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1. Introduction

Let D be an integral domain with quotient field K, and let F̄(D) be the set

of non-zero D-submodules of K. A mapping F̄(D) ?−→ F̄(D), E 7−→ E? is called

a semistar operation if, for every x ∈ K \ {0} and E,H ∈ F̄(D), (xE)? = xE?;

E ⊂ E?; (E?)? = E?; and E ⊂ H implies E? ⊂ H?. The set of semistar operations

on D is denoted by SStar(D). Let T be an overring of D, that is, T ⊂ K. If we set

Hα(?) = H? for every H ∈ F̄(T ), α(?) is a semistar operation on T , which is called

the ascent of ? to T . Let ?′ be a semistar operation on T . If we set Eδ(?′) = (ET )?′

for every E ∈ F̄(D), δ(?′) is a semistar operation on D, which is called the descent

of ?′ to D. In this paper, for any extension domain T of D, we define ascents

and descents of semistar operations and localizing systems, and study their basic

properties.

Let F be a non-empty set of ideals of D with F 63 (0) which satisfies the following

two conditions for every ideals I, J of D: If I ∈ F and I ⊂ J , then J ∈ F ; If I ∈ F
and J :D iD ∈ F for every i ∈ I, then J ∈ F . Then F is called a localizing

system of D (P. Gabriel [3]). The set of localizing systems of D is denoted by

LS(D). We refer to M. Fontana and J. Huckaba ([2]) for the following notions and

terminologies. Thus, let F(D) be the set of non-zero submodules G of K such that

dG ⊂ D for some d ∈ D \ {0}, and let f(D) be the set of elements of F(D) which is

finitely generated over D. Let ? be a semistar operation on D. Then F? = {I | I is

a non-zero ideal of D with I? 3 1} is a localizing system of D. Let F be a localizing

system of D. Then the mapping E 7−→ E?F = ∪{(E :K I) | I ∈ F} is a semistar

operation on D. The semistar operation E 7−→ ∪{F ? | F ∈ f(D) with F ⊂ E} is
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denoted by ?f . If ? = ?f , ? is called finite type. A localizing system F is called

finite type if, for every I ∈ F , F contains a finitely generated ideal J of D such

that J ⊂ I.

Let T be the polynomial ring D[X] of X over D. For every semistar operation

? on T , E. Houston, S. Malik and J. Mott [4] and A. Okabe and R. Matsuda [5]

defined the semistar operation E 7−→ (ET )? ∩K on D, which we denote by δ(?).

For every localizing system F of D, G. Picozza [8] defined the localizing system

{J | J is an ideal of T with J ⊃ I for some I ∈ F} of T , which we denote by α(F).

For every localizing system F of T , A. Okabe [6] defined the localizing system

{I | I is an ideal of D such that IT ∈ F} of D, which we denote by δ(F). In this

paper, for any extension domain T of D, we define ascents and descents of semistar

operations and localizing systems, and study their basic properties. This paper

consists of three sections. Section 1 is an introduction, Section 2 is definitions of

ascents and descents, and Section 3 is basic properties of ascents and descents.

2. Definitions of Ascents and Descents

Let D be a domain with q(D) = K, and let T be any extension domain with

q(T ) = L. In this section, we give definitions of ascents and descents of semistar

operations and localizing systems.

Proposition 2.1. (cf., [4, Proposition 2.1] and [5, Proposition 35]) Let ? be a semi-

star operation on T . For every E ∈ F̄(D), set Eδ(?) = (ET )? ∩K. Then δ(?) is a

semistar operation on D.

Proof. The only condition which is not trivial is δ(?)δ(?) = δ(?). For every E ∈
F̄(D), we have the following: (Eδ(?))δ(?) = (((ET )?∩K)T )?∩K ⊂ ((ET )?T )?∩K =

((ET )T )? ∩K = (ET )? ∩K = Eδ(?). ¤

δ(?) is called the descent of ? to D, and is also denoted by δT/D(?).

Remark 2.2. Let T be an overring of D, and let ? be a semistar operation on T .

Then, for every E ∈ F̄(D), we have Eδ(?) = (ET )?.

Proposition 2.3. (cf., [8, Proposition 3.1]) Let F be a localizing system of D. Set

α(F) = {J | J is an ideal of T with J ⊃ I for some I ∈ F}.
(1) α(F) is a localizing system of T .

(2) α(F) = {J | J is an ideal of T with J ∩D ∈ F}.

