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Abstract. If R is a going-down domain and T is a commutative unital ring

extension of R, then R ⊆ T satisfies going-down if and only if the associated

reduced ring of T is a torsion-free R-module.

Mathematics Subject Classification (2000): Primary 13B24; Secondary

13G05, 13A15, 13C12

Keywords: going-down, ring extension, integral domain, commutative ring,

going-down domain, locally divided domain, torsion-free module, associated

reduced ring, total quotient ring

1. Introduction

All rings considered below are commutative with 1 6= 0; all ring extensions and

subrings are unital. If A is a ring, then Spec(A) denotes the set of prime ideals

of A; Max(A) the set of maximal ideals of A; Z(A) the set of zero-divisors of A;

tq(A) := AA\Z(A) the total quotient ring of A;
√

I the radical of a proper ideal I

of A;
√

A :=
√

0 the nilradical of A; and Ared := A/
√

A the associated reduced

ring of A. As in [9, page 28], GD, GU and LO denote the going-down, going-up

and lying-over properties, respectively, of ring extensions (more generally, of ring

homomorphisms).

Our interest in this note is in finding a torsion-theoretic characterization of the

ring extensions of a going-down domain that satisfy GD. We devote the rest of

this paragraph to some background on going-down domains, and then turn to the

appropriateness of torsion-theoretic considerations. Let R be a (commutative in-

tegral) domain. As in [2], R is said to be a going-down domain if R ⊆ T satisfies

GD for each overring T of R. (As usual, an overring of a domain D is any ring

contained between D and its quotient field.) The most familiar examples of going-

down domains are arbitrary Prüfer domains and domains of Krull dimension at
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most 1. It was shown in [6, Theorem 1] that if R is a going-down domain, then

R ⊆ T satisfies GD for each domain T that contains R as a subring. More generally,

it was shown recently by Shapiro and the author [7, Theorem 3.6] that if R is a

going-down domain, then R ⊆ T satisfies GD for each ring extension T of R such

that (i) T is a torsion-free R-module and (ii) tq(T ) is a von Neumann regular ring.

In particular, many ring extensions of a going-down domain satisfy GD. Never-

theless, each going-down domain D which is not a field has some extensions B such

that D ⊆ B does not satisfy GD. In fact, for each ring A of positive Krull dimen-

sion, there exists a ring extension B of A such that A ⊆ B does not satisfy GD. (In

detail, if P2 ⊂ P1 are distinct prime ideals of A, embed A in B := A × A/P1 via

a 7→ (a, a+P1), and note that Q := A× 0 ∈ Spec(B) is a minimal prime ideal of B

such that Q∩A = P1.) The question thus arises whether there is a torsion-theoretic

characterization of GD when the base ring is a going-down domain.

In order to avoid hypotheses such as (ii) concerning total quotient rings, we

will focus here on torsion-theoretic criteria in the spirit of (i). Note that (i) has a

significant pedigree. Indeed, (i) appears as an assumption in the classical going-

down theorem of Cohen-Seidenberg [1, Theorem 5]. The above question (which is

basically also the question that was raised in the title) is answered in Corollary 2.10:

if R is a going-down domain and T is a ring extension of R, then: R ⊆ T satisfies

GD ⇔ (TR\M )red is a torsion-free RM -module for each M ∈ Max(R) ⇔ Tred is a

torsion-free R-module.

The proof of Corollary 2.10 depends in part on some results, Lemma 2.1 and

Theorem 2.2, whose hypotheses involve reduced rings and locally divided domains,

respectively. Recall that a ring A is called reduced if A has no nonzero nilpotent

elements. Also, recall from [3] that if R is a domain, then R is called a divided

domain if PRP = P for each P ∈ Spec(R); and that R is called a locally divided

domain if RQ is a divided domain for each prime (resp., maximal) ideal Q of R. A

quasilocal locally divided domain is the same as a divided domain. Each divided

domain is a quasilocal going-down domain [3, Proposition 2.1], but the converse

is false [3, Example 2.9]. A key fact used in the proof of Theorem 2.7 (which

is needed for the proof of Corollary 2.10) is that quasilocal going-down domains

are characterized as the domains having an integral divided overring [3, Theorem

2.5]. Finally, we note that Remark 2.3 (a) gives an example using the idealization

construction to show that the “reduced” assumption cannot be deleted from Lemma

2.1; and that our final result, Corollary 2.11, establishes that the torsion-theoretic

condition from Corollary 2.10 actually characterizes going-down domains.
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2. Results

We begin with an important case where GD implies the “torsion-free” condition.

