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Abstract. As a generalization of right p-injective rings, we introduce the

notion of right Jcp-injective rings, i.e. for any right nonsingular element c of

R and any right R-homomorphism g : cR → R, there exists m ∈ R such that

g(ca) = mca for all a ∈ R. Some important results which are known for right

p-injective rings are shown to hold for right Jcp-injective rings.
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1. Introduction and Preliminaries

Throughout this paper, R denotes an associative ring with identity, and all

modules are unitary. We write RM and MR to indicate a left and right R-module,

respectively. For any nonempty subset X of a ring R, r(X) and l(X) denote the

right annihilator of X and the left annihilator of X, respectively. If X = {a}, we

usually abbreviate it to l(a) and r(a). As usual, J(R) = J , Zl (Zr), Sl (Sr) and

N(R) stand for the Jacobson radical of R, the left (right) singular ideal of R and

the left (right) socle of R and the set of all nilpotent elements of R, respectively.

N |M will mean that submodule N is a direct summand of M .

A ring R is called right Jcp-injective if for each a ∈ R \ Zr, any homomorphism

from aR to R can be extended to one of R into R. Clearly, right p-injective rings are

right Jcp-injective. In section 2, Theorem 2.1 gives some characterizations of right

Jcp-injective rings. Example 2.4 points out that there exists a right Jcp-injective

ring which is not right p-injective. In this section, we also consider some conditions

for a right Jcp-injective ring being right p-injective.

(von Neumann) regular rings have been studied extensively by many authors (for

example, [5], [6] and [9]). It is well known that a ring R is regular if and only if every
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right R-module is p-injective. In Theorem 2.9, we give some new characterizations

of von Neumann regular rings.

Call a right R-module M nil-injective [15] if for each a ∈ N(R), any right R-

homomorphism aR → M can be extended to R → M . If R is nil-injective as a

right R-module, then we call R a right nil-injective ring. Theorem 3.7 shows that if

R is a right Jcp-injective ring such that every simple singular right R-module is nil-

injective, then R is a right p-injective, semiprimitive and left and right nonsingular

ring.

In Section 4, we consider right weakly injective rings and obtain the following

equivalent conditions for a right weakly injective ring R: (1) R is right self-injective;

(2) R is right Jcp-injective; (3) R is right weakly Gnp-injective. This generalizes

many known results which appears in [11] and [3].

In Section 5, we give some characterizations of division rings and semisimple

artinian rings.

2. Right Jcp-injective Rings

A right R-module M is Jcp-injective if for each a ∈ R \ Zr, every right R-

homomorphism from aR to M can be extended to one of R into M . If RR is

Jcp-injective, we call R is a right Jcp-injective ring. Clearly, right p-injective rings

are right Jcp-injective.

Theorem 2.1. The following conditions are equivalent for a ring R.

(1) R is right Jcp-injective.

(2) lr(a) = Ra for each a /∈ Zr.

(3) r(a) ⊆ r(b), a, b ∈ R and a /∈ Zr implies that Rb ⊆ Ra.

(4) l(bR ∩ r(a)) = l(b) + Ra for a, b ∈ R with ab /∈ Zr.

Proof. (1) ⇒ (2). Clearly, Ra ⊆ lr(a) for all a /∈ Zr. Now let x ∈ lr(a) and

f : aR → R defined by f(ar) = xr. Then f is a well defined right R-homomorphism

because r(a) ⊆ r(x). By (1), f = c· for some c ∈ R. Hence x = f(a) = ca ∈ Ra,

which implies that lr(a) ⊆ Ra. Consequently, lr(a) = Ra.

(2) ⇒ (3) If r(a) ⊆ r(b) with a, b ∈ R and a /∈ Zr, then Rb ⊆ lr(b) ⊆ lr(a).

Since a /∈ Zr, by (2), lr(a) = Ra. Hence Rb ⊆ Ra.

(3) ⇒ (4) Clearly, l(b) + Ra ⊆ l(bR ∩ r(a)). Now let x ∈ l(bR ∩ r(a)). Then

r(ab) ⊆ r(xb). Since ab /∈ Zr, Rxb ⊆ Rab by (3). So xb = cab for some c ∈ R.

Hence x− ca ∈ l(b), as required.

(4) ⇒ (1) Let a /∈ Zr and f : aR → R be any right R-homomorphism. Clearly,

r(a) ⊆ r(f(a)). So f(a) ∈ lr(f(a)) ⊆ lr(a) = l(1R ∩ r(a)) = l(1) + Ra = Ra by (4)
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because a1 /∈ Zr, i.e., f(a) ∈ Ra. Write f(a) = ca for some c ∈ R. Then we can

define g : RR → RR by g(r) = cr, r ∈ R. Obviously, g|aR = f . Consequently, R is

right Jcp-injective. ¤

A ring R is called right p-injective if and only if lr(a) = Ra for all a ∈ R [8,

Lemma 1.1]. A ring R is called right NPP [15] if for any a ∈ N(R), aR is projective.

Clearly, right PP rings are right NPP . [15, Theorem 2.10] shows that right NPP

rings are right nonsingular. A ring R is called von Neumann regular if a ∈ aRa

for all a ∈ R. Clearly, R is von Neumann regular if and only if R is right pp right

p-injective. A ring R is called ZI if ab = 0 implies that aRb = 0 for all a, b ∈ R.

For example, a reduced ring (that is a2 = 0 implies that a = 0 for all a ∈ R) is ZI.

Clearly, R is a regular ZI ring if and only if R is a strongly regular ring (that is,

a ∈ a2R for all a ∈ R).

Corollary 2.2. (1) If R satisfies one of the following conditions, then R is right

p-injective if and only if R is right Jcp-injective.

(a) R is right nonsingular.

(b) R is right NPP .

(c) R is right PP .

(2) R is von Neumann regular if and only if R is right pp and right Jcp-injective.

Corollary 2.3. Let R be ZI right Jcp-injective. Then the following conditions are

equivalent.

(1) R is semiprime.

(2) R is strongly regular.

(3) R is von Neumann regular.

(4) J(R) = 0.

(5) R is reduced.

(6) R is right pp.

Proof. Assume (1). Let a ∈ R and write T = aR∩r(a). Then T 2 = 0 by hypothesis

and so T = 0. This shows that R is a right nonsingular ring and r(a2) = r(a). So

Ra = Ra2 by hypothesis and R = l(0) = l(aR ∩ r(a)) = Ra ⊕ l(a) because R is a

right Jcp-injective ring. Hence R is von Neumann regular and reduced. Certainly,

R is also a right pp ring with J(R) = 0. ¤

Example 2.4. Let V be a two-dimensional vector space over a field F , the trivial

extension R = T (F, V ) = F ⊕ V is a commutative, local, artinian ring with J2 = 0

and J = Zr. But R is not a p-injective ring [13]. On the other hand, if x ∈ R
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with x /∈ Zr, then x is invertible. So lr(x) = R = Rx. This implies that R is a

right Jcp-injective. Hence there exists a right Jcp-injective ring which is not right

p-injective.

Recall that a ring R is right C2 if every right ideal T which is isomorphic to a

summand of RR is a summand [13]. In [13], it is shown that right p-injective rings

are right C2. We can generalize the result to Jcp-injective rings. An element a ∈ R

is called right regular if r(a) = 0. [7, Theorem 1] is improved in the next theorem.

Theorem 2.5. Let R be right Jcp-injective. Then:

(1) Any right regular element of R is left invertible.

(2) Zr ⊆ J(R).

(3) Every left or right R-module is divisible.

(4) If P is a reduced principal right ideal of R, then P = eR, where e = e2 ∈ R

and (1− e)R is an ideal of R.

(5) R is right C2.

(6) If aR|R, bR|R with aR ∩ bR = 0, then (aR⊕ bR)|R.

(7) The following conditions are equivalent for a a /∈ Zr:

(a) aR is projective.

(b) aR|R.

(c) aR is a Jcp-injective module.

Proof. (1) Let c ∈ R such that r(c) = 0. Then c /∈ Zr and so by Theorem 2.1,

R = lr(c) = Rc, which proves (1).

(2) If z ∈ Zr and a ∈ R, then r(1− az) = 0 implies that v(1− az) = 1 for some

v ∈ R by (1). This proves that z ∈ J(R).

(3) If c is a non-zero-divisor in R, then dc = 1 for some d ∈ R by (1). Now

l(c) = 0 implies that cd = 1 and for any right R-module M , M = Mdc ⊆ Mc ⊆ M

implies that M = Mc. Similarly, any left R-module is divisible.

(4) Let P be a non-zero reduced principal right ideal. Then P = cR for some

c ∈ R. Since c2 /∈ Zr, lr(c2) = Rc2. Hence r(c) = r(c2) shows that Rc = lr(c) =

lr(c2) = Rc2. Therefore c = bc2 for some b ∈ R, which implies that c = cbc

because P is reduced, whence P is generated by the idempotent e = cb. Also, for

any a ∈ R, (ea − eae)2 = 0 implies ea = eae, whence eR(1 − e) = 0. Therefore

R(1− e) ⊆ (1− e)R which establishes the last part of (4).

(5) Assume that aR ∼= eR, where a, e2 = e ∈ R. Then a /∈ Zr, so Ra = lr(a)

by Theorem 2.1. Since aR ∼= eR, by [11, Theorem 1.2], there exists a f2 = f ∈ R
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such that af = a and r(a) = r(f). Hence Ra = lr(a) = lr(f) = Rf . Consequently,

aR|R.

(6) Follows from (5).

(7) By (5), we have (a) ⇔ (b). Obviously, (c) ⇒ (b) always holds.

(b) ⇒ (c) We only need to show that laRrR(b) = aRb for each b /∈ Zr. In fact,

if ac ∈ laRrR(b), then rR(b) ⊆ rR(ac), so ac ∈ lRrR(ac) ⊆ lRrR(b) = Rb. Because

aR = eR for some e2 = e ∈ R, ac = eac ∈ eRb = aRb. Hence laRrR(b) ⊆ aRb

which shows that laRrR(b) = aRb. ¤

Example 2.6. Faith and Menal [4] give an example of a right noetherian ring R

in which every right ideal is an annihilator, but which is not right artinian. Thus

R is left Jcp-injective. But R is not right C2, hence it is not right Jcp-injective.

Therefore there exists a left Jcp-injective ring which is not right Jcp-injective.

A ring R is called right FGF if every finitely generated right R-module can be

embedded in a free module. It is an open question whether every right FGF ring

is quasi-Frobenius. The conjecture is known to be true if the ring is right C2 [13].

Hence we derive that if every right FGF ring R is a right Jcp-injective, then R is

quasi-Frobenius.

A ring R is called right Johns if it is right noetherian and every right ideal is

an annihilator. If the matrix ring Mn(R) is right Johns for every n ≥ 1, then R

is called strongly right Johns. [13, Theorem 4.6] shows that R is quasi-Frobenius

if and only if R is strongly right Johns and right C2. Hence we have that R is

quasi-Frobenius if and only if R is strongly right Johns and right Jcp-injective.

Recall that a ring R is directly finite if uv = 1 in R implies that vu = 1. For

example, semilocal rings are directly finite. Obviously, R is directly finite if and

only if every epimorphism RR → RR is an isomorphism. It is known that (1) if

each monomorphism RR → RR is an isomorphism, then R is a directly finite; (2)

R is directly finite if and only if R/J(R) is directly finite.

Recall that a module MR is GC2 if N ⊆ M with NR
∼= M implies that N |M .

A ring R is right GC2 if RR is GC2. Clearly, a right C2 ring is right GC2.

Yiqiang Zhou shows that if MR is GC2 and MR is finite dimensional, then

End(MR) is a semilocal ring.

Corollary 2.7. Let R be a right Jcp-injective ring. Then:

(1) If RR is of finite Goldie dimensional, then R is semilocal.

(2) If J(R) is nilpotent, then R is right noetherian if and only if R is right

artinian.
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(3) The following conditions are equivalent.

(a) R/J(R) is directly finite.

(b) Every monomorphism RR → RR is an isomorphism.

(c) R is directly finite.

If every complement right ideal of R is not singular, then the conditions above

are also equivalent to

(d) R/Zr is directly finite.

Proof. (1) Since R is right C2, R is right GC2. Hence R ∼= End(RR) is semilocal,

because RR is finite dimensional.

(2) If R is right noetherian, then R is semilocal by (1). Hence R is semiprimary

because J(R) is nilpotent. Consequently, R is right artinian.

(3) (b) ⇒ (c) ⇔ (a) and (d) ⇒ (c) are trivial.

(c) ⇒ (b) Assume that f : RR → RR is a monomorphism. Since R is right

GC2, Im(f) = eR for some e2 = e because Im(f) ∼= RR. Write f(1) = a, then

aR = f(R) = eR. Hence a = ea = aba for some b ∈ R with e = ab. Thus ba = 1

because r(a) = 0. By (c), ab = 1, so f(R) = aR = eR = abR = R. This implies

that f is an epimorphism.

(c) ⇒ (d) Let a, b ∈ R such that 1 − ab ∈ Zr. Since R is right Jcp-injective,

1 − ab ∈ J(R) by Theorem 2.7(2). Let ab = 1 + x for some x ∈ J(R). So

ab(1 + x)−1 = 1. Since R is directly finite, b(1 + x)−1a = 1. If x /∈ Zr, then there

exists a nonzero right ideal I of R which is maximal with respect to the property

that ”I ∩ r(x) = 0”. By hypothesis, there exists b ∈ I such that b /∈ Zr. Hence

xb /∈ Zr. Let f : xbR → R be defined by f(xbr) = br for all r ∈ R. Then f is a

well defined right R-homomorphism. Since R is right Jcp-injective, f = c·, c ∈ R.

Hence b = f(xb) = cxb and so (1 − cx)b = 0. Since cx ∈ J(R), b = 0 which is a

contradiction. Hence x ∈ Zr, which implies that 1 − ba ∈ Zr, so R/Zr is directly

finite. ¤

In fact, from the proof of Corollary 2.7(3), we know that every monomorphism

RR → RR is an isomorphism if and only if R is directly finite and right GC2.

Call a ring R abelian if every idempotent element of R is central. As examples of

abelian rings we have ZI rings and reduced rings. Clearly, abelian rings are directly

finite. Call a ring I-finite if it contains no infinite set of orthogonal idempotents.

I-finite rings are also directly finite.

In [11], it is proved that if R is right p-injective, then J(R) = Zr. We do not know

whether the result holds for right Jcp-injective. But, from the proof of Corollary

2.7(3), we can obtain the following corollary.
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Corollary 2.8. Let R be a right Jcp-injective ring. Then:

(1) If R satisfies one of the following conditions, then every monomorphism

RR → RR is an isomorphism.

(a) R is abelian.

(b) R is I-finite.

(c) R is semilocal.

(2) If each non-zero complement right ideal of R is not contained in Zr, then

(a) J(R) = Zr.

(b) for each a ∈ R \ J(R), there exists a c ∈ R such that the inclusion

r(a) ⊂ r(a− aca) is proper.

Call a ring R right mininjective [12] if for each right minimal element k ∈ R,

Rk = lr(k). Right p-injective rings are right mininjective. But we don’t know

temporarily whether the result holds for a right Jcp-injective ring. Call a ring R

right principally small injective if for any a ∈ J(R), every R-homomorphism from

aR to RR can be extended to one from RR into RR. Clearly, R is right principally

small injective if and only if Ra = lr(a) for all a ∈ J(R).

Call a ring R right SPP if for any a /∈ Zr, aR is projective.

Call a ring R right PS [10] if each minimal right ideal of R is projective as a

right R-module. Clearly, the following conditions are equivalent for a ring R: (1) R

is right PS. (2) Zr∩Soc(RR) = 0. (3) Every homomorphic image of a mininjective

right R-module is mininjective. Examples of right PS rings contain right pp and

right universally mininjective [12]. Clearly, R is right universally mininjective if

and only if R is right PS and right mininjective.

Call a ring R right MC2 [13] if each projective minimal right ideal is a summand

in RR. As examples, we have right mininjective and right C2 rings. In [16], we

show that (1) R is right MC2 if and only if Zr ∩ Soc(RR) = J(R) ∩ Soc(RR). (2)

R is right universally mininjective if and only if R is right PS and right MC2. (3)

If R is a right MC2 I- finite ring, then R ∼= R1 ×R2, where R1 is semisimple and

every simple right ideal of R2 is nilpotent. Since right C2 rings are right MC2, by

Theorem 2.5, we have: if R is a right Jcp-injective I-finite ring, then R ∼= R1×R2,

where R1 is semisimple and every simple right ideal of R2 is nilpotent.

Theorem 2.9. (1) R is right p-injective if and only if R is right Jcp-injective and

right principally small injective.

(2) R is right SPP if and only if every homomorphic image of a right Jcp-

injective R-module is Jcp-injective.

(3) The following conditions are equivalent for a ring R.
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(a) R is right pp.

(b) R is right NPP and right SPP .

(c) R is right nonsingular and right SPP .

(4) Let R be a right Jcp-injective and right PS ring. Then R is right universally

mininjective, and so R is right mininjective.

(5) Let R be right Jcp-injective and Sr be essential in RR. Then the following

conditions are equivalent.

(a) R is right PS.

(b) R is right universally mininjective.

(c) R is semiprimitive.

(d) R is right nonsingular.

(e) R is semiprime.

In this case, R is right p-injective.

(6) Let R be right Jcp-injective and semiperfect with Sr essential in RR. Then

the following conditions are equivalent.

(a) R is right PS;

(b) R is right pp;

(c) R is semisimple.

(7) The following conditions are equivalent for a ring R.

(a) R is von Neumann regular.

(b) R is right nonsingular right SPP and right C2.

(c) R is right nonsingular right SPP and right Jcp-injective.

Proof. (1) (The ”only if” part) Let R be a right Jcp-injective and principally

small injective ring. By Theorem 2.5(2), Zr ⊆ J(R). Let a ∈ R. If a /∈ Zr, then

lr(a) = Ra by Theorem 2.1. If a /∈ Zr, then a ∈ J(R). We claim that Ra = lr(a).

Ra ⊆ lr(a) is clear. Let x ∈ lr(a), then r(a) ⊆ r(x). Let f : aR → R be defined

by f(ar) = xr. Then f is a well defined right R-homomorphism. Since R is right

principally small injective, there exists a right R-homomorphism g : R → R such

that f(a) = g(a). Hence x = f(a) = g(a) = g(1)a ∈ Ra and so lr(a) ⊆ Ra.

(2) Similar to [15, Theorem 2.10(1)].

(3) Follows from the definitions and [15, Theorem 2.10(2)].

(4) Since R is right Jcp-injective, R is right C2 by Theorem 2.5(5). Hence R is

right MC2, and so R is right universally mininjective because R is right PS. Hence

R is right mininjective.
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(5) By (4), we have (a) ⇒ (b). Assume that (b) holds, then Sr ∩ J(R) = 0.

Hence J(R) = 0 because Sr is essential in RR. So (b) ⇒ (c) ⇒ (e) ⇒ (a) hold.

Since Zr ⊆ J(R), (c) ⇒ (d) ⇒ (a) hold.

In this case, by Corollary 1.2, R is right p-injective.

(6) (c) ⇒ (b) ⇒ (a) are trivial. Assume (a). Then R is right p-injective by (5).

So R is a right GPF ring by [11], and then Sr = l(J(R)) by [11, Corollary 2.2].

But by (5), J(R) = 0, so Sr = R. Hence R is a semisimple ring.

(7) Follows from Corollary 2.2. ¤

Clearly, the ring R in Example 2.4 is not PS. Otherwise, R is a semisimple

ring. In fact, since R is artinian, R is a semiperfect ring, and Sr is essential in RR.

Hence R is a semisimple ring by Theorem 2.9(6). But J(R) = Zr 6= 0, which is a

contradiction. Hence R is not a PS ring, and so is not universally mininjective. On

the other hand, we claim that R is not mininjective. In fact, if V = vF ⊕wF , then

(0, vR) is a minimal right ideal of R, and let θ : V → V be a linear transformation

with θ(v) = w. Then (0, x) 7−→ (0, θ(x)) is an R- linear map from (0, v)R → R

which cannot be extended to R → R because w /∈ vF . So R is not a mininjective

ring. Hence there exists a Jcp-injective ring which is not mininjective.

Example 2.10. The trivial extension R = T (Z, Z2∞) is a commutative ring with

Zr = J 6= 0 which is not right C2, so is not right Jcp-injective. On the other

hand, R has a simple essential socle, so R is a mininjective ring. So there exists a

mininjective ring which is not Jcp-injective.

A ring R is called right quasi-regular if a ∈ aRa for all a /∈ Zr. Clearly, R is von

Neumann regular if and only if R is right nonsingular and right quasi-regular.

Theorem 2.11. (1) Let R be a right Jcp-injective and a right SPP ring. Then

(a) Zl ⊆ J(R) = Zr;

(b) for each a /∈ Zr, a = aba for some b ∈ R. So R/J(R) is von Neumann

regular.

(2) If R is right SPP and Abelian, then N(R) ⊆ Zr.

(3) Let R be a right SPP ring. Then the following conditions are equivalent.

(a) R is reduced.

(b) R is abelian right nonsingular.

(c) R is abelian right NPP .

(4) The following conditions are equivalent for a ring R.

(a) R is right quasi-regular.

(b) R is right Jcp-injective and right SPP .
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(c) Every right R-module is Jcp-injective.

(d) Every cyclic right R-module is Jcp-injective.

Proof. (1) First, we show that J(R) ