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Abstract. All rings considered are commutative with identity. Let R be a

complemented ring with integral closure R′ (in its total quotient ring K). Then

R ⊆ S satisfies INC for each overring S of R (inside K) if and only if R′ is a

Prüfer ring. If R′ is a Prüfer ring and T is a complemented ring that contains

R as a subring such that each regular element of T is a root of a polynomial

in R[X] with a regular coefficient and T is torsion-free over R, then R ⊆ T

satisfies INC. As a consequence, a new generalization for rings with nontrivial

zero-divisors is found of Prüfer’s result on the integral closure of a Prüfer do-

main in a field extension of the quotient field.
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1. Introduction

All rings considered below are commutative with 1 6= 0; all inclusions of rings,

ring extensions, subrings, algebras and ring/algebra homomorphisms are unital. If

A is a ring, then Spec(A) denotes the set of prime ideals of A; Max(A) the set of

maximal ideals of A; Reg(A) the set of regular (that is, non-zero-divisor) elements

of A; tq(A) := AReg(A) the total quotient ring of A; and A′ the integral closure of A

(in tq(A)). By an overring of a ring A, we mean an A-subalgebra of tq(A), that is,

a ring B such that A ⊆ B ⊆ tq(A). As in [8, page 28], INC, GU and LO denote the

incomparable, going-up and lying-over properties, respectively, of ring extensions.

Our starting point is the classical fact that a (commutative integral) domain R

which is integrally closed is a Prüfer domain if and only if R ⊆ T satisfies INC

for each overring T of R [5, Theorem 26.2]. More generally, Papick [9] defined a

domain R to be an INC-domain if R ⊆ T satisfies INC for each overring T of R;
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and showed [9, Proposition 2.26] that a domain R is an INC-domain if and only if

R′ is a Prüfer domain. We are thus led to say that a ring R is an INC-ring if R ⊆ T

satisfies INC for each overring T of R; and we ask the natural question whether a

ring R is an INC-ring if and only if R′ is a Prüfer ring (in the sense of [6]). One of

our main results, Theorem 2.4, answers this question in the affirmative in case R is

a complemented ring. Recall that a ring R is said to be complemented if, for each

element a ∈ R, there exists b ∈ R such that ab = 0 and a + b ∈ Reg(R); when this

holds, b is called a complement to a (in R). It is known (cf. [1, Theorem 2.3]) that

a ring R is a complemented ring if and only if tq(R) is a von Neumann regular ring.

As it is clear that each domain is a complemented ring, Theorem 2.4 forms part of

a program of generalizing results about domains to the context of complemented

rings. As explained below, this entire note can be seen as part of that program.

Perhaps the most striking stability result about the class of Prüfer domains is

Prüfer’s result [11] that if T is the integral closure of a Prüfer domain R in a

field extension L of the quotient field K of R, then T is a Prüfer domain. In [6,

Proposition 14], Griffin generalized this result to the case of a Prüfer ring R (with

K replaced by tq(R)), at the cost of assuming that K ⊆ L is an integral ring

extension. In Corollary 2.6, we provide another generalization of Prüfer’s result,

by assuming that the Prüfer ring R is also a complemented ring and that L is a

von Neumann regular ring (but without an explicit hypothesis of integrality on the

extension K ⊆ L).

The proof of Corollary 2.6 depends on Theorem 2.4 (which was discussed above)

and our other main result, Theorem 2.2. The latter result generalizes the statement

[3, Proposition 3] that if R is an INC-domain and T is a domain that contains R

as a subring and is algebraic over R, then R ⊆ T satisfies INC. Notice that one

purpose of this result from [3] was to widen the context of [9] by considering domain

extensions that are possibly not overrings of a given base domain. Continuing in

that spirit, Theorem 2.2 assumes that both rings involved in the given ring extension

are complemented, that the algebraicity polynomials in question each have a regular

coefficient, and that the given ring extension is (module-theoretically) torsion-free

(the latter condition being, of course, automatic for domains). Theorem 2.2 not only

generalizes [3, Proposition 3] but also gives a ring-theoretic companion for a result

[3, Proposition 6] about ring extensions of a domain, the latter being accomplished

at the reasonable cost of replacing a hypothesis about the going-down property

with a hypothesis of torsion-freeness.
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In addition to the notation mentioned above, we let X denote an indetermi-

nate over the ambient coefficient ring(s); and ⊂ denotes proper inclusion. Any

unexplained material is as in [5], [8].

