ASCENTS AND DESCENTS OF SEMISTAR OPERATIONS AND LOCALIZING SYSTEMS

Ryûki Matsuda

Received: 12 October 2009; Revised: 17 December 2009 Communicated by A. Çiğdem Özcan

ABSTRACT. We study ascents and descents of semistar operations and localizing systems for any extension domains.

Mathematics Subject Classification (2000): 13A15 Keywords: semistar operation, localizing system

1. Introduction

Let D be an integral domain with quotient field K, and let $\bar{F}(D)$ be the set of non-zero D-submodules of K. A mapping $\bar{F}(D) \stackrel{\star}{\longrightarrow} \bar{F}(D)$, $E \longmapsto E^{\star}$ is called a semistar operation if, for every $x \in K \setminus \{0\}$ and $E, H \in \overline{\mathrm{F}}(D), (xE)^* = xE^*;$ $E \subset E^*$; $(E^*)^* = E^*$; and $E \subset H$ implies $E^* \subset H^*$. The set of semistar operations on D is denoted by $SStar(D)$. Let T be an overring of D, that is, $T \subset K$. If we set $H^{\alpha(*)} = H^*$ for every $H \in \bar{F}(T), \alpha(*)$ is a semistar operation on T, which is called the ascent of \star to T. Let \star' be a semistar operation on T. If we set $E^{\delta(\star')} = (ET)^{\star'}$ for every $E \in \bar{F}(D)$, $\delta(\star')$ is a semistar operation on D, which is called the descent of \star' to D. In this paper, for any extension domain T of D, we define ascents and descents of semistar operations and localizing systems, and study their basic properties.

Let F be a non-empty set of ideals of D with $\mathcal{F} \not\supseteq (0)$ which satisfies the following two conditions for every ideals I, J of D: If $I \in \mathcal{F}$ and $I \subset J$, then $J \in F$; If $I \in \mathcal{F}$ and $J :_{D} iD \in \mathcal{F}$ for every $i \in I$, then $J \in \mathcal{F}$. Then \mathcal{F} is called a localizing system of D (P. Gabriel [3]). The set of localizing systems of D is denoted by $LS(D)$. We refer to M. Fontana and J. Huckaba ([2]) for the following notions and terminologies. Thus, let $F(D)$ be the set of non-zero submodules G of K such that $dG \subset D$ for some $d \in D \setminus \{0\}$, and let $f(D)$ be the set of elements of $F(D)$ which is finitely generated over D. Let \star be a semistar operation on D. Then $\mathcal{F}^{\star} = \{I \mid I \text{ is } I\}$ a non-zero ideal of D with $I^* \ni 1$ is a localizing system of D. Let F be a localizing system of D. Then the mapping $E \mapsto E^{\star_{\mathcal{F}}} = \cup \{(E :_K I) \mid I \in \mathcal{F}\}\)$ is a semistar operation on D. The semistar operation $E \longrightarrow \bigcup \{F^* \mid F \in f(D) \text{ with } F \subset E\}$ is

denoted by \star_f . If $\star = \star_f$, \star is called finite type. A localizing system $\mathcal F$ is called finite type if, for every $I \in \mathcal{F}$, $\mathcal F$ contains a finitely generated ideal J of D such that $J \subset I$.

Let T be the polynomial ring $D[X]$ of X over D. For every semistar operation \star on T, E. Houston, S. Malik and J. Mott [4] and A. Okabe and R. Matsuda [5] defined the semistar operation $E \mapsto (ET)^* \cap K$ on D, which we denote by $\delta(\star)$. For every localizing system $\mathcal F$ of D, G. Picozza [8] defined the localizing system $\{J \mid J \text{ is an ideal of } T \text{ with } J \supset I \text{ for some } I \in \mathcal{F}\}\$ of T, which we denote by $\alpha(\mathcal{F})$. For every localizing system $\mathcal F$ of T, A. Okabe [6] defined the localizing system $\{I \mid I \text{ is an ideal of } D \text{ such that } II \in \mathcal{F}\}\$ of D, which we denote by $\delta(\mathcal{F})$. In this paper, for any extension domain T of D , we define ascents and descents of semistar operations and localizing systems, and study their basic properties. This paper consists of three sections. Section 1 is an introduction, Section 2 is definitions of ascents and descents, and Section 3 is basic properties of ascents and descents.

