ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP

A. K. Das and R. K. Nath

Received: 12 October 2009; Revised: 15 December 2009 Communicated by A. Ciğdem Özcan

ABSTRACT. Given any two subgroups H and K of a finite group G , and an element $g \in G$, the aim of this article is to study the probability that the commutator of an arbitrarily chosen pair of elements (one from H and the other from K) equals g.

Mathematics Subject Classification (2000): 20C15, 20D60, 20P05 Keywords: commutativity degree, commutators, group characters

1. Introduction

Throughout this paper G denotes a finite group, H and K two subgroups of G , and g an element of G . In [1], Erfanian et al. have considered the probability $Pr(H, G)$ for an element of H to commute with an element of G. On the other hand, in [8], Pournaki et al. have studied the probability $Pr_{q}(G)$ that the commutator of an arbitrarily chosen pair of group elements equals q (a generalization of this notion can be found also in [7]). The main object of this paper is to further generalize these notions and study the probability that the commutator of a randomly chosen pair of elements (one from H and the other from K) equals g. In other words, we study the ratio

$$
\Pr_{g}(H,K) = \frac{|\{(x,y) \in H \times K : xyx^{-1}y^{-1} = g\}|}{|H||K|},\tag{1}
$$

and further extend some of the results obtained [1] and [8]. In the final section, with H normal in G , we also develop and study a character theoretic formula for $Pr_g(H, G)$, which generalizes the formula for $Pr_g(G)$ given in ([8], Theorem 2.1). In the process we generalize a classical result of Frobenius (see [2]).

Note that if $H = K = G$ then $Pr_q(H, K) = Pr_q(G)$, which coincides with the usual commutativity degree $Pr(G)$ of G if we take $g = 1$, the identity element of G. It may be recalled (see, for example, [3]) that $Pr(G) = \frac{k(G)}{|G|}$ where $k(G)$ denotes the number of conjugacy classes of G. On the other hand, if $K = G$ and $g = 1$ then $Pr_a(H, K) = Pr(H, G).$

2. Some basic properties and a computing formula

Let $[H, K]$ denote the subgroup of G generated by the commutators $[x, y] =$ $xyx^{-1}y^{-1}$ with $x \in H$ and $y \in K$. Also, for brevity, let us write $Pr_1(H, K) =$ $Pr(H, K)$. Clearly,

$$
\Pr(H, K) = 1 \iff [H, K] = \{1\},\
$$

and
$$
\Pr_g(H, K) = 0 \iff g \notin \{[x, y] : x \in H, y \in K\}.
$$

It is also easy to see that if $C_K(x) = \{1\}$ for all $x \in H - \{1\}$ then

$$
\Pr(H, K) = \frac{1}{|H|} + \frac{1}{|K|} - \frac{1}{|H||K|}.
$$
 (2)

The following proposition says that $Pr_q(H, K)$ is not very far from being symmetric with respect to H and K .

Proposition 2.1. $Pr_g(H, K) = Pr_{g^{-1}}(K, H)$. However, if $g^2 = 1$, or if $g \in H \cup K$ (for example, when H or K is normal in G), we have $Pr_q(H, K) = Pr_q(K, H)$ $Pr_{q^{-1}}(H, K)$.

Proof. The first part follows from the fact that $[x, y]^{-1} = [y, x]$. On the other hand, for the second part, it is enough to note that if $g \in H$ then $(x, y) \mapsto (y^{-1}, yxy^{-1}),$ and if $g \in K$ then $(x, y) \mapsto (xyx^{-1}, x^{-1})$ define bijective maps between the sets $\{(x, y) \in H \times K : [x, y] = g\}$ and $\{(y, x) \in K \times H : [y, x] = g\}.$

 $Pr_a(H, K)$ respects the Cartesian product in the following sense.

