...

xq−hsj Psj(x)


 for some polynomials Pij(x) ∈ A. On the other hand,

we have ϕ(bj) = (fij)bj =




f1jx
q−lj

...
fsjx

q−lj


. Thus, for i = 1, ..., s and j = 1, ..., r,

we have xq−lj fij = Pij(x)xq−hij . If lj > ki, then hij = ki, q − ki > q − lj ,
and nij = lj − ki. Thus, we have fijx

q−lj = Pij(x)xq−ki = Pij(x)xq−lj xlj−ki =
Pij(x)xq−lj xnij . In the case that lj ≤ ki we have hij = lj and nij = 0. Thus, we
again obtain

fijx
q−lj = Pij(x)xq−lj xnij . (4)
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Therefore, 4 holds in both cases. The factor xq−lj in both sides of 4 allows us to
assume Pij(x) and fij have no term of degree more than lj−1, because those terms
will vanish and have no effect in the value of ϕ. Therefore, we can assume that

fij = Pij(x)xnij , (5)

where both sides of 5 have no term of degree more than lj − 1. This is equivalent
to saying that Pij(x) has no term of degree more than lj −nij −1. This shows that
if T = (tij) and S = (sij) are defined as follows

tij := the constant term of Pij(x),

and

sij := Pij(x)− tij ,

then (tij) ∈ Msr(F ) and (sij) ∈ Nvm(M, L) and ϕ = ΦT,S .
(ii) Let ϕ ∈ Hominj

G (M,L). Then, by Part (i) there exist T ∈ Msr(F ) and
S ∈ Nvm(M,L) such that ϕ = ΦT,S . Since ϕ is injective, ϕ = ΦT,S = T c is
injective. Thus, T is injective after correction.

Conversely, let T ∈ Iac(M, L), then due to the fact that ΦT,S = T c and T c

is injective, ΦT,S has to be an injective F [G]-homomorphism for any matrix S ∈
Msr(〈x〉). It is easy to see that this correspondence is bijective. ¤

Remark 3.13. In the case that F is a finite field, for instance Fp, one can use the
above discussion to write an algorithm to list all injective F [G]-homomorphisms.

4. A conceptual characterization of homomorphisms

In this section, we propose a framework to decompose an F [G]-module into q

layers corresponding to different powers of x that annihilate each layer. Each layer
of an F [G]-module would be a vector space over F . This approach provides us
with a conceptual description of injective F [G]-homomorphisms between two F [G]-
modules in terms of a specific family of F -linear maps between different layers of
two F [G]-modules. One will see that this section is the continuation of the idea of
Lemma 2.1.

Definition 4.1. For any finitely generated F [G]-module M , we define M0 :=
0, M1 := Ann(x), and for 2 ≤ i ≤ q, let Mi be a complement subspace for
Ann(xi−1) = M1⊕ · · ·⊕Mi−1 in Ann(xi). A decomposition M ' M1⊕ · · ·⊕Mq of
M into direct sum of F -linear subspaces obtained in this way is called a q-grading
of M . Whenever we have a q-grading of M , we will denote the ith component of
an element m ∈ M by mi.
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The name “grading” comes from the fact that A = A1⊕ · · ·⊕Aq, where Ai is
generated by xq−i as an F -linear subspace of A, (and of course, in this case, we
have AiAj ⊆ Ai+j , which makes no sense in general q-gradings). In this section, we
denote the F -vector space generated by an element a in an F [G]-module by 〈〈a〉〉.

Remark 4.2. With notations of Section 1, define Mi :=
⊕r

j=1〈〈xq−i〉〉 ∩ Bj for
1 ≤ i ≤ q. Then the decomposition M ' M1⊕ · · ·⊕Mq is a q-grading for M .
This is called the q-grading associated with the decomposition M ' B1 ⊕ · · · ⊕ Br.
It is clear that the jth summand of Mi is 〈〈xq−i〉〉 if i ≤ lj , otherwise it is zero.
Therefore, some of the summands of Mi vanish for larger i’s. Thus, the dimensions
of Mi’s are decreasing. We formalize this observation as follows.

For 2 ≤ i ≤ q, we have Ann(xi−1) ⊆ Ann(xi) and

Mi ' Ann(xi)
Ann(xi−1)

.

This isomorphism gives rise to the following inclusions for 2 ≤ i ≤ q:

(6)

ιi−1
i : Mi ↪→ Mi−1

m + Ann(xi−1) 7→ xm + Ann(xi−2)

The above remark motivates the following definition.

Definition 4.3. (i) Let V be a finite dimensional vector space over F . A sequence
consisting of q − 1 inclusions ending to V as follows

Vq
Â Ä

ιq−1
q // Vq−1

Â Ä
ιq−2
q−1 // · · · Â Ä ι12 // V1 = V

is called a q-filtration of V and is denoted by (V1, · · · , Vq) or simply by V ∗. Since
V = V1, we may omit V from the name of a q-filtration. The composition of
n consecutive inclusions starting from Vm is denoted by ιm−n

m : Vm ↪→ Vm−n,
whenever it makes sense.

(ii) The sequence (M1, · · · ,Mq) defined in Definition 4.1 and Remark 4.2 is a
q-filtration of the F -vector space Ann(x) ≤ M and it is called the q-filtration
associated with the q-grading M ' M1⊕ · · ·⊕Mq of M .

(iii) A q-homomorphism from a q-filtration (V1, · · · , Vq) into another q-filtration
(W1, · · · ,Wq) is a family of F -linear maps Tj : Vj+1→W1 for j = 0, · · · , q − 1 such
that Tjι

j+1
j+i (Vj+i) ⊆ ι1i (Wi), for all j = 0, · · · , q − 1 and for all 1 ≤ i ≤ q − j − 1.

It is denoted by T ∗ = {Tj}. It is called injective if T0 is injective. The set of all
q-homomorphisms (resp. injective q-homomorphisms) from V ∗ into W ∗ is denoted
by Homq(V ∗,W ∗) (resp. Hominj

q (V ∗,W ∗)).
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(iv) Let ϕ : M→L be an F [G]-homomorphism and let (M1, · · · , Mq) (resp.
(L1, · · · , Lq)) be the q-filtration associated with a q-grading of M (resp. L). For
j = 0, · · · , q − 1, define ϕj : Mj+1→L1 by m 7→ ϕ(m)1. Since ϕ is an F [G]-
homomorphism, {ϕj} is a q-homomorphism from M∗ into L∗. It is called the q-
grading of ϕ with respect to q-filtrations M∗ = (M1, · · · ,Mq) and L∗ = (L1, · · · , Lq)
and is denoted by ϕ∗. Despite the fact that the map

ϕ 7→ ϕ∗ (7)

depends on q-filtrations M∗ and L∗, we denote it simply by

α : HomF [G](M, L)→Homq(M∗, L∗).

The following proposition follows immediately from the above definition:

Proposition 4.4. Let V ∗ and W ∗ be two q-filtrations. Then Homq(V ∗,W ∗) with
following operations is an F [G]-module:

λ{Tj}+ {Sj} := {λTj + Sj}, ∀λ ∈ F, ∀T ∗, S∗ ∈ Homq(V ∗,W ∗),

x{Tj} := {Uj}, ∀T ∗ ∈ Homq(V ∗,W ∗),

where U0 := 0 and Uj := Tj−1ι
j
j+1 for 1 ≤ j ≤ q − 1.

Example 4.5. With the assumptions of Example 3.5, we have

Mi =





〈〈xq−i〉〉 ⊕ 〈〈xq−i〉〉 for i = 1, · · · , 4
〈〈xq−i〉〉 ⊕ 0 for i = 5, · · · , 8
0⊕ 0 for i = 9

Li =





〈〈xq−i〉〉 ⊕ 〈〈xq−i〉〉 ⊕ 〈〈xq−i〉〉 for i = 1, 2
〈〈xq−i〉〉 ⊕ 〈〈xq−i〉〉 for i = 3, · · · , 7
〈〈xq−i〉〉 for i = 8, 9

In order to explain how q-homomorphisms are related to F [G]-homomorphisms, we
added zero spaces at the end of some of Mi’s in the above formulas. All inclusions
ιii+1 for all i’s and for all Mi+1’s and Li+1’s is the multiplication by x.

Let ϕ be ΦT,S =




x2 + 2x + 2 x3 + 1
x6 + x x8 + x6

2x8 x2


 as Example 3.5. Then, one easily

checks that the associated q-homomorphism {ϕj} is computed as follows:

ϕ0

(
αx8

βx8

)
=

(
ϕ

(
αx8

βx8

))

1

=




2αx8 + βx8

0
0




1

=




2αx8 + βx8

0
0


 ,
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ϕ1

(
αx7

βx7

)
=

(
ϕ

(
αx7

βx7

))

1

=




2αx8 + 2αx7 + βx7

αx8

0




1

=




2αx8

αx8

0


 .

Hence, ϕ0 =




2 1
0 0
0 0


, ϕ1 =




2 0
1 0
0 0


 and similarly we obtain ϕ2 =




1 0
0 0
0 1


,

ϕ3 =




0 1
0 0
0 0


, ϕ4 = ϕ5 = ϕ7 =




0 0
0 0
0 0


, ϕ6 =




0 0
1 1
0 0


, ϕ8 =




0 0
0 1
2 0


.

From this computation, it is clear that for 0 ≤ i ≤ q − 1, the entry (r, s)th of ϕi is
equal to the coefficient of xi in the entry (r, s)th of ϕ.

As we observed in the above example, q-homomorphisms carry all information
contained in F [G]-homomorphisms. We formulate this fact in the following theo-
rem.

Theorem 4.6. Let M∗ = (M1, · · · ,Mq) (resp. L∗ = (L1, · · · , Lq)) be the q-
filtration associated with a q-grading of M (resp. L). Then, the map α, see 7, is
an F [G]-isomorphism from HomF [G](M, L) onto Homq(M∗, L∗), which maps the
set of injective F [G]-homomorphisms onto the set of injective q-homomorphisms.

Proof. First, we show α is an F [G]-homomorphism. For ϕ, ψ ∈ HomF [G](M, L)
and λ ∈ F , it is clear that (ϕ+λψ)∗ = ϕ∗+λ(ψ∗). Let U∗ = {Uj} = (xϕ)∗ = α(xϕ).
If m ∈ M1, then we have U0(m) = (xϕ(m))1 = (ϕ(xm))1 = 0. If j = 1, · · · , q − 1
and m ∈ Mj+1, then we have Uj(m) = (xϕ(m))1 = (ϕ(xm))1 = ϕj−1(xm) =
ϕj−1ι

j
j+1. This shows that (xϕ)∗ = U∗ = {Uj} = xϕ∗ = x{ϕj} as defined in

Proposition 4.4.
Now, we prove α is an isomorphism. Let ϕ 6= 0. Then (ϕ(m))k 6= 0 for some k =

1, · · · , q and some m ∈ M . In other words, ϕ(m) has a non-zero component in Lk.
So, xk−1ϕ(m) = ϕ(xk−1m) has a non-zero component in L1. Thus, (ϕ(xk−1m))1 6=
0 and this implies that there exist 0 ≤ j ≤ q − 1 and m′ ∈ Mj+1 such that
ϕj(m′) 6= 0. Thus, ϕj 6= 0, and so ϕ∗ 6= 0. Therefore, α is injective. For given
T ∗ ∈ Homq(M∗, L∗), we define ϕ ∈ HomF [G](M, L) such that T ∗ = α(ϕ) (with
respect to M∗ and L∗). For m ∈ M , define

ϕ(m) := (
q−1∑

j=0

Tj(mj+1),
q−2∑

j=0

Tj(mj+2), · · · , T0(mq)), ∀m ∈ M,

where m = m1+· · ·+mq with respect to the filtration M∗ of M and the components
of the right hand side of the above formula is considered with respect to the filtration
L∗. Now, we compute ϕj for j = 0, · · · , q − 1. For m ∈ Mj+1, we have ϕj(m) =
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(ϕ(m))1 =
∑q−1

j=0 Tj(mj+1). Since, m = mj+1 ∈ Mj+1 the above sum reduces to
Tj(m) which shows T ∗ = ϕ∗ = α(ϕ). Thus α is surjective. It is straightforward
that ϕ0 is the same map as ϕ̃, the restriction of ϕ to MG. Therefore, the last
statement follows from Lemma 2.1. ¤

5. Submodules of an F [G]-module

Let M and L satisfy the condition of Proposition 3.1. Moreover, let ψ be an
F [G]-automorphism of M and let ϕ be an injective F [G]-homomorphism from M

into L. Then, we have Im(ϕψ) = Im(ϕ), and so images of ϕ and ϕψ define
the same submodule of L isomorphic to M . Conversely, let Im(ϕ1) = Im(ϕ2)
for two injective F [G]-homomorphisms from M into L. We define ψ : M→M by
ψ(m) := ϕ−1

2 ϕ1(m) for m ∈ M . It is clear that ψ is a bijection. Therefore, if
we prove that it is an F [G]-homomorphism, then it is an F [G]-automorphism of
M and we have ϕ2ψ = ϕ1. To show ψ is an F [G]-homomorphism, let m ∈ M ,
then ϕ2ϕ