Lemma 2.1. Let R be a domain, and let T be a ring extension of R such that T

is a reduced ring and R ⊆ T satisfies GD. Then T is a torsion-free R-module.

Proof. According to a characterization of GD in [9, Exercise 37, page 44], a ring

extension A ⊆ B satisfies GD if and only if, for each P ∈ Spec(A), the torsion

submodule of B/PB as an (A/P )-module is contained in
√

PB/PB. Applying

this characterization to our data and P := 0 ∈ Spec(R), we see that the torsion

submodule of T as an R-module is contained in the nilradical of T . This ideal is 0

since T is reduced, and so the assertion follows. ¤

We next give some sufficient conditions for GD.

Theorem 2.2. Let R be a locally divided domain, and let T be a ring extension of

R such that T is a torsion-free R-module. Then R ⊆ T satisfies GD.

Proof. Suppose that the assertion fails. According to a characterization of GD in

[9, Exercise 37, page 44], there exist prime ideals P of R and Q of T such that PT

is not disjoint from (R \ P )(T \Q) and Q is minimal among the prime ideals of T

that contain P . Hence,
∑n

i=1 piti = rt for some elements pi ∈ P, ti ∈ T, r ∈ R \ P

and t ∈ T \Q. Put P := Q ∩ R. Note that P ⊂ P are distinct; in fact, r ∈ P \ P

since Q is a prime ideal of T .

Since RP is a divided domain, (PRP)(RP)PRP
= PRP. The upshot is that

PRP = PRP. (In fact, requiring this equality whenever P ⊆ P are prime ideals

is equivalent to the ambient domain R being a locally divided domain [4, Theorem

2.4].) Let K denote the quotient field of R, and let L := tq(T ). Since T is a torsion

R-module, the inclusion map R ↪→ T ↪→ L extends to a (necessarily injective)

R-algebra homomorphism K → L, and so we may view K ⊆ L.

Working inside L, we see that for each i, pi/r ∈ PRP = PRP. Thus, pi/r = ξi/z

for some elements ξi ∈ P , z ∈ R \P. Hence,
∑

ξiti ∈ PT ⊆ Q, although
∑

ξiti =
∑

z
pi

r
ti = tz,

with both t and z in T \Q, contradicting Q ∈ Spec(T ). ¤

Remark 2.3. (a) The assumption that T is reduced cannot be deleted from Lemma

2.1. To see this, let R be any domain that is not a field, choose r ∈ R to be any

nonzero nonunit element of R, and let T be the idealization T := R(+)R/Rr.

(A convenient reference for background on the idealization construction is [8].)
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View R ⊆ T in the usual way, via the embedding a 7→ (a, 0). Note that R ⊆ T

satisfies GD. This can be seen by using the fact that Spec(T ) = {P (+)R/Rr | P ∈
Spec(R)}; or by noticing that Tred = T/

√
T = T/(0(+)R/Rr) ∼= R and appealing

to [5, Lemma 3.2 (a)]. Of course, T is not reduced; and T is not a torsion-free

R-module (since r · (0, 1 + Rr) = 0).

(b) Another proof of Theorem 2.2 can be given for the case where R is quasilocal

(that is, a divided domain). One need only apply the following special case of [7,

Proposition 3.2]: if D is a divided domain and B is a ring extension of D such that

B is a torsion-free D-module, then D ⊆ B satisfies GD.

(c) The sufficient conditions for GD in Theorem 2.2 should be contrasted with

the sufficient conditions for GD in the classical going-down theorem of Cohen-

Seidenberg [1, Theorem 5]. While both results include the assumptions that the

given base ring R is a domain and the given extension ring T is a torsion-free

R-module, [1, Theorem 5] also assumes that R is integrally closed and that T is

integral over R. Easy examples, such as Z[2i] ⊆ Q(i) (where i =
√−1 ∈ C), show

that the hypotheses of Theorem 2.2 do not imply either of these assumptions from

[1, Theorem 5].

Corollary 2.4. Let R be a locally divided domain, and let T be a ring extension

of R such that T is a reduced ring. Then R ⊆ T satisfies GD if and only if T is a

torsion-free R-module.