Proposition 2.2. Let G_1 and G_2 be two finite groups with subgroups $H_1, K_1 \subseteq G_1$ and $H_2, K_2 \subseteq G_2$. Let $g_1 \in G_1$ and $g_2 \in G_2$. Then,

$$
\Pr_{(g_1,g_2)}(H_1 \times H_2, K_1 \times K_2) = \Pr_{g_1}(H_1, K_1) \Pr_{g_2}(H_2, K_2).
$$

Proof. It is enough to note that for all $x_1, y_1 \in G_1$ and for all $x_2, y_2 \in G_2$ we have $[(x_1, x_2), (y_1, y_2)] = ([x_1, y_1], [x_2, y_2]).$

We now derive a computing formula which plays a key role in the study of $Pr_q(H, K)$.

Theorem 2.3.

$$
{\rm Pr}_g(H,K) = \frac{1}{|H||K|} \sum_{\substack{x \in H \\ g^{-1}x \in {\rm C}\ell_K(x)}} |C_K(x)| = \frac{1}{|H|} \sum_{\substack{x \in H \\ g^{-1}x \in {\rm C}\ell_K(x)}} \frac{1}{|{\rm C}\ell_K(x)|},
$$

where $C\ell_K(x) = \{yxy^{-1} : y \in K\}$, the K-conjugacy class of x.

Proof. We have $\{(x,y) \in H \times K : xyx^{-1}y^{-1} = g\} = \bigcup_{x \in H} \{x\} \times T_x$, where $T_x =$ ${y \in K : [x, y] = g}$. Note that, for any $x \in H$, we have

$$
T_x \neq \phi \Longleftrightarrow g^{-1}x \in \mathrm{C}\ell_K(x).
$$

Let $T_x \neq \phi$ for some $x \in H$. Fix an element $y_0 \in T_x$. Then, $y \mapsto gy_0^{-1}y$ defines a one to one correspondence between the set T_x and the coset $gC_K(x)$. This means that $|T_x| = |C_K(x)|$.

Thus, we have

$$
|\{(x,y)\in H\times K: xyx^{-1}y^{-1}=g\}|=\sum_{x\in H}|T_x|=\sum_{\substack{x\in H\\ g^{-1}x\in \mathrm{C}\ell_K(x)}}|C_K(x)|.
$$

The first equality in the theorem now follows from (1).

For the second equality, consider the action of K on G by conjugation. Then, for all $x \in G$, we have

$$
|C\ell_K(x)| = |\operatorname{orb}(x)| = |K : \operatorname{stab}(x)| = \frac{|K|}{|C_K(x)|}.
$$
 (3)

This completes the proof. \Box

As an immediate consequence, we have the following generalization of the wellknown formula $Pr(G) = \frac{k(G)}{|G|}$.

Corollary 2.4. If H is normal in G then

$$
\Pr(H, K) = \frac{k_K(H)}{|H|},
$$

where $k_K(H)$ is the number of K-conjugacy classes that constitute H.

Proof. Note that K acts on H by conjugation. The orbit of any element $x \in H$ under this action is given by $C\ell_K(x)$, and so H is the disjoint union of these classes. Hence, we have

$$
\Pr(H, K) = \frac{1}{|H|} \sum_{x \in H} \frac{1}{|\mathcal{C}\ell_K(x)|} = \frac{k_K(H)}{|H|};
$$

noting that, for $g = 1$, the condition $g^{-1}x \in \mathbb{C}\ell_K(x)$ is superfluous.

The Schur-Zassenhaus Theorem (see [6, page 125]) says that if H is a normal subgroup of G such that $gcd(|H|, |G : H|) = 1$ then H has a complement in G. In particular, if H is a normal subgroup of G with $C_G(x) \subseteq H$ for all $x \in H - \{1\}$ then, using Sylow's theorems and the fact that nontrivial p -groups have nontrivial centers, we have $gcd(|H|, |G : H|) = 1$. So, by the Schur-Zassenhaus Theorem, H has a complement in G. Such groups belong to a well-known class of groups called the Frobenius Groups; for example, the alternating group A_4 , the dihedral groups

of order $2n$ with n odd, the nonabelian groups of order pq where p and q are primes with $q|(p-1)$.

