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ABSTRACT. Given any two subgroups H and K of a finite group G, and an
element g € G, the aim of this article is to study the probability that the
commutator of an arbitrarily chosen pair of elements (one from H and the

other from K) equals g.
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1. Introduction

Throughout this paper G denotes a finite group, H and K two subgroups of
G, and g an element of G. In [1], Erfanian et al. have considered the probability
Pr(H, G) for an element of H to commute with an element of G. On the other hand,
in [8], Pournaki et al. have studied the probability Pry(G) that the commutator of
an arbitrarily chosen pair of group elements equals g (a generalization of this notion
can be found also in [7]). The main object of this paper is to further generalize
these notions and study the probability that the commutator of a randomly chosen
pair of elements (one from H and the other from K) equals g. In other words, we

study the ratio

H(x,y) € Hx K : ayz~ly~1 = g}

Pr,(H,K) = TH[K|

(1)

and further extend some of the results obtained [1] and [8]. In the final section,
with H normal in G, we also develop and study a character theoretic formula for
Pry,(H,G), which generalizes the formula for Pry(G) given in ([8], Theorem 2.1).
In the process we generalize a classical result of Frobenius (see [2]).

Note that if H = K = G then Pry(H, K) = Pry(G), which coincides with the
usual commutativity degree Pr(G) of G if we take g = 1, the identity element of G.
It may be recalled (see, for example, [3]) that Pr(G) = % where k(G) denotes
the number of conjugacy classes of G. On the other hand, if K = G and g = 1 then

Pry(H,K) =Pr(H,QG).
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2. Some basic properties and a computing formula

Let [H, K] denote the subgroup of G generated by the commutators [x,y] =
ryr~ly~! with x € H and y € K. Also, for brevity, let us write Pry(H, K) =
Pr(H, K). Clearly,

Pr(H,K)=1 < [H,K]={1},
and Pry(H,K)=0 <= g¢{[z,yl:x€ Hyec K}.

It is also easy to see that if Cx(x) = {1} for all z € H — {1} then

1 1 1
P I .
LK) = 5 Y R R @)

The following proposition says that Pry(H, K) is not very far from being sym-
metric with respect to H and K.

Proposition 2.1. Pr,(H, K) = Pr,-1 (K, H). However, ifg?=1,orifgec HUK
(for example, when H or K is normal in G), we have Pry(H, K) = Pry(K, H) =
Pr,- (H, K).

Proof. The first part follows from the fact that [x,y]~! = [y, z]. On the other hand,
for the second part, it is enough to note that if g € H then (z,y) — (y~ !, yzy~1),
and if g € K then (z,y) — (zyx~!,271) define bijective maps between the sets
{(z,y) e Hx K : [z,y] = g} and {(y,z) € K x H : [y, x] = g}. O

Pry(H, K) respects the Cartesian product in the following sense.

Proposition 2.2. Let Gy and G2 be two finite groups with subgroups Hi, K1 C Gy
and Ho, Ko C Gy. Let gy € Gy and g2 € Go. Then,

PI‘(gth)(Hl X Hg,Kl X Kg) = Prgl (Hl,Kl)Prg2(H2,K2).

Proof. It is enough to note that for all z1,y; € G; and for all x5, yo € G5 we have
[(z1,22), (Y1, y2)] = ([z1,91], [22, y2]). O

We now derive a computing formula which plays a key role in the study of
Pry(H,K).

Theorem 2.3.
PrHK)= —— 3 [Ck@)=o Y .
g ) = T K = T TH7 7.\
H[K] 2= H 2 [Clx(a)]
g lzeClk (z) g lzeClk ()

1

where Clg (z) = {yzy~* 1 y € K}, the K-conjugacy class of x.
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Proof. We have {(z,y) € H x K : zyz~ 'y~ ! = g} = UH{:c} x Ty, where T, =
S
{y € K : [z,y] = g}. Note that, for any € H, we have

T, # ¢ <= g 'a € Clg(x).