2. Definitions of Ascents and Descents

Let D be a domain with $q(D) = K$, and let T be any extension domain with $q(T) = L$. In this section, we give definitions of ascents and descents of semistar operations and localizing systems.

Proposition 2.1. (cf., [4, Proposition 2.1] and [5, Proposition 35]) Let \star be a semistar operation on T. For every $E \in \bar{F}(D)$, set $E^{\delta(\star)} = (ET)^{\star} \cap K$. Then $\delta(\star)$ is a semistar operation on D.

Proof. The only condition which is not trivial is $\delta(\star)\delta(\star) = \delta(\star)$. For every $E \in$ $\overline{F}(D)$, we have the following: $(E^{\delta(*)})^{\delta(*)} = (((ET)^{*} \cap K)T)^{*} \cap K \subset ((ET)^{*}T)^{*} \cap K =$ $((ET)T)^{\star} \cap K = (ET)^{\star} \cap K = E^{\delta(\star)}$. \Box

 $\delta(\star)$ is called the descent of \star to D, and is also denoted by $\delta_{T/D}(\star)$.

Remark 2.2. Let T be an overring of D, and let \star be a semistar operation on T. Then, for every $E \in \bar{F}(D)$, we have $E^{\delta(\star)} = (ET)^{\star}$.

Proposition 2.3. (cf., [8, Proposition 3.1]) Let $\mathcal F$ be a localizing system of D. Set $\alpha(\mathcal{F}) = \{J \mid J \text{ is an ideal of } T \text{ with } J \supset I \text{ for some } I \in \mathcal{F} \}.$

- (1) $\alpha(\mathcal{F})$ is a localizing system of T.
- (2) $\alpha(\mathcal{F}) = \{J \mid J \text{ is an ideal of } T \text{ with } J \cap D \in \mathcal{F} \}.$

Proof. The only condition which needs a proof is: If J' is a non-zero ideal of T , and if $J \in \alpha(\mathcal{F})$ such that $(J':T) \in \alpha(\mathcal{F})$ for every $j \in J$, then $J' \in \alpha(\mathcal{F})$.

Since $J \in \alpha(\mathcal{F})$, we have $J \cap D \in \mathcal{F}$. Let $j_0 \in J \cap D$. Since $(J' : T j_0) \in \alpha(\mathcal{F})$, we have $(J':_D j_0) \in \mathcal{F}$, and $((J' \cap D):_D j_0) \in \mathcal{F}$. Therefore $J' \cap D \in \mathcal{F}$. It follows that $J' \in \alpha(\mathcal{F})$.

 $\alpha(\mathcal{F})$ is called the ascent of $\mathcal F$ to T, and is also denoted by $\alpha_{T/D}(\mathcal{F})$.

Proposition 2.4. For every localizing system $\mathcal F$ of T, set $\delta(\mathcal F) := \mathcal F^{\delta(\star_{\mathcal F})}$. Then $\delta(\mathcal{F}) = \{I \mid I \text{ is an ideal of } D \text{ with } IT \in \mathcal{F}\}.$

Proof. Let $I \in \mathcal{F}^{\delta(\star_{\mathcal{F}})}$. Then $I^{\delta(\star_{\mathcal{F}})} \ni 1$, and hence $(IT)^{\star_{\mathcal{F}}} \ni 1$. There is $J \in \mathcal{F}$ such that $J \subset IT$, hence $IT \in \mathcal{F}$. The reverse inclusion is similar. \Box

 $\delta(\mathcal{F})$ is called the descent of $\mathcal F$ to D, and is also denoted by $\delta_{T/D}(\mathcal{F})$.

Remark 2.5. (cf., [6, Lemma 32]) Let $T = D[X]$. Then

 $\delta(\mathcal{F}) = \{J \cap D \mid J \text{ is an ideal of } T \text{ with } (J \cap D)T \in \mathcal{F}\}.$

Let \star_1, \star_2 be semistar operations on D with $E^{\star_1} \subset E^{\star_2}$ for every $E \in \bar{F}(D)$. Then we denote $\star_1 \leq \star_2$.

Lemma 2.6. Let \star be a semistar operation on D. Then there is an extension domain T which satisfies the following two conditions:

- (1) There is a semistar operation \star' on T such that $\delta(\star') \geq \star$.
- (2) Every semistar operation \star' on T satisfies $\delta(\star') \geq \star$.

Proof. Set $T := K$. Clearly, T satisfies the conditions (1) and (2).

The mapping $E \longmapsto E$ from $\overline{F}(D)$ to $\overline{F}(D)$ is a semistar operation on D which is calld the d-semistar operation, and is denoted by d_D or by d. Similarly, we may define the e-semistar operation e_D on D: $E^{e_D} = K$ for every $E \in \overline{\mathrm{F}}(D)$. The localizing system $\mathcal{F}^{e_D} = \{I \mid I \text{ is a non-zero ideal of } D\}$ of D is called the trivial localizing system of D.

Proposition 2.7. Let \star be a semistar operation on D. Then there is a semistar operation \star' on T such that $\delta(\star') \geq \star$. Let $\{\star_\lambda \mid \lambda \in \Lambda\}$ be the set of semistar operations \star' on T such that $\delta(\star') \geq \star$. Then the mapping $\bar{F}(T) \longrightarrow \bar{F}(T)$, $H \longmapsto$ $\bigcap_{\lambda} H^{\star_{\lambda}}$ is a semistar operation on T.

Proof. Let e_T be the e-semistar operation on T. Then $\delta(e_T) > \star$. That the mapping $H \longmapsto \bigcap_{\lambda} H^{\star_{\lambda}}$ is a semistar operation on T follows from D.D. Anderson and D.F. Anderson [1, Lemma 1]. \Box

The semistar operation $H \mapsto \cap_{\lambda} H^{\star_{\lambda}}$ on T is called the ascent of \star , and is denoted by $\alpha(\star)$, or by $\alpha_{T/D}(\star)$.

Proposition 2.8. Let T be an overring of D. Let \star be a semistar operation on D. Then, for every $H \in \overline{\mathrm{F}}(T)$, we have $H^{\alpha(*)} = H^*$.

Proof. If we set $H^{\star_{\lambda_0}} = H^{\star}$ for every $H \in \overline{\mathrm{F}}(T)$, then \star_{λ_0} is a semistar operation on T with $\delta(\star_{\lambda_0}) \geq \star$. Let $\{\star_{\lambda} \mid \lambda \in \Lambda\}$ be the set of semistar operations \star' on T with $\delta(\star') \geq \star$. Then $(ET)^{\star_{\lambda}} \supset E^{\star}$ for every $E \in \bar{F}(D)$. Since $\bar{F}(T) \subset \bar{F}(D)$, we have $H^{\star_{\lambda}} = (HT)^{\star_{\lambda}} \supset H^{\star} = H^{\star_{\lambda_0}}$ for every $H \in \overline{\mathrm{F}}(T)$. Hence $\alpha(\star) = \star_{\lambda_0}$ \Box

Example 2.9. (1) $\alpha(d_D) = d_T$.

- (2) If T is an overring of D, then $\alpha(e_D) = e_T$.
- (3) If $T = D[X]$, then $\alpha(e_D) : H \longmapsto HK$.

(4) Let T be an overring of D. If $\mathcal F$ is the trivial localizing system of D, then $\alpha(\mathcal{F})$ is the trivial localizing system of T.

- (5) If T is an overring of D, then $E^{\delta(d_T)} = ET$ for every $E \in \bar{F}(D)$.
- (6) If $T = D[X]$, then $\delta(d_T) = d_D$.

(7) If F is the trivial localizing system of T, then $\delta(\mathcal{F})$ is the trivial localizing system of D.

Proof. The proofs for (1) , (2) , (4) , (5) , (6) , (7) are immediate.

(3) Set $H^* = HK$ for every $H \in \overline{F}(T)$. Then \star is a semistar operation on T. Easily, we have $\delta(\star) \ge e_D$. Let \star' be a semistar operation on T with $\delta(\star') \ge e_D$. If $\star' \geq \star$, we may conclude that $\alpha(e_D) = \star$. Since $D^{\delta(\star')} \supset D^{e_D}$, we have $T^{\star'} \supset K$. For every $H \in \overline{\mathrm{F}}(T)$, we have $H^{\star'} = (HT)^{\star'} = (HT^{\star'})^{\star'} \supset (HK)^{\star'} \supset HK = H^{\star}$. That is, $\star' > \star$. $\mathcal{O} \geq \star$.

3. Basic Properties of Ascents and Descents

In this section, we study basic properties of ascents and descents of semistar operations and localizing systems.