Proposition 2.5. If H is an abelian normal subgroup of G with a complement K in G then

$$
\Pr_{g}(H, G) = \Pr_{g}(H, K).
$$

Proof. Let $x \in H$. Since H is abelian, we have

$$
C_{HK}(x) = \{hk : hk = xhk\} = \{hk : kx = xk\} = HC_K(x).
$$

Thus, $|C_{HK}(x)| = |H||C_K(x)|$. Also, since H is abelian and normal, $C\ell_K(x) =$ $C\ell_{HK}(x)$. Hence, from Theorem 2.3, it follows that

$$
\Pr_g(H,G) = \frac{1}{|H|^2|K|} \sum_{\substack{x \in H \\ g^{-1}x \in \mathrm{C}\ell_{HK}(x)}}|C_{HK}(x)| = \Pr_g(H,K).
$$

This completes the proof. \Box

Corollary 2.6. If H is a normal subgroup of G with $C_G(x) = H$ for all $x \in H - \{1\}$ then

$$
\Pr_{g}(H, G) = \Pr_{g}(H, K),
$$

where K is a complement of H in G . In particular,

$$
\Pr(H, G) = \frac{1}{|H|} + \frac{|H| - 1}{|G|}.
$$

Proof. The first part follows from the discussion preceding the above proposition, and the second part follows from (2) .

3. Some bounds and inequalities

We begin with the inequality

$$
\Pr(H, K) \ge \frac{|C_H(K)|}{|H||K|} + \frac{|C_K(H)|(|H| - |C_H(K)|)}{|H||K|},
$$

which follows from (1) using the fact that

$$
(C_H(K)\times K)\cup (H\times C_K(H))\subseteq \{(x,y)\in H\times K: xyx^{-1}y^{-1}=1\}.
$$

On the other hand, we have

Proposition 3.1. If $g \neq 1$ then

(i)
$$
\Pr_g(H, K) \neq 0 \Longrightarrow \Pr_g(H, K) \geq \frac{|C_H(K)||C_K(H)|}{|H||K|},
$$

144 A. K. DAS AND R. K. NATH

(ii)
$$
\Pr_g(H, G) \neq 0 \Longrightarrow \Pr_g(H, G) \geq \frac{2|H \cap Z(G)||C_G(H)|}{|H||G|},
$$

(iii) $\Pr_g(G) \neq 0 \Longrightarrow \Pr_g(G) \geq \frac{3}{|G : Z(G)|^2}.$

Proof. Let $g = [x, y]$ for some $(x, y) \in H \times K$. Since $g \neq 1$, we have $x \notin C_H(K)$ and $y \notin C_K(H)$. Consider the left coset $T_{(x,y)} = (x,y)(C_H(K) \times C_K(H))$ of $C_H(K) \times C_K(H)$ in $H \times K$. Clearly, $|T_{(x,y)}| = |C_H(K)||C_K(H)|$, and $[a,b] = g$ for all $(a, b) \in T_{(x,y)}$. This proves part (i).

Similarly, part (ii) follows considering the two disjoint cosets $T_{(x,y)}$ and $T_{(x,yx)}$ with $K = G$, while part (iii) follows considering the three disjoint cosets $T_{(x,y)}$, $T_{(xy,x)}$, and $T_{(x,yx)}$ with $H = K = G$.

As a generalization of Proposition 5.1 of [8], we have

Proposition 3.2.

$$
\Pr_{g}(H,K) \le \Pr(H,K),
$$

with equality if and only if $q = 1$.

Proof. By Theorem 2.3, we have

$$
\Pr_g(H, K) = \frac{1}{|H||K|} \sum_{\substack{x \in H \\ g^{-1}x \in C\ell_K(x)}} |C_K(x)|
$$

$$
\leq \frac{1}{|H||K|} \sum_{x \in H} |C_K(x)| = \Pr(H, K).
$$

Clearly, the equality holds if and only if $g^{-1}x \in C\ell_K(x)$ for all $x \in H$, that is, if and only if $g = 1$.

The following is an improvement to Proposition 5.2 of [8].

Proposition 3.3. Let p be the smallest prime dividing $|G|$, and $q \neq 1$. Then,

$$
Pr_g(H, K) \le \frac{|H| - |C_H(K)|}{p|H|} < \frac{1}{p}.
$$

Proof. Without any loss, we may assume that $C_H(K) \neq H$. Let $x \in H$ be such that $g^{-1}x \in \mathcal{C}\ell_K(x)$. Then, since $g \neq 1$, we have $x \notin C_H(K)$ and $|\mathcal{C}\ell_K(x)| > 1$. But $|C\ell_K(x)|$ is a divisor of $|K|$, and hence of $|G|$. Therefore, $|C\ell_K(x)| \geq p$. Hence, by Theorem 2.3, we have

$$
\Pr_g(H, K) \le \frac{1}{|H|} \sum_{\substack{x \in H \\ g^{-1}x \in \mathrm{C}\ell_K(x)}} \frac{1}{p} \le \frac{|H| - |C_H(K)|}{p|H|} < \frac{1}{p}.
$$

This completes the proof. \Box

 $Pr(H, K)$ is monotonic in the following sense.

Proposition 3.4. If $K_1 \subseteq K_2$ are subgroups of G then

$$
\Pr(H, K_1) \ge \Pr(H, K_2),
$$

with equality if and only if $C\ell_{K_1}(x) = C\ell_{K_2}(x)$ for all $x \in H$.

Proof. Clearly, $C\ell_{K_1}(x) \subseteq C\ell_{K_2}(x)$ for all $x \in H$. So, by Theorem 2.3, we have

$$
\Pr(H, K_1) = \frac{1}{|H|} \sum_{x \in H} \frac{1}{|\mathrm{C}\ell_{K_1}(x)|} \ge \frac{1}{|H|} \sum_{x \in H} \frac{1}{|\mathrm{C}\ell_{K_2}(x)|} = \Pr(H, K_2).
$$

The condition for equality is obvious. \Box

Since $Pr(H, K) = Pr(K, H)$, it follows from the above proposition that if $H_1 \subseteq$ H_2 and $K_1 \subseteq K_2$ are subgroups of G then

$$
\Pr(H_1, K_1) \ge \Pr(H_2, K_2).
$$

Proposition 3.5. If $K_1 \subseteq K_2$ are subgroups of G then

$$
\Pr(H, K_2) \ge \frac{1}{|K_2: K_1|} \left(\Pr(H, K_1) + \frac{|K_2| - |K_1|}{|H||K_1|} \right),
$$

with equality if and only if $C_H(x) = \{1\}$ for all $x \in K_2 - K_1$.

Proof. By Theorem 2.3, We have

$$
\Pr(H, K_2) = \frac{1}{|H||K_2|} \left(\sum_{x \in K_1} |C_H(x)| + \sum_{x \in K_2 - K_1} |C_H(x)| \right) \\
\ge \frac{1}{|K_2 : K_1|} \left(\Pr(H, K_1) + \frac{|K_2| - |K_1|}{|H||K_1|} \right).
$$

Clearly, the equality holds if and only if

$$
\sum_{x \in K_2 - K_1} (|C_H(x)| - 1) = 0,
$$

that is, if and only if $C_H(x) = \{1\}$ for all $x \in K_2 - K_1$.