Let T, # ¢ for some z € H. Fix an element yo € T),. Then, y ~— gy, "y defines a
one to one correspondence between the set Ty, and the coset gCk (x). This means
that |1, = |Ck (x)].

Thus, we have

{@y) e Hx K ayzly™ =gl =Y ITl= Y [Ok()l.

reH zeH
g lzeClk (x)

The first equality in the theorem now follows from (1).
For the second equality, consider the action of K on G by conjugation. Then,

for all x € G, we have

| Clg (z)| = |orb(z)| = |K : stab(z)| = |C’|1f((|x)| (3)

This completes the proof. O

As an immediate consequence, we have the following generalization of the well-

known formula Pr(G) = @

Corollary 2.4. If H is normal in G then
ki (H)
[H|

where ki (H) is the number of K-conjugacy classes that constitute H.

Pr(H,K) =

Proof. Note that K acts on H by conjugation. The orbit of any element z € H
under this action is given by Clk (x), and so H is the disjoint union of these classes.

Hence, we have

1 1 ki (H)
Pr(H,K)=— = ;
] 2 TGl )]~ JH]
noting that, for g = 1, the condition g~'z € Clk () is superfluous. O

The Schur-Zassenhaus Theorem (see [6, page 125]) says that if H is a normal
subgroup of G such that ged(|H|, |G : H|) = 1 then H has a complement in G. In
particular, if H is a normal subgroup of G with Cg(z) C H for all x € H — {1}
then, using Sylow’s theorems and the fact that nontrivial p-groups have nontrivial
centers, we have ged(|H|, |G : H|) = 1. So, by the Schur-Zassenhaus Theorem, H
has a complement in G. Such groups belong to a well-known class of groups called

the Frobenius Groups; for example, the alternating group Ay, the dihedral groups
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of order 2n with n odd, the nonabelian groups of order pq where p and ¢ are primes
with ¢|(p — 1).

Proposition 2.5. If H is an abelian normal subgroup of G with a complement K
in G then

Pry(H,G) = Pry(H, K).
Proof. Let x € H. Since H is abelian, we have
Cuk(x) = {hk : hkx = xhk} = {hk : kx = vk} = HCk(z).

Thus, |Cuk(z)] = |H||Ck(x)|. Also, since H is abelian and normal, Clg(z) =
Clpk(z). Hence, from Theorem 2.3, it follows that
1
Pry(H,G) = PR ;{ |Crk(x)| = Pry(H,K).
g lzeCluk(z)

This completes the proof. ([l

Corollary 2.6. If H is a normal subgroup of G with Ce(x) = H for allx € H—{1}
then

Pry(H,G) = Pry(H, K),
where K is a complement of H in G. In particular,
1 |H| -1

Proof. The first part follows from the discussion preceding the above proposition,

and the second part follows from (2). O

3. Some bounds and inequalities

We begin with the inequality

[Ca(K)] | [Cr(E)|(|H] — |Cu(K)])

Pr(H,K) > ,
|HI|K]| [HI||K]|

which follows from (1) using the fact that
(Cr(K)x K)U(H x Cx(H)) C{(v,y) € Hx K : xyz~ 'y~ =1}.
On the other hand, we have

Proposition 3.1. If g # 1 then
|Cu (K)||Cx (H)|

(i) Pry(H,K) # 0 = Pry(H,K) > TR
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2|H N Z(G)[|Co(H))]
[HI|G| ’

(i) Pry(H,G) # 0 = Pr,(H,G) >

3
G Z(G)P
Proof. Let g = [x,y] for some (z,y) € H x K. Since g # 1, we have z ¢ Cy(K)
and y ¢ Ck(H). Consider the left coset T,y = (2,%)(Cu(K) x Cx(H)) of
Cu(K)xCg(H) in H x K. Clearly, |T(,,,| = |Cu(K)||Ck(H)|, and [a,b] = g for
all (a,b) € T(4,). This proves part (i).