Proposition 3.1. (1) Let \star_1, \star_2 be semistar operations on D with $\star_1 \leq \star_2$. Then $\alpha(\star_1) \leq \alpha(\star_2)$.

(2) Let $\mathcal{F}_1, \mathcal{F}_2$ be localizing systems of T with $\mathcal{F}_1 \subset \mathcal{F}_2$. Then $\delta(\mathcal{F}_1) \subset \delta(\mathcal{F}_2)$.

(3) (cf., [6, Proposition 23 (5)]) Let \star_1, \star_2 be semistar operations on T with $\star_1 \leq \star_2$. Then $\delta(\star_1) \leq \delta(\star_2)$.

(4) Let $\mathcal{F}_1, \mathcal{F}_2$ be localizing systems of D with $\mathcal{F}_1 \subset \mathcal{F}_2$. Then $\alpha(\mathcal{F}_1) \subset \alpha(\mathcal{F}_2)$.

Proof. (1) Let $\{ \star' \in \text{SStar}(T) \mid \delta(\star') \geq \star_1 \} = \{ \star_\lambda \mid \lambda \in \Lambda \}$ and $\{ \star' \in \text{SStar}(T) \mid \delta(\star') \geq \star_1 \}$ $\{\star_2\} = {\{\star_\sigma \mid \sigma \in \Sigma\}}$. Then $\{\star_\lambda \mid \lambda\} \supset {\{\star_\sigma \mid \sigma\}}$. By the definition of $\alpha(\star_1)$ and $\alpha(\star_2)$, we have $\alpha(\star_2) \geq \alpha(\star_1)$.

- (2) If $I \in \delta(\mathcal{F}_1)$, then $IT \in \mathcal{F}_1$, hence $IT \in \mathcal{F}_2$, and hence $I \in \delta(\mathcal{F}_2)$.
- (3) For every $E \in \overline{\mathrm{F}}(D)$, we have $E^{\delta(\star_1)} = (ET)^{\star_1} \cap K \subset (ET)^{\star_2} \cap K = E^{\delta(\star_2)}$.

(4) If $J \in \alpha(\mathcal{F}_1)$, then $J \supset I$ for some $I \in \mathcal{F}_1$. Since $I \in \mathcal{F}_2$, we have $J \in \alpha(\mathcal{F}_2).$

Proposition 3.2. (1) For every localizing system F of T, we have $\alpha(\delta(\mathcal{F})) \subset \mathcal{F}$.

- (2) For every localizing system $\mathcal F$ of D, we have $\delta(\alpha(\mathcal F)) \supset \mathcal F$.
- (3) For every semistar operation \star on D, we have $\delta(\alpha(\star)) > \star$.
- (4) For every semistar operation \star on T, we have $\alpha(\delta(\star)) \leq \star$.

Proof. (1) Let $J \in \alpha(\delta(\mathcal{F}))$. Then $J \cap D \in \delta(\mathcal{F})$, hence $(J \cap D)T \in \mathcal{F}$. Since $J \supset (J \cap D)T$, we have $J \in \mathcal{F}$. Hence $\alpha(\delta(\mathcal{F})) \subset \mathcal{F}$.

(2) Let $I \in \mathcal{F}$. Since $I \subset (IT) \cap D$, we have $(IT) \cap D \in \mathcal{F}$. Hence $IT \in \alpha(\mathcal{F})$, and hence $I \in \delta(\alpha(\mathcal{F}))$. Therefore $\mathcal{F} \subset \delta(\alpha(\mathcal{F}))$.

(3) Let $\{\star_\lambda \mid \lambda \in \Lambda\}$ be the set of semistar operations \star' on T such that $\delta(\star') \geq \star$. For every $E \in \bar{F}(D)$, we have $E^{\delta(\alpha(\star))} = (ET)^{\alpha(\star)} \cap K = \cap_{\lambda} (ET)^{\star_{\lambda}} \cap K =$ $\cap_{\lambda} E^{\delta(\star_{\lambda})} \supset E^{\star}$. Hence $\delta(\alpha(\star)) \geq \star$.