−1
2 (xϕ1(m)) = xϕ1(m) = xϕ2ϕ

−1
2 (ϕ1(m)) = ϕ2(xϕ−1

2 (ϕ1(m))). Now,
due to the fact that ϕ2 is injective we have ϕ−1

2 (xϕ1(m)) = xϕ−1
2 (ϕ1(m)). Thus,

ψ(xm) = ϕ−1
2 ϕ1(xm) = ϕ−1

2 (xϕ1(m)) = xϕ−1
2 (ϕ1(m)) = xψ(m). Similarly, one

checks that ψ(m + m′) = ψ(m) + ψ(m′). Therefore, ψ is an F [G]-automorphism.
We define the action of AutG(M), the group of all F [G]-automorphisms of

M , on Hominj
G (M,L), the set of injective homomorphisms from M into L, by

(ψ,ϕ)7→ϕψ−1 for ψ ∈ AutG(M) and ϕ ∈ Hominj
G (M,L). It follows from the above

discussion that the images of two injective F [G]-homomorphisms from M into L

are the same if and only if they are in the same orbit of this action. Therefore, we
obtain a description of the set of all submodules of L isomorphic to M as follows:

Proposition 5.1. Let M and L satisfy the condition of Proposition 3.1. Then,
there is a bijection between the set of all submodules of L isomorphic to M and

Hominj
G (M, L)

AutG(M)
,

the set of all orbits of the action of AutG(M) on HomInj
G (M,L).

One notes that the above proposition holds for more general algebras and their
finitely generated modules. Now, by letting M vary through all isomorphic classes
of submodules of L, we can parameterize all submodules of L.

Corollary 5.2. Let S(L) denote the set of all classes of submodules of L up to
isomorphism. Then, the set of all submodules of L can be parameterized by

⋃

M∈S(L)

Hominj
G (M,L)

AutG(M)
.
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We describe S(L) in terms of numerical invariants k1, · · · , ks of L.

Definition 5.3. As before, let s be the number of summands of L. We set

Ds := {(n1, · · · , ns) ∈ Zs; 0 ≤ ni ≤ q, ∀i = 1, · · · , s}.

Let L = (n1, · · · , ns) ∈ Ds. As Remark 1.5, for all k = 1, · · · , q, we define

kL :=
∑

ni≥k

1 = |{ni ; ni ≥ k}|.

Then D(L) as a subset of Ds is defined as follows:

D(L) := {L = (n1, · · · , ns) ∈ Ds; nj ≤ ni ∀ i < j, and kL ≤ kL ∀ k = 1, · · · , q}

Now, let M = B1⊕ · · ·⊕Br be a submodule of L. By assuming that cyclic compo-
nents of M are in decreasing order with respect to their dimensions, Proposition 3.1

asserts that L(M) = (l1, · · · , lr,

s−r times︷ ︸︸ ︷
0, · · · , 0) is an element of D(L). We also note that

if M ' M ′, then L(M) = L(M ′). Conversely, for L = (n1, · · · , ns) ∈ D(L),
we define a submodule of L by M(L) := 〈xq−n1〉⊕ · · · ⊕〈xq−ns〉. This shows that
M 7→ L(M) is a bijective correspondence between S(L) and D(L) with the inverse
L 7→ M(L).

Example 5.4. Let q = 3 and L = 〈1〉 ⊕ 〈x〉 ⊕ 〈x2〉. Then, s = 3, (k1, k2, k3) =
(3, 2, 1), (1k, 2k, 3k) = (3, 2, 1) and elements of D(L) are (0, 0, 0), (1, 0, 0), (1, 1, 0),
(1, 1, 1), (2, 0, 0), (2, 1, 0), (2, 1, 1), (3, 0, 0), (3, 1, 0), (3, 1, 1), (3, 2, 0), (3, 2, 1).

We conclude this paper with the following theorem which characterizes all sub-
modules of a finitely generated F [G]-module L.

Theorem 5.5. There is a bijective correspondence between the set of all submodules
of L and the following set:

⋃

L∈D(L)

Hominj
G (M(L), L)

AutG(M(L))
. (8)

We note that all ingredients of 8 depend only on q and k1, · · · , ks, which are
invariants of L. Therefore, similar to Remark 3.13, when F is a finite field, one can
use the constructions of the present section and Section 3 to write an algorithm to
generate all the submodules of a finitely generated F [G]-module.
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