(ili) Pry(G) # 0= Pry(G) >

Similarly, part (ii) follows considering the two disjoint cosets T{, .,y and T(, ya)
with K = G, while part (iii) follows considering the three disjoint cosets T{, ),
T(xy,z)v and T(m}ym) with H = K = G. O

As a generalization of Proposition 5.1 of [8], we have

Proposition 3.2.
PI'g(H7K) S PI‘(H, K)v
with equality if and only if g = 1.

Proof. By Theorem 2.3, we have

1
zeH
g~ l2eClk ()
IOk (z)| = Pr(H, K).
< i 2

Clearly, the equality holds if and only if g~ 'z € Clx(x) for all x € H, that is, if
and only if g = 1. O

The following is an improvement to Proposition 5.2 of [§].

Proposition 3.3. Let p be the smallest prime dividing |G|, and g # 1. Then,

Pry(H,K) < H — 1G] 1
plH| p
Proof. Without any loss, we may assume that Cy(K) # H. Let © € H be such
that g~'z € Clg(z). Then, since g # 1, we have z ¢ Cy(K) and | Clg(z)| > 1.
But | Clk (z)| is a divisor of | K|, and hence of |G|. Therefore, | Cx (x)| > p. Hence,
by Theorem 2.3, we have
1 1 _[H[—|Cu(K)] 1

Pr,(H,K — -l < -,
A S 2 ST <

g~ 'z€Clk (x)

This completes the proof. (I
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Pr(H, K) is monotonic in the following sense.
Proposition 3.4. If K1 C K5 are subgroups of G then
Pr(H, K1) > Pr(H, K3),
with equality if and only if Clg, (v) = Clk,(z) for all x € H.

Proof. Clearly, Clg, (z) C Clg,(x) for all z € H. So, by Theorem 2.3, we have

1 1 1 1
Pr(H,K;) = — _— > — = Pr(H, K>).
] 2 (G, (1] = TH] 2 Gl )
The condition for equality is obvious. (I

Since Pr(H, K) = Pr(K, H), it follows from the above proposition that if Hy C
H, and K; C K> are subgroups of G then

PI‘(H]_,Kl) Z PI‘(HQ,KQ).
Proposition 3.5. If K1 C K> are subgroups of G then
1 |K2| — |K1|>
Pr(H,Ky) > ——— ( Pr(H, K,) + =2 121
0160 > gy (Pote e + Fms

with equality if and only if Cy(x) = {1} for allx € Ky — K.

Proof. By Theorem 2.3, We have

1
Pr(H,K3) = ———— Cu(z)| + Ch(z
1 |Ko| — | Ky
> et ol
> e (Um0 + S

Clearly, the equality holds if and only if

Y. (Cu@)|-1=0

reEKo— K,

that is, if and only if Cy(z) = {1} for all z € K3 — K;. O

In general, Pry(H, K) is not monotonic. For example, if G = S5, g = (123),
H=<(12) >, K; =< (1) >, K3 =< (13) >, and K3 = S3, then

Pry(H, K1) =0 < Pry(H,K) = = > Pry(H,K) = —.

N

However, we have
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Proposition 3.6. If Hy C Hy and K1 C Ky are subgroups of G then
PI‘g(HhKl) S |H2 : H1||K2 . K1|P1‘g(H2,K2),
with equality if and only if
g 'a ¢ Cly,(z) forall x € Hy — Hy,
g 'z ¢ Clg,(z) — Clg, () for all x € Hy,
and Ck,(x) = Ck,(x) for all x € Hy with g 'z € Clg, (z).

In particular, for g = 1, the condition for equality reduces to Hy = Hs, and Ky =
K.

Proof. By Theorem 2.3, we have

|Hy||EKq|Prg(Hi, Ki) = Y |Ck, ()]
reH,
g lzeCly, (x)

< Y [Oky(2)| = |Ha|[Ko|Pry(Ha, Ko).
r€EHo
g lzeClk, (x)

The condition for equality follows immediately. O
Using Propostion 3.2, we have

Corollary 3.7.
Pry(H,G) < |G : H|Pr(G),

with equality if and only if g =1 and H = G.
The following theorem generalizes Theorem 3.5 of [1].