(4) Set $\{\star' \in \text{SStar}(T) \mid \delta(\star') \geq \delta(\star)\} = \{\star_\lambda \mid \lambda \in \Lambda\}$. Then $\star = \star_{\lambda_0}$ for some λ_0 . Then, for every $H \in \bar{F}(T)$, $H^{\alpha(\delta(\star))} = \cap_{\lambda} H^{\star_{\lambda}} \subset H^{\star_{\lambda_0}} = H^{\star}$. Hence $\alpha(\delta(\star)) \leq \star$.

Proposition 3.3. Let $D \subset T \subset R$ be domains.

- (1) For every semistar operation \star on R, $(\delta_{T/D} \delta_{R/T})(\star) = \delta_{R/D}(\star)$.
- (2) For every localizing system F on R, $(\delta_{T/D} \delta_{R/T}) (\mathcal{F}) = \delta_{R/D} (\mathcal{F})$.
- (3) For every semistar operation \star on D, $(\alpha_{R/T} \alpha_{T/D})(\star) = \alpha_{R/D}(\star)$.
- (4) For every localizing system F of D, $(\alpha_{R/T} \alpha_{T/D})(\mathcal{F}) = \alpha_{R/D}(\mathcal{F})$.

Proof. (3) Set $\star_1 = \alpha_{T/D}(\star)$, $\star_2 = \alpha_{R/T}(\star_1)$, and set $\star_3 = \alpha_{R/D}(\star)$. By Proposition 3.2 (3), we have $\delta_{R/T}(\star_2) \geq \star_1$ and $\delta_{T/D}(\star_1) \geq \star$. Then $\delta_{T/D}\delta_{R/T}(\star_2) \geq$ $\delta_{T/D}(\star_1) \geq \star$ by Proposition 3.1(3). Hence $\delta_{R/D}(\star_2) \geq \star$ by Proposition 3.3 (1). Then $\star_2 \geq \star_3$ by the definition of \star_3 . Similarly, we have $\star_3 \geq \star_2$, and hence $\star_2 = \star_3$.

The proofs of (1), (2) and (4) are straightforward. \Box

Proposition 3.4. We have

(1) (i) $\delta_{T/D} \alpha_{T/D} \delta_{T/D}(\star) = \delta_{T/D}(\star)$ for every $\star \in SStar(T)$. (ii) $\alpha_{T/D} \delta_{T/D} \alpha_{T/D}(\star) = \alpha_{T/D}(\star)$ for every $\star \in SStar(D)$.

\n- (2) (i)
$$
\delta_{T/D} \alpha_{T/D} \delta_{T/D}(\mathcal{F}) = \delta_{T/D}(\mathcal{F})
$$
 for every $\mathcal{F} \in LS(T)$.
\n- (ii) $\alpha_{T/D} \delta_{T/D} \alpha_{T/D}(\mathcal{F}) = \alpha_{T/D}(\mathcal{F})$ for every $\mathcal{F} \in LS(D)$.
\n

Proof. (1) (i) $\star > \alpha \delta(\star)$ by Proposition 3.2 (4). $\delta(\star) > \delta \alpha \delta(\star)$ by Proposition 3.1 (3). $\delta \alpha \delta(\star) \geq \delta(\star)$ by Proposition 3.2 (3). Hence $\delta \alpha \delta = \delta$. The proof of (ii) is similar.

The proof for (2) is similar.

Proposition 3.5. (1) $SStar(T) \stackrel{\delta}{\longrightarrow} SStar(D)$ is an injection if and only if $\alpha\delta =$ I, where I denotes the identity mapping. And then $SStar(D) \stackrel{\alpha}{\longrightarrow} SStar(T)$ is a surjection.

(2) $LS(T) \stackrel{\delta}{\longrightarrow} LS(D)$ is an injection if and only if $\alpha\delta = I$. And then $LS(D) \stackrel{\alpha}{\longrightarrow}$ $LS(T)$ is a surjection.

(3) SStar(D) $\stackrel{\alpha}{\longrightarrow} SStar(T)$ is an injection if and only if $\delta \alpha = I$. And then $SStar(T) \stackrel{\delta}{\longrightarrow} SStar(D)$ is a surjection.

(4) $LS(D) \stackrel{\alpha}{\longrightarrow} LS(T)$ is an injection if and only if $\delta \alpha = I$. And then $LS(T) \stackrel{\delta}{\longrightarrow}$ $LS(D)$ is a surjection.

Proof. (1) Assume that δ is an injection. We have $\delta \alpha \delta(\star) = \delta(\star)$ for every $\star \in$ SStar(T) by Proposition 3.4 (1)(i). Hence $\alpha\delta(\star) = \star$. Therefore $\alpha\delta = I$ and α is a surjection.

Assume that $\alpha\delta = I$. Let $\delta(\star_1) = \delta(\star_2)$ for $\star_1, \star_2 \in \text{SStar}(T)$. Then $\alpha\delta(\star_1) =$ $\alpha\delta(\star_2)$, hence $\star_1 = \star_2$.

The proofs for (2) , (3) and (4) are similar.

$$
\Box
$$

Proposition 3.6. (1) (cf., [6, Proposition 35(2)]) Let $\mathcal F$ be a localizing system of T. Then $\alpha(\delta(\mathcal{F})) = \mathcal{F} \Longleftrightarrow \mathcal{F} \in \alpha(LS(D)) \Longleftrightarrow (J \cap D)T \in \mathcal{F}$ for every $J \in \mathcal{F}$.

(2) Let \star be a semistar operation on T. Then $\alpha(\delta(\star)) = \star \iff \star \in \alpha(SStar(D))$ \iff For every $\star' \in \alpha$ (SStar(T)) with $\delta(\star') \geq \delta(\star)$, $H^{\star'} \supset H^{\star}$ for every $H \in \bar{F}(T)$.

(3) Let F be a localizing system of D. Then $\delta(\alpha(\mathcal{F})) = \mathcal{F} \Longleftrightarrow \mathcal{F} \in \delta(LS(T))$ $\iff \{I \mid I \text{ is an ideal of } D \text{ with } IT \cap D \in \mathcal{F}\} = \mathcal{F}.$

(4) Let \star be a semistar operation on D. Then $\delta(\alpha(\star)) = \star \Longleftrightarrow \star \in \delta(SStar(T)).$

Proof. (1) Let $\mathcal{F} = \alpha(\mathcal{F}_0)$ for some $\mathcal{F}_0 \in \text{LS}(D)$. Then $\alpha\delta(\mathcal{F}) = \alpha\delta\alpha(\mathcal{F}_0) =$ $\alpha(\mathcal{F}_0) = \mathcal{F}$. Let $J \in \mathcal{F}$. Since $J \in \alpha(\delta(\mathcal{F}))$, we have $J \cap D \in \delta(\mathcal{F})$. Hence $(J \cap D)T \in \mathcal{F}$. The reverse implication is similar.

(2) Let $\star = \alpha(\star_0)$ for some $\star_0 \in \text{SStar}(D)$. Then $\alpha\delta(\star) = \alpha\delta\alpha(\star_0) = \star$. The definition of α completes the proof.

(3) We have

 $\delta(\alpha(\mathcal{F})) = \{I \mid I \text{ is an ideal of } D \text{ with } IT \in \alpha(\mathcal{F})\} = \{I \mid I \text{ is an ideal of } D \text{ with } I \in \alpha(\mathcal{F})\}$ $IT \cap D \in \mathcal{F}\}.$

(4) If $\star = \delta(\star_1)$ for some $\star_1 \in \text{SStar}(T)$, then $\delta \alpha(\star) = \delta \alpha \delta(\star_1) = \delta(\star_1) = \star$. \Box

If T is a D-free module with free basis $\supset 1$, T is called free over D. Let X be a torsion-free abelian additive group. A subsemigroup $S \supsetneq \{0\}$ of X is called a g-monoid.

An overring T of D is not free unless $T = D$.

Example 3.7. (1) $D[X]$ is free over D.

(2) Let S be a g-monoid. Then the semigroup ring $D[X;S]$ of S over D is free over D.

(3) Let K' be an extension field of K, let B be an algebraically independent subset of K' over K, and let $T = D[B]$. Then T is free over D.

Proposition 3.8. (1) (cf., [6, Proposition 34]) If T is free, then $\delta(\alpha(\mathcal{F})) = \mathcal{F}$ for every $\mathcal{F} \in LS(D)$. Hence $LS(D) \stackrel{\alpha}{\longrightarrow} LS(T)$ is an injection, and $LS(T) \stackrel{\delta}{\longrightarrow} LS(D)$ is a surjection.

(2) Assume that T is an overring of D. Then $\alpha(\delta(\star)) = \star$ for every $\star \in$ $SStar(T)$. Hence $SStar(T) \stackrel{\delta}{\longrightarrow} SStar(D)$ is an injection, and $SStar(D) \stackrel{\alpha}{\longrightarrow} SStar(T)$ is a surjection.