In general, $Pr_g(H, K)$ is not monotonic. For example, if $G = S_3$, $g = (123)$, $H = \langle 12 \rangle$, $K_1 = \langle 1 \rangle$, $K_2 = \langle 13 \rangle$, and $K_3 = S_3$, then

$$
Pr_g(H, K_1) = 0 \le Pr_g(H, K) = \frac{1}{4} \ge Pr_g(H, K) = \frac{1}{6}.
$$

However, we have

$$
\overline{a}
$$

Proposition 3.6. If $H_1 \subseteq H_2$ and $K_1 \subseteq K_2$ are subgroups of G then

$$
Pr_g(H_1, K_1) \le |H_2 : H_1||K_2 : K_1|Pr_g(H_2, K_2),
$$

with equality if and only if

$$
g^{-1}x \notin \mathrm{C}\ell_{K_2}(x) \text{ for all } x \in H_2 - H_1,
$$

\n
$$
g^{-1}x \notin \mathrm{C}\ell_{K_2}(x) - \mathrm{C}\ell_{K_1}(x) \text{ for all } x \in H_1,
$$

\nand
$$
C_{K_1}(x) = C_{K_2}(x) \text{ for all } x \in H_1 \text{ with } g^{-1}x \in \mathrm{C}\ell_{K_1}(x).
$$

In particular, for $g = 1$, the condition for equality reduces to $H_1 = H_2$, and $K_1 =$ K_2 .

Proof. By Theorem 2.3, we have

$$
|H_1||K_1|\Pr_g(H_1, K_1) = \sum_{\substack{x \in H_1 \\ g^{-1}x \in C\ell_{K_1}(x)}} |C_{K_1}(x)|
$$

$$
\leq \sum_{\substack{x \in H_2 \\ g^{-1}x \in C\ell_{K_2}(x)}} |C_{K_2}(x)| = |H_2||K_2|\Pr_g(H_2, K_2).
$$

The condition for equality follows immediately. \Box

Using Propostion 3.2, we have

Corollary 3.7.

$$
\Pr_{g}(H, G) \leq |G:H| \Pr(G),
$$

with equality if and only if $g = 1$ and $H = G$.

The following theorem generalizes Theorem 3.5 of [1].

Theorem 3.8. Let p be the smallest prime dividing $|G|$. Then

$$
\Pr(H, K) \ge \frac{|C_H(K)|}{|H|} + \frac{p(|H| - |X_H| - |C_H(K)|) + |X_H|}{|H||K|},
$$

and
$$
\Pr(H, K) \le \frac{(p-1)|C_H(K)| + |H|}{p|H|} - \frac{|X_H|(|K| - p)}{p|H||K|},
$$

where $X_H = \{x \in H : C_K(x) = 1\}$. Moreover, in each of these bounds, H and K can be interchanged.

Proof. If $[H, K] = 1$ then there is nothing to prove, as in that case $C_H(K) = H$, and X_H equals H or an empty set according as K is trivial or nontrivial.

On the other hand, if $[H, K] \neq 1$ then $X_H \cap C_H(K) = \phi$, and so

$$
\sum_{x \in H} |C_K(x)| = \sum_{x \in X_H} |C_K(x)| + \sum_{x \in C_H(K)} |C_K(x)| + \sum_{x \in H - (X_H \cup C_H(K))} |C_K(x)|
$$

= $|X_H| + |K||C_H(K)| + \sum_{x \in H - (X_H \cup C_H(K))} |C_K(x)|$.

But, for all $x \in H - (X_H \cup C_H(K))$, we have $\{1\} \neq C_K(x) \neq K$, which means that $p \leq C_K(x) \leq \frac{|K|}{n}$ $\frac{R}{p}$. Hence, using Theorem 2.3, we get the required bounds for $Pr(H, K)$. The final statement of the theorem follows from the fact that $Pr(H, K)$ = $Pr(K, H)$.

As a consequence we have

Corollary 3.9. Let $[H, K] \neq \{1\}$. If p is the smallest prime divisor of $|G|$ then

$$
\Pr(H, K) \le \frac{2p - 1}{p^2}.
$$

In particular, $Pr(H, K) \leq \frac{3}{4}$.

Proof. Since, $[H, K] \neq \{1\}$, we have $K \neq \{1\}$ and $C_H(K) \neq H$. So, $|K| \geq p$ and $|C_H(K)| \leq \frac{|H|}{p}$. Therefore, by Theorem 3.8, we have

$$
\Pr(H, K) \le \frac{(p-1)|C_H(K)| + |H|}{p|H|} \le \frac{\frac{p-1}{p} + 1}{p} = \frac{2p - 1}{p^2} \le \frac{3}{4},
$$

since $p \ge 2$.

One can see that the above bound is best possible. For example, consider two non-commuting elements a and b of order p in a nonabelian group G with p as the smallest prime dividing |G|. Then, using (2) for $H = \langle a \rangle$ and $K = \langle b \rangle$, we have $Pr(H, K) = \frac{2p-1}{p^2}$.

Proposition 3.10. Let $Pr(H, K) = \frac{2p-1}{p^2}$ for some prime p. Then, p divides |G|. If p happens to be the smallest prime divisor of $|G|$ then

$$
\frac{H}{C_H(K)} \cong \mathbb{Z}_p \cong \frac{K}{C_K(H)}, \text{ and hence, } H \neq K.
$$

In particular, $\frac{H}{C_H(K)} \cong \mathbb{Z}_2 \cong \frac{K}{C_K(H)}$ if $Pr(H, K) = \frac{3}{4}$.

Proof. The first part follows from the definition of $Pr(H, K)$.

For the second part, by Theorem 3.8, we have

$$
\frac{2p-1}{p^2} \le \frac{(p-1)|C_H(K)| + |H|}{p|H|}
$$

\n
$$
\implies |H:C_H(K)| \le p.
$$

Since p is the smallest prime divisor of $|G|$, it follows that $|H:C_H(K)|=p$, whence $\frac{H}{C_H(K)} \cong \mathbb{Z}_p$; noting that $C_H(K) \neq H$ because $Pr(H, K) = \frac{2p-1}{p^2} \neq 1$. Similarly, we have $\frac{K}{C_K(H)} \cong \mathbb{Z}_p$. Since $\frac{H}{Z(H)}$ is never cyclic unless trivial, we have $H \neq K$. The third part follows from the first two parts. \Box

4. A character theoretic formula

In this section, all results are under the assumption that H is normal in G . Let $\zeta(g)$ denote the number of solutions $(x, y) \in H \times G$ of the equation $[x, y] = g$. Thus, by (1) ,

$$
\Pr_g(H, G) = \frac{\zeta(g)}{|H||G|}.\tag{4}
$$

Our quest for a character theoretic formula for $Pr_q(H, G)$ starts with the following lemma.

Lemma 4.1. $\zeta(g)$ defines a class function on G.

Proof. It is enough to note that, for each $a \in G$, the map $(x, y) \mapsto (axa^{-1}, aya^{-1})$ defines a one to one correspondence between the sets $\{(x, y) \in H \times G : [x, y] = g\}$ and $\{(x, y) \in H \times G : [x, y] = aga^{-1}\}.$

Thus, we have

$$
\zeta(g) = \sum_{\chi \in \operatorname{Irr}(G)} \langle \zeta, \chi \rangle \chi(g),\tag{5}
$$

where Irr(G) denotes the set of all irreducible complex characters of G, and \langle , \rangle denotes the inner product.

We now prove the main result of this section.

Theorem 4.2.

$$
\zeta(g) = \sum_{\chi \in \operatorname{Irr}(G)} \frac{|H| \langle \chi_H, \chi_H \rangle}{\chi(1)} \chi(g),
$$

where χ_H denotes the restriction of χ to H.