Proof. The only condition which needs a proof is: If J ′ is a non-zero ideal of T ,

and if J ∈ α(F) such that (J ′ :T j) ∈ α(F) for every j ∈ J , then J ′ ∈ α(F).
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Since J ∈ α(F), we have J ∩D ∈ F . Let j0 ∈ J ∩D. Since (J ′ :T j0) ∈ α(F),

we have (J ′ :D j0) ∈ F , and ((J ′ ∩D) :D j0) ∈ F . Therefore J ′ ∩D ∈ F . It follows

that J ′ ∈ α(F). ¤

α(F) is called the ascent of F to T , and is also denoted by αT/D(F).

Proposition 2.4. For every localizing system F of T , set δ(F) := Fδ(?F ). Then

δ(F) = {I | I is an ideal of D with IT ∈ F}.

Proof. Let I ∈ Fδ(?F ). Then Iδ(?F ) 3 1, and hence (IT )?F 3 1. There is J ∈ F
such that J ⊂ IT , hence IT ∈ F . The reverse inclusion is similar. ¤

δ(F) is called the descent of F to D, and is also denoted by δT/D(F).

Remark 2.5. (cf., [6, Lemma 32]) Let T = D[X]. Then

δ(F) = {J ∩D | J is an ideal of T with (J ∩D)T ∈ F}.

Let ?1, ?2 be semistar operations on D with E?1 ⊂ E?2 for every E ∈ F̄(D).

Then we denote ?1 ≤ ?2.

Lemma 2.6. Let ? be a semistar operation on D. Then there is an extension

domain T which satisfies the following two conditions:

(1) There is a semistar operation ?′ on T such that δ(?′) ≥ ?.

(2) Every semistar operation ?′ on T satisfies δ(?′) ≥ ?.

Proof. Set T := K. Clearly, T satisfies the conditions (1) and (2). ¤

The mapping E 7−→ E from F̄(D) to F̄(D) is a semistar operation on D which

is calld the d-semistar operation, and is denoted by dD or by d. Similarly, we may

define the e-semistar operation eD on D: EeD = K for every E ∈ F̄(D). The

localizing system FeD = {I | I is a non-zero ideal of D} of D is called the trivial

localizing system of D.

Proposition 2.7. Let ? be a semistar operation on D. Then there is a semistar

operation ?′ on T such that δ(?′) ≥ ?. Let {?λ | λ ∈ Λ} be the set of semistar

operations ?′ on T such that δ(?′) ≥ ?. Then the mapping F̄(T ) −→ F̄(T ), H 7−→
∩λH?λ is a semistar operation on T .

Proof. Let eT be the e-semistar operation on T . Then δ(eT ) ≥ ?. That the

mapping H 7−→ ∩λH?λ is a semistar operation on T follows from D.D. Anderson

and D.F. Anderson [1, Lemma 1]. ¤
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The semistar operation H 7−→ ∩λH?λ on T is called the ascent of ?, and is

denoted by α(?), or by αT/D(?).

Proposition 2.8. Let T be an overring of D. Let ? be a semistar operation on D.

Then, for every H ∈ F̄(T ), we have Hα(?) = H?.

Proof. If we set H?λ0 = H? for every H ∈ F̄(T ), then ?λ0 is a semistar operation

on T with δ(?λ0) ≥ ?. Let {?λ | λ ∈ Λ} be the set of semistar operations ?′ on T

with δ(?′) ≥ ?. Then (ET )?λ ⊃ E? for every E ∈ F̄(D). Since F̄(T ) ⊂ F̄(D), we

have H?λ = (HT )?λ ⊃ H? = H?λ0 for every H ∈ F̄(T ). Hence α(?) = ?λ0 . ¤

Example 2.9. (1) α(dD) = dT .

(2) If T is an overring of D, then α(eD) = eT .

(3) If T = D[X], then α(eD) : H 7−→ HK.

(4) Let T be an overring of D. If F is the trivial localizing system of D, then

α(F) is the trivial localizing system of T .

(5) If T is an overring of D, then Eδ(dT ) = ET for every E ∈ F̄(D).

(6) If T = D[X], then δ(dT ) = dD.

(7) If F is the trivial localizing system of T , then δ(F) is the trivial localizing

system of D.

Proof. The proofs for (1), (2), (4), (5), (6), (7) are immediate.

(3) Set H? = HK for every H ∈ F̄(T ). Then ? is a semistar operation on T .

Easily, we have δ(?) ≥ eD. Let ?′ be a semistar operation on T with δ(?′) ≥ eD. If

?′ ≥ ?, we may conclude that α(eD) = ?. Since Dδ(?′) ⊃ DeD , we have T ?′ ⊃ K.

For every H ∈ F̄(T ), we have H?′ = (HT )?′ = (HT ?′)?′ ⊃ (HK)?′ ⊃ HK = H?.