Proof. (1) Let $I \in \delta(\alpha(\mathcal{F}))$. Then $IT \supset I_0$ for some $I_0 \in \mathcal{F}$. Since T is free over D, we have $I \supset I_0$, hence $I \in \mathcal{F}$. Proposition 3.5 (4) completes the proof.

(2) For every $H \in \bar{F}(T)$, we have $H^{\alpha(\delta(x))} = H^{\delta(x)} = (HT)^* = H^*$ by Proposition 2.8. Proposition 3.5 (1) completes the proof. \Box

Proposition 3.9. (1) Let F be a localizing system of T. Then $\star_{\delta(\mathcal{F})} \leq \delta(\star_{\mathcal{F}})$.

(2) Let \star be a semistar operation on T. Then $\mathcal{F}^{\delta(\star)} = \delta(\mathcal{F}^{\star})$.

(3) Let \star be a semistar operation on D. Then $\mathcal{F}^{\alpha(\star)} \supset \alpha(\mathcal{F}^{\star})$.

Proof. (1) Let $E \in \overline{F}(D)$. Then we have

 $E^{\star_{\delta(\mathcal{F})}} = \{x \in K \mid \text{There is an ideal } I \text{ of } D \text{ with } IT \in \mathcal{F} \text{ such that } xI \subset E \},\$

 $E^{\delta(\star_{\mathcal{F}})} = \{x \in K \mid \text{There is } J \in \mathcal{F} \text{ such that } xJ \subset ET\}.$

(2) We have

 $\mathcal{F}^{\delta(\star)} = \{I \mid I \text{ is an ideal of } D \text{ with } I^{\delta(\star)} \ni 1 \} = \{I \mid I \text{ is an ideal of } D \text{ with } I^{\delta(\star)} \ni 1 \}$ $(TT)^* \ni 1\},\$

 $\delta(\mathcal{F}^*) = \{I \mid I \text{ is an ideal of } D \text{ with } IT \in \mathcal{F}^*\} = \{I \mid I \text{ is an ideal of } D \text{ with }$ $(TT)^* \ni 1$.

(3) Let $\{\star' \in \text{SStar}(T) \mid \delta(\star') \geq \star\} = \{\star_\lambda \mid \lambda \in \Lambda\}.$ Then we have

 $\mathcal{F}^{\alpha(*)} = \{J \mid J \text{ is an ideal of } T \text{ with } J^{\alpha(*)} \ni 1 \} = \{J \mid J \text{ is an ideal of } T \text{ with }$ $J^{\star_{\lambda}} \ni 1$ for every λ ,

 $\alpha(\mathcal{F}^*) = \{J \mid J \text{ is an ideal of } T \text{ with } J \supset I \text{ for some } I \in \mathcal{F}^*\} = \{J \mid \text{There is an } I \in \mathcal{F}^*\}$ ideal *I* of *D* with I^* ∋ 1 such that $J \supset I$. \Box

Proposition 3.10. Let T be an overring of D. Let $\mathcal F$ be a localizing system of D. Then $\star_{\alpha(\mathcal{F})} = \alpha(\star_{\mathcal{F}})$.

Proof. We use Proposition 2.8. For every $H \in \overline{F}(T)$, we have

 $H^{\star_{\alpha}(\mathcal{F})} = H^{\alpha(\star_{\mathcal{F}})} = \{x \in K \mid xI \subset H \text{ for some } I \in \mathcal{F}\}.$

Proposition 3.11. (1) For every $\star \in SStar(T)$, we have $\delta(\star)_f = \delta(\star_f)$.

(2) For every $\mathcal{F} \in LS(D)$, we have $\alpha(\mathcal{F})_f \supset \alpha(\mathcal{F}_f)$.

(3) For every $\mathcal{F} \in \text{LS}(T)$, we have $\delta(\mathcal{F})_f \subset \delta(\mathcal{F}_f)$.