Theorem 3.8. Let p be the smallest prime dividing |G|. Then
Ca(E)| | p(H] = [ Xn| = |Cu(K)) + | Xn|

Pr(H,K) > )
[H| [H||K]
(p=DICu(K)| +[H| _ | Xu|(K]-p)
and Pr(H,K) < - ,
plH| plHI| K]

where Xg = {x € H : Cx(x) = 1}. Moreover, in each of these bounds, H and K

can be interchanged.

Proof. If [H, K] = 1 then there is nothing to prove, as in that case Cy(K) = H,

and Xpg equals H or an empty set according as K is trivial or nontrivial.
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On the other hand, if [H, K] # 1 then Xy N Cy(K) = ¢, and so

YolCk(@)= Y [Cx@)|+ Y |Ck(z)l+ > Ck (2)]

z€H €XH 2eCy (K) w€H—(XgUCH(K))
= Xul 4 KO+ Y ek,
s€H—(XgUCH(K))
But, for all x € H — (Xg U Cg(K)), we have {1} # Ck(z) # K, which means
that p < Ck(x) < %. Hence, using Theorem 2.3, we get the required bounds for
Pr(H, K). The final statement of the theorem follows from the fact that Pr(H, K) =
Pr(K, H). O

As a consequence we have

Corollary 3.9. Let [H, K] # {1}. If p is the smallest prime divisor of |G| then
2p—1

Pr(H,K) < ==

In particular, Pr(H,K) < %.

Proof. Since, [H, K] # {1}, we have K # {1} and Cy(K) # H. So, |K| > p and
|ICp (K)| < %. Therefore, by Theorem 3.8, we have

—1
(- DICk)| +H| _ %5 +1_2p1
plH| T p?
since p > 2. ([l

Pr(H,K) < < %

One can see that the above bound is best possible. For example, consider two
non-commuting elements a and b of order p in a nonabelian group G with p as the
smallest prime dividing |G|. Then, using (2) for H =< a > and K =< b >, we
have Pr(H, K) = 2251,

Proposition 3.10. Let Pr(H,K) = 21;;1 for some prime p. Then, p divides |G]|.

If p happens to be the smallest prime divisor of |G| then

T

K
=27, ———— and hence, H# K.
Ca(K) - 7% Ol 7

In particular, %(K) = %(H) if Pr(H,K) = %,

Proof. The first part follows from the definition of Pr(H, K).
For the second part, by Theorem 3.8, we have
2p—1 _ (p—=D|Cu(K)|+ |H]
o plH|
= |H : Oy (K)| < p.
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Since p is the smallest prime divisor of |G, it follows that |H : Cy(K)| = p, whence
H o~ Zp; noting that Cy (K) # H because Pr(H, K) = 2L £ 1. Similarly, we

Cu(K) p?
have %(H) & Z,. Since % is never cyclic unless trivial, we have H # K.
The third part follows from the first two parts. O

4. A character theoretic formula

In this section, all results are under the assumption that H is normal in G. Let

¢(g) denote the number of solutions (z,y) € H x G of the equation [z, y] = g. Thus,

by (1), @

g

: (4)
[HI|G|

Our quest for a character theoretic formula for Pr,(H, G) starts with the follow-

Pry(H,G) =

ing lemma.

Lemma 4.1. ((g) defines a class function on G.

Proof. It is enough to note that, for each a € G, the map (z,y) — (aza™t,aya=1)
defines a one to one correspondence between the sets {(z,y) € H x G : [z,y] = g}
and {(z,y) € H x G : [z,y] = aga™'}. O

Thus, we have

)= Y x)x), (5)

XEIrr(G)
where Irr(G) denotes the set of all irreducible complex characters of G, and (, )

denotes the inner product.

We now prove the main result of this section.