Proof. Let $\chi \in \text{Irr}(G)$, and let Φ_{χ} be a representation of G which affords χ . Then, as in the proof of Theorem 1 of [9], we have, by Schur's lemma (see [4], Lemma 2.25),

$$
\sum_{y \in G} \Phi_{\chi}(yx^{-1}y^{-1}) = \frac{|G|}{\chi(1)} \chi(x^{-1}) \mathbf{I}_{\chi},
$$

where $x \in H$ and I_{χ} is the identity matrix of size $\chi(1)$. Multiplying both sides by $\Phi_{\chi}(x)$, and summing over all $x \in H$, we get

$$
\sum_{(x,y)\in H\times G} \Phi_\chi(xyx^{-1}y^{-1}) = \frac{|G|}{\chi(1)} \sum_{x\in H} \Phi_\chi(x)\chi(x^{-1}).
$$

Taking trace, we have

$$
\sum_{(x,y)\in H\times G} \chi(xyx^{-1}y^{-1}) = \frac{|G|}{\chi(1)} \sum_{x\in H} \chi(x)\chi(x^{-1})
$$

\n
$$
\implies \sum_{g\in G} \chi(g)\zeta(g) = \frac{|G|}{\chi(1)} \sum_{x\in H} \chi_H(x)\overline{\chi_H(x)}
$$

\n
$$
\implies \langle \chi, \zeta \rangle = \frac{|H|\langle \chi_H, \chi_H \rangle}{\chi(1)}.
$$

Hence, in view of (5) , the theorem follows. \Box

In particular, we have

Corollary 4.3. ζ is a character of G ,

Proof. It is enough to show that $\chi(1)$ divides $|H|\langle \chi_H, \chi_H \rangle$ for every $\chi \in \text{Irr}(G)$. With notations same as in the proof of the above theorem, consider the algebra homomorphism $\omega_\chi : \mathbf{Z}(\mathbb{C}[G]) \longrightarrow \mathbb{C}$ given by $\Phi(z) = \omega_\chi(z) I_\chi$ for all $z \in \mathbf{Z}(\mathbb{C}[G])$. Since H is normal in G, there exist $x_1, x_2, \ldots, x_r \in H$ such that $H = \bigcup_{1 \leq i \leq r} C\ell_G(x_i)$. Let $K_i = \sum_{x \in \text{C}\ell_G(x_i)} x$, the class sum corresponding to $\text{C}\ell_G(x_i)$, $1 \leq i \leq r$. By ([4, Theorem 3.7] and the preceding discussion), $\omega_{\chi}(K_i)$ is an algebraic integer with

$$
\omega_{\chi}(K_i) = \frac{\chi(x_i) | \operatorname{C} \ell_G(x_i) |}{\chi(1)}, \ 1 \leq i \leq r.
$$

Therefore, it follows that

$$
|H|\langle \chi_H, \chi_H \rangle = \sum_{x \in H} \chi(x)\chi(x^{-1}) = \sum_{1 \le i \le r} |C\ell_G(x_i)|\chi(x_i)\chi(x_i^{-1})
$$

$$
= \sum_{1 \le i \le r} \chi(1)\omega_\chi(K_i)\chi(x_i^{-1}).
$$

Thus,

$$
\frac{|H|\langle \chi_H, \chi_H \rangle}{\chi(1)} = \sum_{1 \le i \le r} \omega_\chi(K_i) \chi(x_i^{-1}),
$$

which is an algebraic integer, and hence, an integer. This completes the proof. \Box

In view of (4), the following character theoretic formula for $Pr_g(H, G)$ can be easily derived from Theorem 4.2.

$$
\Pr_{g}(H, G) = \frac{1}{|G|} \sum_{\chi \in \text{Irr}(G)} \langle \chi_{H}, \chi_{H} \rangle \frac{\chi(g)}{\chi(1)}.
$$
 (6)

This formula enables us to strengthen Corollary 3.7 as follows.

Proposition 4.4. If $g \in G'$, the commutator subgroup of G, then \overline{a}

$$
\left|\Pr_g(H,G)-\frac{1}{|G'|}\right|\leq |G:H|\left(\Pr(G)-\frac{1}{|G'|}\right).
$$

Proof. For all $\chi \in \text{Irr}(G)$, with $\chi(1) = 1$, we have $\langle \chi_H, \chi_H \rangle = 1$ and $G' \subseteq \text{ker } \chi$. Also, $|G: G'|$ equals the number of linear characters of G. Therefore, by (6) ,

$$
\Pr_g(H, G) = \frac{1}{|G'|} + \frac{1}{|G|} \sum_{\substack{\chi \in \text{Irr}(G) \\ \chi(1) \neq 1}} \langle \chi_H, \chi_H \rangle \frac{\chi(g)}{\chi(1)}.
$$

Since $|\chi(g)| \leq \chi(1)$ for all $\chi \in \text{Irr}(G)$, we have, using Lemma 2.29 of [4],

$$
\left| \Pr_g(H, G) - \frac{1}{|G'|} \right| \le \sum_{\substack{\chi \in \text{Irr}(G) \\ \chi(1) \neq 1}} \langle \chi_H, \chi_H \rangle
$$

$$
\le \frac{1}{|G|} \left(|\operatorname{Irr}(G)| - |G:G'| \right) |G:H|
$$

$$
= |G:H| \left(\Pr(G) - \frac{1}{|G'|} \right).
$$

This completes the proof. \Box

In particular, we have

Corollary 4.5. If G' contains a non-commutator (an element which is not a commutator) then $Pr(G) \geq \frac{2}{|G'|}$.

Proof. The corollary follows by choosing a non-commutator $g \in G'$, and putting $H = G.$

As a consequence, we have the following result which is closely related to the subject matter of [5].

Proposition 4.6. If $|G'| < p^2 + 1$, where p is the smallest prime divisor of $|G|$, then every element of G' is a commutator.

Proof. It is well-known that

$$
\Pr(G) \le \frac{1}{|G'|} \left[1 + \frac{|G'| - 1}{p^2} \right],
$$

which, in fact, can be derived from the inequality

$$
|G| = \sum_{\chi \in \text{Irr}(G)} \chi(1)^{2} \geq |G : G'| + p^{2}[k(G) - |G : G']|.
$$

Hence, if G' contains a non-commutator, it follows, using Corollary 4.5, that $|G'| \ge$ p^2+1 . $2 + 1.$

References

- [1] A. Erfanian, R. Rezaei and P. Lescot, On the Relative Commutativity Degree of a Subgroup of a Finite Group, Comm. Algebra, 35 (12) (2007), 4183–4197.
- [2] F. G. Frobenius, Über Gruppencharaktere, Gesammelte Abhandlungen Bände III, p. 1–37 (J. P. Serre, ed.), Springer-Verlag, Berlin, 1968.
- [3] W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973), 1031–1034.
- [4] I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New YorK, 1994.
- [5] L. Kappe and R. F. Morse, On commutators in groups, (English summary) Groups St. Andrews 2005. Vol. 2, 531–558, London Math. Soc. Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge, 2007.
- [6] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, An Introduction, Universitext, Springer, New York-Berlin-Heidelberg, 2004.
- [7] R. K. Nath and A. K. Das, On generalized commutativity degree of a finite group, to appear in Rocky Mountain J. Math.
- [8] M. R. Pournaki and R. Sobhani, Probability that the commutator of two group elements is equal to a given element, J. Pure and Applied Algebra, 212 (2008), 727–734.
- [9] T. Tambour, The number of solutions of some equations in finite groups and a new proof of Itô's theorem, Comm. Algebra, 28 (11) (2000), 5353-5361.

A. K. Das and R. K. Nath

Department of Mathematics, North-Eastern Hill University, Permanent Campus, Shillong-793022,

Meghalaya, India.

e-mails: akdas@nehu.ac.in (A. K. Das)

rajatkantinath@yahoo.com (R. K. Nath)