Proof. (1) For every $E \in \overline{F}(D)$, we have

 $E^{\delta(\star)}$ f = $\cup \{(FT)^{\star} \cap K \mid F \in f(D)$ with $F \subset E$,

 $E^{\delta(\star_f)} = \bigcup \{ H^\star \mid H \in f(T) \text{ with } H \subset ET \} \cap K.$

It follows that $E^{\delta(\star)_{f}} \subset E^{\delta(\star_{f})}$. Conversely, let $0 \neq x \in E^{\delta(\star_{f})}$. Then, there is $H \in \mathfrak{f}(T)$ with $H \subset ET$ such that $x \in H^*$. We have $H \subset (e_1, \dots, e_n)T$ for some $e_1, \dots, e_n \in E$. Set $F := (e_1, \dots, e_n)D$. Then $x \in H^* \cap K \subset (FT)^* \cap K \subset E^{\delta(*)}$, and hence $E^{\delta(\star_f)} \subset E^{\delta(\star)_f}$.

(2) We have

 $\alpha(\mathcal{F})_f = \{J \mid \text{There is } I \in \mathcal{F} \text{ and a finitely generated ideal } J_1 \text{ of } T \text{ with }$ $J \supset J_1 \supset I$,

 $\alpha(\mathcal{F}_f) = \{J \mid \text{There is a finitely generated ideal } I \in \mathcal{F} \text{ with } J \supset I\}.$

(3) We have

 $\delta(\mathcal{F})_f = \{I \mid \text{There is a finitely generated ideal } I_1 \text{ of } D \text{ with } I_1T \in \mathcal{F} \text{ such that } I_1 \in \math$ $I \supset I_1$,

 $\delta(\mathcal{F}_f) = \{I \mid \text{There is a finitely generated ideal } J \in \mathcal{F} \text{ such that } IT \supset J \}.$ \Box

Proposition 3.12. (1) ([7, Proposition 3.2 (1)]) If T is an overring of D, then $\delta(\star)_f = \delta(\star_f).$

(2) (cf., [8, Proposition 3.2]) If F is of finite type on D, then $\alpha(\mathcal{F})$ is of finite type on T.

(3) (cf., [6, Proposition 33]) Let T be free over D. Then, for every $\mathcal{F} \in \mathit{LS}(T)$, we have $\delta(\mathcal{F}_f) = \delta(\mathcal{F})_f$.

Proof. (2) Let $J \in \alpha(\mathcal{F})$. There is $I \in \mathcal{F}$ such that $I \subset J$. There is a finitely generated ideal $I_0 \in \mathcal{F}$ such that $I_0 \subset I$. Then I_0T is a finitely generated ideal of T with $I_0T \in \alpha(\mathcal{F})$ such that $I_0T \subset J$.

160 RYÛKI MATSUDA

(3) Let $I \in \delta(\mathcal{F}_f)$. There is a finitely generated ideal $J = (t_1, \dots, t_n)T \in \mathcal{F}$ such that $J \subset IT$. For every i, set $t_i = \sum x_i \lambda u_\lambda$, where $\{u_\lambda \mid \lambda \in \Lambda\}$ is a free basis of T over D and every $x_{i\lambda} \in D$. Set $(\cdots, x_{i\lambda}, \cdots)D = I_0$. Since $x_{i\lambda} \in I$ for every i, λ , we have $I \supset I_0$, and hence $J \subset I_0T \in \mathcal{F}$. Proposition 3.11(3) completes the proof. \Box

References

- [1] D.D. Anderson and D.F. Anderson, Examples of star operations on integral domains, Comm. Algebra, 18 (1990), 1621-1643.
- [2] M. Fontana and J. Huckaba, Localizing Systems and Semistar Operations, Non Noetherian Commutative Ring Theory, Dordrecht, Kluwer Academic Publishers, 2000, 169-198.
- [3] P. Gabriel, Des Categories abeliennes, Bull. Soc. Math. France 90 (1962), 323- 448.
- [4] E. Houston, S. Malik and J. Mott, *Characterizations of* \star -multiplication domains, Canad. Math. Bull. 27 (1984), 48-52.
- [5] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ., 17 (1994), 1-21.
- [6] A. Okabe, On polynomial ascent and descent semistar operations on an integral domain, Math. J. Ibaraki Univ., to appear.
- [7] G. Picozza, Star operations on overrings and semistar operations, Comm. Algebra, 33 (2005), 2051-2073.
- [8] G. Picozza, A note on semistar Noetherian domains, Houston J. Math., 33 (2007), 415-432.

R. Matsuda

2241-42 Hori, Mito, Ibaraki 310-0903, JAPAN e-mail: rmazda@adagio.ocn.ne.jp