2. Results

We begin with a lemma that will be used several times in this work.

Lemma 2.1. Let R be a complemented ring and a Prüfer ring. If P ∈ Spec(R),

then RP is a valuation domain.

Proof. K :=tq(R) is a von Neumann regular ring; that is, R is “quasi-regular” in

the sense of [4]. Hence, by [4, Proposition 2], tq(RP ) can be identified with KR\P ,

which is a von Neumann regular ring. Furthermore, since R is integrally closed,

it follows from [4, Propositions 5 and 6] that RP is an integrally closed domain.

Hence, it suffices to prove that RP is a Prüfer domain/ring. By [12, Theorem 4] (cf.

also [6, Theorem 13]), it suffices to show that each overring T of RP is RP -flat. By

the above description of tq(RP ), T can be identified with SR\P for some overring

S of R. As R is a Prüfer ring, S is R-flat by [6, Theorem 13], whence T = SR\P is

RP -flat, as desired. ¤

We next present our first main result. Theorem 2.2 extends the context of [3]

from ring extensions of domains to ring extensions of complemented rings. Recall

that an R-module E is said to be torsion-free (over R) if 0 6= r ∈ Reg(R), e ∈
E, re = 0 implies e = 0.

Theorem 2.2. Let R be a complemented ring such that R′ is a Prüfer ring. Let

T be a complemented ring that contains R as a subring such that T is torsion-free

(as a module) over R. Assume also that each regular element of T is a root of a

polynomial in R[X] with a regular coefficient. Then R ⊆ T satisfies INC.

Proof. Let K and L be the total quotient rings of R and T , respectively. Since T is

torsion-free over R, we can view K as a subring of L (up to R-algebra isomorphism).

Consider the ring composite S := R′T inside L. Since T ⊆ S inherits integrality

from R ⊆ R′, it follows that T ⊆ S satisfies LO and GU (cf. [8, Theorem 44]). As

integrality also ensures that R ⊆ R′ satisfies INC, it clearly suffices to prove that

R′ ⊆ S satisfies INC.

We claim that each regular element s of S is a root of some polynomial in R′[X]

with a regular coefficient. We can write s as a finite sum
∑

(ri/z)ti, where ri ∈ R,

z ∈ Reg(R) and ti ∈ T for each i. Thus, s = t/z, with t :=
∑

riti ∈ T . Since
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s ∈ Reg(S) and S is an overring of T , we have t ∈ Reg(T ), and so the hypothesis

gives a polynomial f ∈ R[X] such that f(t) = 0 and some coefficient of f is

regular. Dividing through by zdeg(f) leads to a polynomial g ∈ Rz[X] such that

g(s) = g(t/z) = 0 and some coefficient of g is a unit of K. (As usual, Rz denotes

the ring of fractions obtained by localizing R at the multiplicatively closed subset

generated by z.) Clearing denominators, we see that by multiplying g by a suitable

integral power of z, we obtain h ∈ R[X] such that h(s) = 0 and some coefficient of

h is regular. This proves the above claim. Thus, by abus de langage, we can replace

(R, T ) with (R′, S), and so without loss of generality, R = R′ is a Prüfer ring.

Suppose that the assertion fails. Then there exist distinct prime ideals Q1 ⊂ Q2

of T such that Q1 ∩R = Q2 ∩R =: P ∈ Spec(R). Since Q2 is not a minimal prime

ideal of T and L has (Krull) dimension 0, Q2 contains some regular element u of T .

Moreover, T is a Marot ring by [7, Theorem 7.4]; that is, each regular ideal of T is

generated by the set of its regular elements. It follows easily that we can assume

u 6∈ Q1. As u ∈ (Q2 ∩ R[u]) \ (Q1 ∩ R[u]), we have that R ⊆ R[u] does not satisfy

INC. Hence, RP ⊆ (R[u])R\P = (RP )[u/1] does not satisfy INC. Therefore, by [2,

Theorem] (cf. also [13, Corollary 3.3]), u/1 is not the root of any polynomial in

RP [X] with a unit coefficient.

By hypothesis, u is a root of some polynomial f ∈ R[X] with a regular coefficient.