That is, ?′ ≥ ?. ¤

3. Basic Properties of Ascents and Descents

In this section, we study basic properties of ascents and descents of semistar

operations and localizing systems.

Proposition 3.1. (1) Let ?1, ?2 be semistar operations on D with ?1 ≤ ?2. Then

α(?1) ≤ α(?2).

(2) Let F1,F2 be localizing systems of T with F1 ⊂ F2. Then δ(F1) ⊂ δ(F2).

(3) (cf., [6, Proposition 23 (5)]) Let ?1, ?2 be semistar operations on T with

?1 ≤ ?2. Then δ(?1) ≤ δ(?2).

(4) Let F1,F2 be localizing systems of D with F1 ⊂ F2. Then α(F1) ⊂ α(F2).
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Proof. (1) Let {?′ ∈ SStar(T ) | δ(?′) ≥ ?1} = {?λ | λ ∈ Λ} and {?′ ∈ SStar(T ) | δ(?′) ≥
?2} = {?σ | σ ∈ Σ}. Then {?λ | λ} ⊃ {?σ | σ}. By the definition of α(?1) and

α(?2), we have α(?2) ≥ α(?1).

(2) If I ∈ δ(F1), then IT ∈ F1, hence IT ∈ F2, and hence I ∈ δ(F2).

(3) For every E ∈ F̄(D), we have Eδ(?1) = (ET )?1 ∩K ⊂ (ET )?2 ∩K = Eδ(?2).

(4) If J ∈ α(F1), then J ⊃ I for some I ∈ F1. Since I ∈ F2, we have

J ∈ α(F2). ¤

Proposition 3.2. (1) For every localizing system F of T , we have α(δ(F)) ⊂ F .

(2) For every localizing system F of D, we have δ(α(F)) ⊃ F .

(3) For every semistar operation ? on D, we have δ(α(?)) ≥ ?.

(4) For every semistar operation ? on T , we have α(δ(?)) ≤ ?.

Proof. (1) Let J ∈ α(δ(F)). Then J ∩ D ∈ δ(F), hence (J ∩ D)T ∈ F . Since

J ⊃ (J ∩D)T , we have J ∈ F . Hence α(δ(F)) ⊂ F .

(2) Let I ∈ F . Since I ⊂ (IT ) ∩D, we have (IT ) ∩D ∈ F . Hence IT ∈ α(F),

and hence I ∈ δ(α(F)). Therefore F ⊂ δ(α(F)).

(3) Let {?λ | λ ∈ Λ} be the set of semistar operations ?′ on T such that

δ(?′) ≥ ?. For every E ∈ F̄(D), we have Eδ(α(?)) = (ET )α(?)∩K = ∩λ(ET )?λ∩K =

∩λEδ(?λ) ⊃ E?. Hence δ(α(?)) ≥ ?.

(4) Set {?′ ∈ SStar(T ) | δ(?′) ≥ δ(?)} = {?λ | λ ∈ Λ}. Then ? = ?λ0 for

some λ0. Then, for every H ∈ F̄(T ), Hα(δ(?)) = ∩λH?λ ⊂ H?λ0 = H?. Hence

α(δ(?)) ≤ ?. ¤

Proposition 3.3. Let D ⊂ T ⊂ R be domains.

(1) For every semistar operation ? on R, (δT/DδR/T )(?) = δR/D(?).

(2) For every localizing system F on R, (δT/DδR/T )(F) = δR/D(F).

(3) For every semistar operation ? on D, (αR/T αT/D)(?) = αR/D(?).

(4) For every localizing system F of D, (αR/T αT/D)(F) = αR/D(F).

Proof. (3) Set ?1 = αT/D(?), ?2 = αR/T (?1), and set ?3 = αR/D(?). By Propo-

sition 3.2 (3), we have δR/T (?2) ≥ ?1 and δT/D(?1) ≥ ?. Then δT/DδR/T (?2) ≥
δT/D(?1) ≥ ? by Proposition 3.1(3). Hence δR/D(?2) ≥ ? by Proposition 3.3 (1).

Then ?2 ≥ ?3 by the definition of ?3. Similarly, we have ?3 ≥ ?2, and hence ?2 = ?3.

The proofs of (1), (2) and (4) are straightforward. ¤

Proposition 3.4. We have

(1) (i) δT/DαT/DδT/D(?) = δT/D(?) for every ? ∈ SStar(T ).

(ii) αT/DδT/DαT/D(?) = αT/D(?) for every ? ∈ SStar(D).
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(2) (i) δT/DαT/DδT/D(F) = δT/D(F) for every F ∈ LS(T ).

