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Abstract. A subgroup H is X-g pronormal in G if, for H, X ≤ G and g ∈ G,

H ∩X and Hg ∩X are conjugate in J = 〈H ∩X, Hg ∩X〉. In this paper, we

investigate the structure of a finite group G under the assumption that certain

subgroups are X-g pronormal, where X = F (G) is the Fitting subgroup of G.
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1. Introduction

All groups in this paper are finite. P. Hall introduced the conception of pronor-

mality (see [9, p241]). Asaad in [1] proved that if G is a finite group of odd order

n in which every minimal subgroup is pronormal in G, then G is supersoluble.

D’Anielio in [7] introduced the notion of dualpronormality, and gave the structure

of finite groups such that the n-maximal subgroups are dualpronormal. Bianchi etc

in [5] introduced the notion of H-subgroups. H-subgroups were studied by Asaad

in [2], and Csörgö and Herzog in [6]. Recently, X-g pronormality was introduced

by Dark and Feldman in [8]. In this note, we will prove the following results:

Theorem 1. Let G be a group which has no section isomorphic to A4, where

A4 is a alternating group of degree 4. Suppose that P is a Sylow p-subgroup of G,

and that for every subgroup of P of order p or 4 (when p = 2) is F (G)-g pronormal

in G, for all g in G. Then G is p-nilpotent.

Theorem 2. Let G be a group which has no section isomorphic to A4, where

A4 is a alternating group of degree 4. Suppose that P is a Sylow p-subgroup of G,

and that for every maximal subgroup of P is F (G)-g pronormal in G, for all g in

G. Then G is p-nilpotent.

For some other notions and notations, the reader is referred to Robinson [13],

and Gorenstein [10].
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2. Preliminaries

Definition 2.1. ([8, p. 780]) If X, H ≤ G, and g ∈ G, we say that H is X-g

pronormal if H ∩ X and Hg ∩ X are conjugate in J = 〈H ∩ X, Hg ∩ X〉, that is,

there exists an x ∈ J such that Hg ∩X = Hx ∩X.

Note that H is pronormal in G if H is G-g pronormal for all g ∈ G. So we

have pronormality dose not implies X-g pronormality. Let G = A5 and X = F (G),

then X = 1. If P is a Sylow 2-subgroup of G, P is pronormal in G by [10, p13,

Exersices, 4(i)]. If P is X-g pronormal in G, then P g ∩X = (P ∩X)x = P x ∩X,

where g ∈ G and x ∈ J = 〈P g ∩X,P ∩X〉. But J = 1 for all g ∈ G. And so x = 1,

a contradiction.

Lemma 2.2. Let G be a group and let H,K, X, L be subgroups of G satisfying that

H is X-g pronormal in G, H ≤ K and L is normal in G. Then the following hold:

(1) H is X-g pronormal in K;

(2) If P is a Sylow p-subgroup of G, then P ∩ L is X-g pronormal in G;

(3) If H ∩X ≤ K ∩X ≤ NG(H ∩X), then NG(K ∩X) ≤ NG(H ∩X)

(4) If H is subnormal in K, then H is normal in K;

(5) If L ≤ H, then H/L is XL/L-g pronormal in G/L;

(6) If H is a p-group of G, and (|H|, |L|) = 1, then HL is X-g pronormal in G

and HL/L is XL/L-g pronormal in G/L.

Proof. (1) By the definition of X-g pronormality, we can easily have the result.

(2) Since P is a Sylow p-subgroup, then P is pronormal in G. By [5, Corollary

4(1)], P ∩ L is pronormal in G and so is X-g pronormal in G.

(3) Let g ∈ NG(K ∩ X), then H ∩ X, (H ∩ X)g ≤ H ∩K ≤ NG(H ∩ X), and

since H is X-g pronormal in G, H ∩X = (H ∩X)g. And so g ∈ NG(H ∩X).

(4) Let H = H0 E H1 E · · ·E Hn = K be a normal chain between H and K. If

n = 1, the result is trivial. So we assume that n > 1 and H E Hn−1 E K. Then we

have H E H1 E NK(H). Thus by [5, Lemma 5], K = NK(H1) = NK(H).

(5) Let g ∈ G. Since H is X-g pronormal in G, then (H/L)g ∩ (XL/L) =

(Hg∩X)L/L, we have H is X-g pronormal in G if and only if H/L is X-g pronormal

in G/L.