Proof. Combine Lemma 2.1 and Theorem 2.2. ¤

We next characterize the going-down extensions of any locally divided domain.

Corollary 2.5. Let R be a locally divided domain and let T be a ring extension of

R. Then R ⊆ T satisfies GD if and only if Tred is a torsion-free R-module.

Proof. The inclusion map R ↪→ T induces a ring homomorphism Rred = R/
√

R ∼=
R → T/

√
T = Tred. The latter map is an injection since

√
T ∩ R =

√
R, and so

we may view Rred ⊆ Tred. In view of Corollary 2.4, it now suffices to recall that

a given ring extension (more generally, ring homomorphism) A ⊆ B satisfies GD

if and only if the induced ring extension Ared ⊆ Bred satisfies GD [5, Lemma 3.2

(a)]. ¤

Lemma 2.6. Let R be a domain and T an extension ring of R such that T is a

torsion-free R-module. Then Tred is a torsion-free R-module.

Proof. Suppose that rt = 0 for some elements r ∈ R ∼= Rred and t ∈ Tred. We

will show that either r = 0 or t = 0. Choose t ∈ T such that t = t +
√

T . Then
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rt ∈ √T (since rt = rt +
√

T ), and so rntn = 0 for some positive integer n. Since

T is torsion-free over R, either rn = 0 or tn = 0. Without loss of generality, r 6= 0.

Hence, rn 6= 0, and so tn = 0. Thus, t ∈ √T , whence t = 0 ∈ Tred. ¤

We next obtain a companion for Corollary 2.5.

Theorem 2.7. Let R be a quasilocal going-down domain and let T be a ring exten-

sion of R. Then R ⊆ T satisfies GD if and only if Tred is a torsion-free R-module.

Proof. Recall from [5, Lemma 3.2 (a)] that R ⊆ T satisfies GD if and only if

R ∼= Rred ⊆ Tred satisfies GD. Moreover, (Tred)red ∼= Tred. Thus, without loss of

generality, we may suppose that T is a reduced ring. Under this assumption, we

will prove that R ⊆ T satisfies GD if and only if T is a torsion-free R-module.

The “only if” assertion is immediate from Lemma 2.1. Conversely, suppose that

(the reduced ring) T is a torsion-free R-module. We must prove that R ⊆ T

satisfies GD. To that end, consider P2 ⊆ P1 in Spec(R) and Q1 in Spec(T ) such

that Q1 ∩ R = P1. Our task is to find Q2 in Spec(T ) such that Q2 ⊆ Q1 and

Q2∩R = P2. Since R is a quasilocal going-down domain, [3, Theorem 2.5] provides

a divided integral overring D of R; necessarily, R ⊆ D is unibranched, in the

sense that the canonical map Spec(D) → Spec(R), I 7→ I ∩ R, is a bijection. Let

K denote the quotient field of R, and let L := tq(T ). As T is a torsion-free R-

module, we may view K ⊆ L. Since D is integral over R, R ⊆ D satisfies LO

and GU (cf. [9, Theorem 44]), and so there exist p2 ⊆ p1 in Spec(D) such that

pi ∩ R = Pi, for i = 1, 2. Next, working inside L, consider E := DT , the subring

of L generated by D ∪ T . Note that T ⊆ E satisfies LO since T ⊆ E inherits

integrality from R ⊆ D, and so there exists q1 ∈ Spec(E) such that q1 ∩ T = Q1.

As (q1 ∩D) ∩ R = q1 ∩ R = (q1 ∩ T ) ∩ R = Q1 ∩ R = P1, the fact that R ⊆ D is

unibranched implies that q1 ∩D = p1. We claim that D ⊆ E satisfies GD.

To prove the above claim, we will apply Theorem 2.2. In order to legitimize

that application, we must verify that E is a torsion-free D-module. Suppose that

δe = 0 for some δ ∈ D, e ∈ E = DT . We can write e =
∑n

i=1 diti for some di ∈ D,

ti ∈ T . Also, di = ri

s and δ = r
s for some r1, . . . , rn, r ∈ R and s ∈ R \ {0}.

Put f :=
∑n

i=1 riti. Note that rf = s2δe = 0 (in L and, hence, also in T ). As

T is torsion-free over R, either r = 0 or f = 0. Hence, either δ = r/s = 0 or

e = f/s = 0, thus proving the claim.