(ii) αT/DδT/DαT/D(F) = αT/D(F) for every F ∈ LS(D).

Proof. (1) (i) ? ≥ αδ(?) by Proposition 3.2 (4). δ(?) ≥ δαδ(?) by Proposition

3.1 (3). δαδ(?) ≥ δ(?) by Proposition 3.2 (3). Hence δαδ = δ. The proof of (ii) is

similar.

The proof for (2) is similar. ¤

Proposition 3.5. (1) SStar(T ) δ−→ SStar(D) is an injection if and only if αδ =

I, where I denotes the identity mapping. And then SStar(D) α−→ SStar(T ) is a

surjection.

(2) LS(T ) δ−→ LS(D) is an injection if and only if αδ = I. And then LS(D) α−→
LS(T ) is a surjection.

(3) SStar(D) α−→ SStar(T ) is an injection if and only if δα = I. And then

SStar(T ) δ−→ SStar(D) is a surjection.

(4) LS(D) α−→ LS(T ) is an injection if and only if δα = I. And then LS(T ) δ−→
LS(D) is a surjection.

Proof. (1) Assume that δ is an injection. We have δαδ(?) = δ(?) for every ? ∈
SStar(T ) by Proposition 3.4 (1)(i). Hence αδ(?) = ?. Therefore αδ = I and α is a

surjection.

Assume that αδ = I. Let δ(?1) = δ(?2) for ?1, ?2 ∈ SStar(T ). Then αδ(?1) =

αδ(?2), hence ?1 = ?2.

The proofs for (2), (3) and (4) are similar. ¤

Proposition 3.6. (1) (cf., [6, Proposition 35(2)]) Let F be a localizing system of

T . Then α(δ(F)) = F ⇐⇒ F ∈ α(LS(D)) ⇐⇒ (J ∩D)T ∈ F for every J ∈ F .

(2) Let ? be a semistar operation on T . Then α(δ(?)) = ? ⇐⇒ ? ∈ α(SStar(D))

⇐⇒ For every ?′ ∈ α (SStar(T )) with δ(?′) ≥ δ(?), H?′ ⊃ H? for every H ∈ F̄(T ).

(3) Let F be a localizing system of D. Then δ(α(F)) = F ⇐⇒ F ∈ δ(LS(T ))

⇐⇒ {I | I is an ideal of D with IT ∩D ∈ F} = F .

(4) Let ? be a semistar operation on D. Then δ(α(?)) = ? ⇐⇒ ? ∈ δ(SStar(T )).

Proof. (1) Let F = α(F0) for some F0 ∈ LS(D). Then αδ(F) = αδα(F0) =

α(F0) = F . Let J ∈ F . Since J ∈ α(δ(F)), we have J ∩ D ∈ δ(F). Hence

(J ∩D)T ∈ F . The reverse implication is similar.

(2) Let ? = α(?0) for some ?0 ∈ SStar(D). Then αδ(?) = αδα(?0) = ?. The

definition of α completes the proof.

(3) We have
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δ(α(F)) = {I | I is an ideal of D with IT ∈ α(F)} = {I | I is an ideal of D with

IT ∩D ∈ F}.
(4) If ? = δ(?1) for some ?1 ∈ SStar(T ), then δα(?) = δαδ(?1) = δ(?1) = ?. ¤

If T is a D-free module with free basis 3 1, T is called free over D. Let X be

a torsion-free abelian additive group. A subsemigroup S % {0} of X is called a

g-monoid.

An overring T of D is not free unless T = D.

Example 3.7. (1) D[X] is free over D.

(2) Let S be a g-monoid. Then the semigroup ring D[X;S] of S over D is free

over D.

(3) Let K ′ be an extension field of K, let B be an algebraically independent

subset of K ′ over K, and let T = D[B]. Then T is free over D.

Proposition 3.8. (1) (cf., [6, Proposition 34]) If T is free, then δ(α(F)) = F for

every F ∈ LS(D). Hence LS(D) α−→LS(T ) is an injection, and LS(T ) δ−→ LS(D)

is a surjection.

(2) Assume that T is an overring of D. Then α(δ(?)) = ? for every ? ∈
SStar(T ). Hence SStar(T ) δ−→ SStar(D) is an injection, and SStar(D) α−→ SStar(T )

is a surjection.

Proof. (1) Let I ∈ δ(α(F)). Then IT ⊃ I0 for some I0 ∈ F . Since T is free over

D, we have I ⊃ I0, hence I ∈ F . Proposition 3.5 (4) completes the proof.