(6) Since (|H|, |L|) = 1 and H is X-g pronormal in G, then, there exists an

x ∈ 〈Hg ∩ X,H ∩ X〉, (HL)g ∩ X = (Hg ∩ X)(Lg ∩ X) = (Hg ∩ X)(L ∩ X) =

(Hx ∩X)(Lx ∩X) = (HL)x ∩X. This implies that HL is X-g pronormal. ¤

Lemma 2.3. ([14, Lemma 2.8]) Let G be a group and p a prime dividing |G| with

(|G|, p− 1) = 1.
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(1) If N is normal in G of order p, then N is in Z(G).

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.

(3) If M ≤ G and |G : M | = p, then M C G.

Lemma 2.4. ([11, IV-5.4]) Suppose that G is a group which is not nilpotent but

whose proper subgroups are all p-nilpotent. Then G is a group which is not nilpotent

but whose proper subgroups are all nilpotent.

Lemma 2.5. ([11, III-5.2]) Suppose that G is a group which is not nilpotent but

whose proper subgroups are all nilpotent. Then

(1) G has a normal Sylow p−subgroup P for some prime p and G = PQ, where

Q is a non-normal cyclic q-subgroup for some prime q 6= p.

(2) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

(3) If P is non-abelian and p 6= 2, then the exponent of P is p.

(4) If P is non-abelian and p = 2, then the exponent of P is 4.

(5) If P is abelian, then P is of exponent p.

(6) If K ≤ P , then [K, Q] = 1 if and only if K ≤ Φ(P ).

3. The proof of the main results

In this section, we will give the proofs of the main theorems and some remarks.

The proof of the Theorem 1.

Proof. Assume that the result is not true and choose for G a counterexample of

minimal order. Then we have the following steps.

Step 1. The hypotheses are inherited by all proper subgroups, thus G is a group

which is not p-nilpotent but all proper subgroups are p-nilpotent.

Let K be a proper subgroup of G containing P . Since K ∩ F (G) ≤ F (K),

by Lemma 2.2(1), every subgroup of P of order p or 4 (when p = 2) is F (K)-g

pronormal in K. The minimality of G implies that K is p-nilpotent. Then G is a

group which is not p-nilpotent but all proper subgroups are p-nilpotent. By Lemma

2.4 and Lemma 2.5, G has a normal Sylow p−subgroup P for some prime p and

G = PQ, where Q is a non-normal cyclic q-subgroup for some prime q 6= p and P

has the exponent at most 4 if p = 2 or p if p is odd.

Step 2. Op′(G) = 1.

If Op′(G) 6= 1, then take K = Op′(G), every subgroup of PK/K of order p or 4

(when p = 2) is F (G)K/K-g pronormal in G/K. The minimal choice of G implies

that G/K is p-nilpotent and so is G, a contradiction.
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Step 3. G/P ∩ F (G) is p-nilpotent.

By step 2, F (G) 6= 1. Since P E G and F (G) E G, P ∩ F (G) E G and also

P ∩ F (G) E P . F (G/P ∩ F (G)) = F (G)/P ∩ F (G). Thus we have that every

subgroup of P/P∩F (G) of order p or 4 (when p = 2) is F (G)/P∩F (G)-g pronormal

in G/P ∩ F (G) by Lemma 2.2(5). So G/P ∩ F (G) is p-nilpotent by the minimal

choice of G.

Step 4. P = F (G).

By step 3, P ∩ F (G) 6= 1. Obviously P ∩ F (G) ≤ P . Otherwise F (G)Q < G,

then by step 1, F (G)Q is p-nilpotent. F (G)Q = F (G) × Q and so Q is normal in

G which contradicts step 1.

If P < F (G), then there exists some p′-subgroup of F (G) which is normal in G.

But this is impossible because Op′(G) = 1.

Step 5. P ∩ Φ(G) = 1.

If P ∩ Φ(G) 6= 1. Let K = P ∩ Φ(G), then G/K is p-nilpotent by step 3. This

implies that G/Φ(G) is p-nilpotent and so is G, a contradiction.

Step 6. Final contradiction.