Theorem 4.2. =
9= > s X))

x€Irr(G) X(l)
where x,, denotes the restriction of x to H.

Proof. Let x € Irr(G), and let @, be a representation of G which affords x. Then,
as in the proof of Theorem 1 of [9], we have, by Schur’s lemma (see [4], Lemma

2.25 ),
1 G _
Zq)X(yx 'y 1) = |(1|)X(93 1)Ixa
yeG X
where © € H and I, is the identity matrix of size x(1). Multiplying both sides by

@, (x), and summing over all z € H, we get

> By(ayaly ) = 16l D> @y (x)x(a).

(z,y)EHXG X(l)er
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Taking trace, we have

-1, —1\ __ ‘G| —1
> xlayrly )—EZX@?)X(% )

(z,y)eHXG zeH
G|
— > x(9)¢(9) = EZXH(I)XH ()
ge@ XY Zer
| H (X s> Xr)
- X?C = :
hed) x(1)
Hence, in view of (5), the theorem follows. d

In particular, we have
Corollary 4.3. ( is a character of G,

Proof. It is enough to show that x(1) divides |H|{x,,, x,) for every x € Irr(G).
With notations same as in the proof of the above theorem, consider the algebra
homomorphism w,, : Z(C[G]) — C given by ®(z) = w,(2) L, for all z € Z(C[G]).

Since H is normal in G, there exist 1, xa, ..., 2, € H such that H = 1<LJ< Clg(z;).
SIST
Let K; = Yz, the class sum corresponding to Clg(z;), 1 < i < r. By ([4,
z€CLli(x4)

Theorem 3.7] and the preceding discussion), w, (kK;) is an algebraic integer with

X(i)| Clg ()]

) =)

,1<i<r
Therefore, it follows that

[HI (s Xa) = D x(@)x(@™) = Y | Cla () x(w)x (i)

zcH 1<i<r
= > x(Wwy (Ki)x(@; ).
1<i<r

Thus,

|H|<XH7XH> _ . -1
O lér“’x(fﬁ)x(mi )s

which is an algebraic integer, and hence, an integer. This completes the proof. [

In view of (4), the following character theoretic formula for Pry(H,G) can be

easily derived from Theorem 4.2.

~

_ 1 x(g
Prg(Hv G) - |C;|X€;Y(G)<XH7XH>X(1)' (6)

This formula enables us to strengthen Corollary 3.7 as follows.
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Proposition 4.4. If g € G, the commutator subgroup of G, then

Pry(H,G) — 1 <|G: H| (Pr(G) - |G1’|> .

g
Proof. For all x € Irr(G), with x(1) = 1, we have (x,,x,) = 1 and G’ C ker x.
Also, |G : G'| equals the number of linear characters of G. Therefore, by (6),

1 1 x(9)
Prg(Hv G) = T + = Z <XH7XH>7
o1t el 2=, A1)
x(1)#1
Since |x(g)] < x(1) for all x € Irr(G), we have, using Lemma 2.29 of [4],
1
PTQ(H,G)—@ < Z <XH7XH>
x€lrr(G)
x(1)#1
1
< g (@)~ 16 )G - ]
1
This completes the proof. O

In particular, we have

Corollary 4.5. If G' contains a non-commutator (an element which is not a com-

mutator) then Pr(G) > ‘é—,l

Proof. The corollary follows by choosing a non-commutator g € G’, and putting

H=G. (]

As a consequence, we have the following result which is closely related to the

subject matter of [5].

Proposition 4.6. If |G'| < p?> + 1 , where p is the smallest prime divisor of |G|,

then every element of G' is a commutator.

Proof. It is well-known that

1 G’ — 1
P < 1
") < i [1+ 5.

which, in fact, can be derived from the inequality

Gl= > X1’ 2[G: Q'+ KG) —1G: ¢

x€lrr(G)
Hence, if G’ contains a non-commutator, it follows, using Corollary 4.5, that |G'| >
p*+ 1. O
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