Then f induces a polynomial g ∈ RP [X] with a regular coefficient such that u/1 is a

root of g. Note that RP is a valuation domain by Lemma 2.1. Therefore g = c·h, for

some nonzero c ∈ RP and polynomial h ∈ RP [X] such that at least one coefficient

of h is 1. Observe that c · h(u/1) = 0 ∈ TR\P . However, in view of the hypothesis

that T is torsion-free over R, it follows from the proof of [4, Proposition 7] that

TR\P is a torsion-free RP -module. Thus h(u/1) = 0, the desired contradiction. ¤

The above theorem has the following immediate consequence. As explained in

the Introduction, Corollary 2.3 generalizes [3, Proposition 3] and can be viewed as

a companion for [3, Proposition 6].

Corollary 2.3. Let R be a domain such that R′ is a Prüfer domain, and let T be

a complemented ring that contains R as a subring such that T is torsion-free over

R. Assume also that each regular element of T is algebraic over R (for instance,

assume that T is algebraic over R.) Then R ⊆ T satisfies INC.

As mentioned in the Introduction, the next result generalizes Papick’s INC-

theoretic characterization of domains with Prüferian integral closure [9, Proposition

2.26] to the context of complemented rings.
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Theorem 2.4. Let R be a complemented ring. Then R is an INC-ring if and only

if R′ is a Prüfer ring.

Proof. Assume first that R′ is a Prüfer ring. Let T be an overring of R. Our task

is to show that R ⊆ T satisfies INC; equivalently, that RP ⊆ TR\P satisfies INC for

each P ∈ Spec(R). By considering the composite R′T as in the first paragraph of

the proof of Theorem 2.2, we can assume, without loss of generality, that R = R′

is a Prüfer ring. Now, by Lemma 2.1, RP is a valuation domain. As in the proof of

Lemma 2.1, [4, Proposition 2] shows that TR\P can be identified with an overring

S of RP . Since RP is a valuation domain, the classical case of the motivating result

[5, Theorem 26.2] ensures that RP ⊆ S satisfies INC.

Conversely, suppose that R is an INC-ring. We must show that R′ is a Prüfer

ring. Let K := tq(R). We first reduce to the case R = R′. Notice that R′ is a

complemented ring, since tq(R′) = K is von Neumann regular. Also, if T is an

overring of R′, then R′ ⊆ T satisfies INC since R ⊆ T satisfies INC. As (R′)′ = R′,

we can replace R with R′. In other words, without loss of generality, R is integrally

closed. We proceed to show that R is a Prüfer ring.

By [6, Theorem 13], it is enough to show that each overring T of R is R-flat;

equivalently, that TR\P is RP -flat for each p ∈ Spec(R). By Lemma 2.1 (and its

proof), RP is a valuation domain and TR\P can be viewed as an overring of RP .

Accordingly, the assertion follows because torsion-free modules over Prüfer domains

are flat. ¤

We pause to give a useful sufficient condition for a ring to be complemented.

Lemma 2.5. Let T be a subring of a von Neumann regular ring L such that T is

integrally closed in L. Then T is a complemented ring.

Proof. Since each finitely generated ideal of a von Neumann regular ring is gener-

ated by an idempotent, it is easy to see that each element of L has a complement

that is idempotent. However, each idempotent element of L belongs to T because

T is integrally closed in L. Therefore, the assertion follows from the definition of

“complemented ring” and the simple observation that Reg(L) ∩ T ⊆ Reg(T ). ¤

We next generalize Prüfer’s classic ascent result. As explained in the Introduc-

tion, Corollary 2.6 can be viewed as a companion for [6, Proposition 14].

Corollary 2.6. Let R be a complemented ring and a Prüfer ring, with K := tq(R).

Let L be a von Neumann regular ring which contains K as a subring. Let T be the

integral closure of R in L. Then T is a Prüfer ring.
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Proof. By Lemma 2.5, T is a complemented ring. Also, we claim that Reg(T ) ⊆
Reg(L). To see this, consider any c ∈ Reg(T ). As noted in the proof of Lemma 2.5,

we can choose an idempotent element e ∈ T that is a complement to c in L. Since

c ∈ Reg(T ) and ce = 0, we conclude that e = 0. Thus c = c + e ∈ Reg(L), proving

the claim. Since K is von Neumann regular, L is K-flat and, hence, torsion-free

over K. (For an alternate way to get the last conclusion, apply [4, Proposition

7].) Therefore, L is torsion-free over R and, a fortiori, T is torsion-free over R. As

a result, K can be viewed, up to R-algebra isomorphism, as a subring of tq(T ),

and so we can replace L with TReg(R) = TK (which is contained in the former

L). At this point, one could obtain the assertion by applying [6, Proposition 14]

(which applies since L = TK is integral over K and T is the integral closure of R in

TK). However, one can avoid using [6] by first showing that tq(T )= TK and then

essentially repeating the proof of [3, Corollary 4]. For the first of these, let us begin

by observing that TK is reduced (since it is a subring of the reduced ring L) and

zero-dimensional (since TK is integral over the zero-dimensional ring K). Thus,

TK is a von Neumann regular ring; in particular, tq(TK)= TK. On the other

hand, we have seen that K ⊆ tq(T ), and so TK ⊆ tq(T ). As TK is therefore an

overring of T , we have that tq(T ) = tq(TK) = TK, as asserted. As for the second

point, the proof of [3, Corollary 4] now carries over with the following two changes.

Replace the appeal to the criterion of Papick [9, Proposition 2.26] with Theorem

2.4; and replace [3, Proposition 3] with Theorem 2.2. Note that the last step is

permissible since the integrality of TK over K = tq(R) ensures that each element

of Reg(TK) is a root of some polynomial in R[X] with a regular coefficient. ¤

Remark 2.7. (a) Recall from [9] that a domain R is said to be an i-domain if the

canonical map Spec(T ) → Spec(R) is an injection for each overring T of R. It is a

classical fact that an integrally closed i-domain is the same as a Prüfer domain [5,

Theorem 26.2]. More generally, Papick showed [9, Propositions 2.14 and 2.26] that

a domain R is an i-domain if and only if R is an INC-domain such that the canonical

map Spec(R′) → Spec(R) is an injection. While any i-domain is an INC-domain,

the converse is false [9, Example 2.17]. This material leads us to define a ring R

to be an i-ring if the canonical map Spec(T ) → Spec(R) is an injection for each

overring T of R. It is clear that any i-ring is an INC-ring (and the converse is false).

More significantly, our work implicitly shows that if a complemented ring R is a

Prüfer ring, then R is an i-ring. Indeed, one need only verify that if P ∈ Spec(R)

and T is an overring of R, then the canonical map Spec(TR\P ) → Spec(RP ) is an

injection. As we have seen in the proof of Lemma 2.1, RP is a valuation domain
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and (up to isomorphism) TR\P is an overring of RP , and so the assertion therefore

follows from the above-mentioned classical fact.

We would like to thank the referee for raising the following question. Given a

complemented ring R, must it be the case that R is an i-ring if and only if the

canonical map Spec(R′) → Spec(R) is an injection and R′ is a Prüfer ring? The

answer is in the affirmative and thus generalizes the above-mentioned application

of [9, Propositions 2.14 and 2.26] from domains to complemented rings. To see this,

note that the “only if” assertion follows from the definition of an i-ring and Theorem

2.4; and, since we showed in the preceding paragraph that any complemented Prüfer

ring must be an i-ring, the “if” assertion follows as in the proof of [9, Proposition

2.14].

(b) Much of the above reasoning depended on the fact that complemented rings

are the rings having von Neumann regular total quotient rings. This class of rings

has been studied for several reasons and under several different names. For in-

stance, as noted above, Endo [4] called them “quasi-regular” rings; and Picavet

and Picavet-L’Hermitte [10] called them “decent” rings. We note that some of the

above reasoning can be replaced by alternate proofs, owing to the variety of known

characterizations of the rings having von Neumann regular total quotient rings. In

addition, alternate proofs of some of our assertions involving Prüfer rings are also

available. For instance, in view of [4, Proposition 7], the use of flat overrings in the

proofs of Theorem 2.4 and Corollary 2.6 can be replaced by the characterization

of Prüfer rings in terms of integrally closed overrings [6, Theorem 13]. Finally, the

reader is encouraged to find alternate proofs in which the above roles of Lemma 2.1

are played by the characterization [6, Theorem 13] of Prüfer rings as the rings A

whose large quotient rings A[M ] are (Manis) valuation rings for all M ∈ Max(A).
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[3] D. E. Dobbs, Prüfer’s ascent result via INC, Comm. Algebra, 23 (1995),

109–119.

[4] S. Endo, On semi-hereditary rings, J. Math. Soc. Japan, 13 (1961), 5413–

5417.

[5] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.



INC-EXTENSIONS AMID ZERO-DIVISORS 109
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