Since P ∩ Φ(G) = 1 and [12, Lemma 2.3], F (P ) = F (F (G)) = F (G) = P is the

direct product of minimal normal subgroups of G which are contained in P . By

step 1, P has the exponent p if p is odd and P is abelian or 4 if p = 2 and P is non-

abelian. If p is odd or P is abelian, then P = A1×A2×· · ·As, where Ai is of order

p and Ai is normal in G. Obviously, CG(Ai) < G. Otherwise CG(Ai) = NG(Ai)

for all i = 1, 2, · · · s, then G is p-nilpotent. So we have G/CG(Ai) is p-nilpotent

for all i and G/ ∩i CG(Ai) is p-nilpotent. CG(Ai) = P . Otherwise CG(Ai)Q < G,

CG(Ai)Q is p-nilpotent by step 1, and CG(Ai)Q = CG(Ai)×Q. This implies that

Q is normal in G, a contradiction. P = CG(Ai) ≤ CG(P ). It follows P = Z(P ) and

so G is p-nilpotent, a contradiction. Then p = 2, and P is non-abelian. Namely,

every subgroup of P is a group in which every subgroup is of order 4, then by

[16, Theorem 17, p. 149], P is cyclic or a generalized quaternion group. If P is

cyclic, G is p-nilpotent by Lemma 2.3(2), a contradiction. Then P is a generalized

quaternion group and G ∼= S4. Since S4 = C2A4, G/C2
∼= A4. This contradicts the

hypotheses of the theorem.

The final contradiction completes the proof. ¤

Remark 3.1. The condition “G has no-section isomorphic to A4” of Theorem 1

can’t be removed. Let G = S4, the Symmetric group of degree 4. The subgroups

of the Sylow 3-subgroup of G of order 3 are F (G)-g pronormal in G, but G is not

3-nilpotent.
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Remark 3.2. For any non-abelian simple groups G, the Sylow p-subgroup of G

are pronormal in G, but not F (G)-g pronormal in G since F (G) = 1.

The proof of the Theorem 2.

Proof. Assume that the result is not true and choose for G a counterexample of

minimal order. Then we have the following:

Step 1. Let M be a proper maximal subgroup of G containing P , then M is

p-nilpotent.

Let P be a Sylow p-subgroup of G. M ∩F (G) ≤ F (M), By Lemma 2.2(1) every

maximal subgroup of P is F (M)-g pronormal in M . Then the minimal choice of G

implies that M is p-nilpotent.

Step 2. Op′(G) = 1.

Assume that Op′(G) 6= 1, and take K = Op′(G). Then PK/K is a Sylow

p-subgroup of G/K and F (G/K) = F (G)K/K by [4, Lemma 3.1]. By Lemma

2.2(6), every maximal subgroup of PK/K is F (G)K/K-g pronormal in G/K. The

minimal choice of G implies that G/K is p-nilpotent. And so G is p-nilpotent, a

contradiction.

Step 3. G/Op(G) is p-nilpotent, G is p-solvable.

By step 2, Op(G) 6= 1. Obviously, Op(G) ≤ P . If P = Op(G), then G = NG(P )

is p-nilpotent. And so Op(G) � P and F (G/Op(G)) = F (G)Op(G)/Op(G) by

[4, Lemma 3.1]. P/Op(G) is a Sylow p-subgroup of G/Op(G). By hypotheses

and Lemma 2.2(5), every maximal subgroup of P/Op(G) is F (G)Op(G)/Op(G))-g

pronormal in G/Op(G), then the minimal choice of G implies that G/Op(G) is

p-nilpotent, and so G is p-solvable.

Step 4. G = PQ, where Q is an elementary abelian Sylow q-subgroup of G for

some q 6= p. Moreover, P is maximal in G and QOp(G)/Op(G) is minimal normal

in G/Op(G).

By step 3, G is p-solvable. Then by [10, Theorem 3.5, p. 229], G has a Hall

subgroup G1 with π(G1) = {p, q}, where p, q are different primes. Hence if G1 < G,

then G1 is p-nilpotent since the minimal choice of G. And so Q is normal in G1,

where Q is a Sylow q-subgroup of G1 and also Q is a Sylow q-subgroup of G.

Then Op(G)Q = Op(G) × Q and so Q is normal in G, a contradiction. Thus

G1 = G = PQ, and by [10, Theorem 3.3, p. 131], G is solvable. Now let T/Op(G)

be a minimal normal subgroup of G/Op(G) contained in Opp′(G)/Op(G). Then

T = Op(G)(T ∩ Q). If T ∩ Q < Q, then PT < G and, therefore, PT is p-nilpotent

by step 1. It follows that 1 < T∩Q ≤ CG(Op(G)) ≤ Op(G), a contradiction. Hence
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T = Opp′(G) and QOp(G)/Op(G) is an elementary abelian q-group complementing

P/Op(G). It implies that P is maximal in G.

Step 5. Let S be a maximal p-subgroup of P , then S = F (G) = Op(G).

Op(G) ≤ F (G). If Op(G) � F (G), then there exists a normal q-subgroup R of

G such that R � Op(G) but R ≤ F (G), q 6= p. By step 3, G/R is p-nilpotent.

Then G ∼= G/1 ≤ G/Op(G)×G/R is p-nilpotent since p-nilpotence of finite groups

is a saturated formation by [13, 9.3.4], a contradiction. So Op(G) ≤ CG(F (G)) ≤
CG(Op(G)) ≤ Op(G) by [10, Theorem 1.3, p. 218] and step 4. Thus F (G) = Op(G).

We will prove that S is normal in G.

Obviously Op(G) ≤ S. If not, then P ≤ NG(S) � G. Since F (G) ∩ NG(S) ≤
F (NG(S)). By Lemma 2.2(1), S is F (NG(S))-g pronormal in NG(S), the minimal

choice of G implies that NG(S) is p-nilpotent. Since P is maximal subgroup of G

by step 4, we have NG(S) = P or G. If NG(S) = P , then NG(P ) = P and S E P .

Obviously SQ < G, and so S is a Sylow p-subgroup of SQ, And since S is F (SQ)-g

pronormal in SQ by Lemma 2.2(1). Then the minimal choice of G implies that SQ

is p-nilpotent. Thus SQ = S ×Q and Q is normal in G which is impossible. Then

G = PQ = SQ, a contradiction since S is proper maximal subgroup of P . So S is

normal in G. Thus S = Op(G).

Step 6. S has exponent p if p > 2 and at most 4 if p = 2; S is either an

elementary abelian or non-abelian with S′ = Z(S) = Φ(S) an elementary abelian

group.

By minimal choice of G and step 1, we have that G is a minimal non-p-nilpotent

but all proper subgroup are p-nilpotent. And by step 4, G is solvable. Then by [15,

Theorem 1.2], we have the results.

Step 7. Final contradiction.

S ∩ Φ(G) = 1.

If not, then there exists a normal subgroup W of S∩Φ(G). By hypotheses, S/W

is F (G)/W -g pronormal in G/W by Lemma 2.2(5), then minimality of G implies

that G/W is p-nilpotent and G/Φ(G) is p-nilpotent. Thus G is p-nilpotent since

p-nilpotence of finite groups is a saturated formation by [13, 9.3.4], a contradiction.

Since S ∩Φ(G) = 1 and [12, Lemma 2.3], F (S) is the direct product of minimal

normal subgroups of G which are contained in S.

By step 6, F (S) = F (G) = Op(G) and S is abelian or non-abelian with S′ =

Z(S) = Φ(S) an elementary abelian. If the former, then S = A1 × A2 × · · · × As,

where Ai are abelian and of order p. Then Ai is normal in G, and so Ai ≤ Z(S). G

is p-nilpotent, a contradiction. Then p = 2, S is an non-abelian and has exponent
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4. Namely, every maximal subgroup of P is a group in which every subgroup is of

order 4, then by [16, Theorem 17, p. 149], P is cyclic or a generalized quaternion

group. If P is cyclic, G is p-nilpotent by Lemma 2.3(2), a contradiction. Then P is

a generalized quaternion group and G ∼= S4. Since S4 = C2A4, G/C2
∼= A4. This

contradicts the hypotheses of the theorem.

So the minimal counterexample doesn’t exist. This completes the proof. ¤

Remark 3.3. The condition of the Theorem 2 “G has no-section isomorphic to A4”

can’t be removed. Let G = S4 and P be a Sylow 2-group, the maximal subgroup

of the Sylow 2-subgroup is F (G)-g pronormal in G, but G is not 2-nilpotent.

Corollary 3.4. ([3, Theorem 1.1]) Let P be a Sylow p-subgroup of G. Then G is

p-nilpotent if and only if NG(P ) is p-nilpotent and every maximal subgroup of P

belongs to H(G)

Corollary 3.5. ([7, p. 83]) If every maximal subgroups of G are dualpronormal in

G, then G is nilpotent.

Corollary 3.6. ([7, Theorem 1]) If every 2-maximal subgroup of a group G is du-

alpronormal, then either:

(1) G is nilpotent;

(2) G is minimal non-nilpotent, |G| = pqβ, Gp C G, q|p− 1.
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