(2) For every H ∈ F̄(T ), we have Hα(δ(?)) = Hδ(?) = (HT )? = H? by Proposi-

tion 2.8. Proposition 3.5 (1) completes the proof. ¤

Proposition 3.9. (1) Let F be a localizing system of T . Then ?δ(F) ≤ δ(?F ).

(2) Let ? be a semistar operation on T . Then Fδ(?) = δ(F?).

(3) Let ? be a semistar operation on D. Then Fα(?) ⊃ α(F?).

Proof. (1) Let E ∈ F̄(D). Then we have

E?δ(F) = {x ∈ K | There is an ideal I of D with IT ∈ F such that xI ⊂ E},
Eδ(?F ) = {x ∈ K | There is J ∈ F such that xJ ⊂ ET}.
(2) We have

Fδ(?) = {I | I is an ideal of D with Iδ(?) 3 1} = {I | I is an ideal of D with

(IT )? 3 1},
δ(F?) = {I | I is an ideal of D with IT ∈ F?} = {I | I is an ideal of D with

(IT )? 3 1}.
(3) Let {?′ ∈ SStar(T ) | δ(?′) ≥ ?} = {?λ | λ ∈ Λ}. Then we have
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Fα(?) = {J | J is an ideal of T with Jα(?) 3 1} = {J | J is an ideal of T with

J?λ 3 1 for every λ},
α(F?) = {J | J is an ideal of T with J ⊃ I for some I ∈ F?} = {J | There is an

ideal I of D with I? 3 1 such that J ⊃ I}. ¤

Proposition 3.10. Let T be an overring of D. Let F be a localizing system of D.

Then ?α(F) = α(?F ).

Proof. We use Proposition 2.8. For every H ∈ F̄(T ), we have

H?α(F) = Hα(?F ) = {x ∈ K | xI ⊂ H for some I ∈ F}. ¤

Proposition 3.11. (1) For every ? ∈ SStar(T ), we have δ(?)f = δ(?f ).

(2) For every F ∈ LS(D), we have α(F)f ⊃ α(Ff ).

(3) For every F ∈ LS(T ), we have δ(F)f ⊂ δ(Ff ).

Proof. (1) For every E ∈ F̄(D), we have

Eδ(?)f = ∪{(FT )? ∩K | F ∈ f(D) with F ⊂ E},
Eδ(?f ) = ∪{H? | H ∈ f(T ) with H ⊂ ET} ∩K.

It follows that Eδ(?)f ⊂ Eδ(?f ). Conversely, let 0 6= x ∈ Eδ(?f ). Then, there is

H ∈ f(T ) with H ⊂ ET such that x ∈ H?. We have H ⊂ (e1, · · · , en)T for some

e1, · · · , en ∈ E. Set F := (e1, · · · , en)D. Then x ∈ H? ∩K ⊂ (FT )? ∩K ⊂ Eδ(?)f ,

and hence Eδ(?f ) ⊂ Eδ(?)f .

(2) We have

α(F)f = {J | There is I ∈ F and a finitely generated ideal J1 of T with

J ⊃ J1 ⊃ I},
α(Ff ) = {J | There is a finitely generated ideal I ∈ F with J ⊃ I}.
(3) We have

δ(F)f = {I | There is a finitely generated ideal I1 of D with I1T ∈ F such that

I ⊃ I1},
δ(Ff ) = {I | There is a finitely generated ideal J ∈ F such that IT ⊃ J}. ¤

Proposition 3.12. (1) ([7, Proposition 3.2 (1)]) If T is an overring of D, then

δ(?)f = δ(?f ).

(2) (cf., [8, Proposition 3.2]) If F is of finite type on D, then α(F) is of finite

type on T .

(3) (cf., [6, Proposition 33]) Let T be free over D. Then, for every F ∈ LS(T ),

we have δ(Ff ) = δ(F)f .

Proof. (2) Let J ∈ α(F). There is I ∈ F such that I ⊂ J . There is a finitely

generated ideal I0 ∈ F such that I0 ⊂ I. Then I0T is a finitely generated ideal of

T with I0T ∈ α(F) such that I0T ⊂ J .
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(3) Let I ∈ δ(Ff ). There is a finitely generated ideal J = (t1, · · · , tn)T ∈ F
such that J ⊂ IT . For every i, set ti =

∑
xiλuλ, where {uλ | λ ∈ Λ} is a free basis

of T over D and every xiλ ∈ D. Set (· · · , xiλ, · · · )D = I0. Since xiλ ∈ I for every

i, λ, we have I ⊃ I0, and hence J ⊂ I0T ∈ F . Proposition 3.11(3) completes the

proof. ¤
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