By the above claim, there exists q2 ∈ Spec(E) such that q2 ⊆ q1 and q2∩D = p2.

Then Q2 := q2 ∩ T has the required properties, namely, Q2 ⊆ q1 ∩ T = Q1 and

Q2 ∩R = q2 ∩ T ∩R = q2 ∩R = q2 ∩D ∩R = p2 ∩R = P2.
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¤

Corollary 2.8. Let R be a quasilocal going-down domain, and let T be a ring

extension of R such that T is a torsion-free R-module. Then R ⊆ T satisfies GD.

Proof. Combine Lemma 2.6 and Theorem 2.7. ¤

The next technical lemma will simplify matters.

Lemma 2.9. Let R be a domain and T a ring extension of R. Then:

(a) For each prime ideal P of R, the rings (TR\P )red and (Tred)R\P are isomor-

phic as RP -modules.

(b) The following three conditions are equivalent:

(1) (TR\P )red is a torsion-free RP -module for every prime ideal P of R;

(2) (TR\M )red is a torsion-free RM -module for every maximal ideal M of R;

(3) Tred is a torsion-free R-module.

Proof. (a) Let A := (TR\P )red and B := (Tred)R\P . It is easy to use universal

mapping properties to verify that the (well-defined) functions f : A → B given

by t/z +
√

TR\P 7→ (t +
√

T )/z (for t ∈ T and z ∈ R \ P ) and g : B → A

given by (t +
√

T )/z 7→ t/z +
√

TR\P are ring homomorphisms, in fact RP -algebra

homomorphisms, such that f ◦ g and g ◦ f are the appropriate identity functions.

(b) It is easy to verify that if E is an R-module, then: E is a torsion-free R-

module ⇔ ER\M is a torsion-free RM -module for each M ∈ Max(R) ⇔ ER\P is

a torsion-free RP -module for each P ∈ Spec(R). Hence, (b) follows from (a) by

letting E := Tred. ¤

Since GD is a local property of ring extensions, Theorem 2.7 and Lemma 2.9 lead

to the following characterization of the going-down extensions of any going-down

domain.

Corollary 2.10. Let R be a going-down domain and let T be a ring extension of

R. Then the following conditions are equivalent:

(1) (TR\P )red is a torsion-free RP -module for every prime ideal P of R;

(2) (TR\M )red is a torsion-free RM -module for every maximal ideal M of R;

(3) Tred is a torsion-free R-module;

(4) R ⊆ T satisfies GD.

As noted in the proof of Lemma 2.1, [9] already contains a torsion-theoretic

characterization of GD (for arbitrary ring extensions). We close by pointing out

that the torsion-theoretic condition that we have identified in this note is specific
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to, and in fact serves to characterize, going-down domains. One upshot of the

reasoning in Corollary 2.11 is that the assumptions of “locally divided domain”

and “(quasilocal) going-down domain” in the earlier results cannot be deleted.

Corollary 2.11. Let R be a domain. Then the following conditions are equivalent:

(1) If T is a ring extension of R, then R ⊆ T satisfies GD if and only if, for

every prime ideal P of R, (TR\P )red is a torsion-free RP -module;

(2) If T is a ring extension of R, then R ⊆ T satisfies GD if and only if, for

every maximal ideal M of R, (TR\M )red is a torsion-free RM -module;

(3) If T is a ring extension of R, then R ⊆ T satisfies GD if and only if Tred is

a torsion-free R-module;

(4) If T is a ring extension of R and (TR\P )red is a torsion-free RP -module for

every prime ideal P of R, then R ⊆ T satisfies GD;

(5) If T is a ring extension of R and (TR\M )red is a torsion-free RM -module for

every maximal ideal M of R, then R ⊆ T satisfies GD;

(6) If T is a ring extension of R and Tred is a torsion-free R-module, then R ⊆ T

satisfies GD;

(7) R is a going-down domain.

Proof. Lemma 2.9 (b) gives that conditions (1), (2), and (3) are equivalent. More-

over, (7) implies these equivalent conditions, by Corollary 2.10. Lemma 2.9 (b)

gives that conditions (4), (5), and (6) are equivalent; and it is trivial that (3) ⇒
(6). Finally, if (6) holds, it follows that R ⊆ T satisfies GD for each overring T of

R, and so R is a going-down domain, thus giving (7). ¤
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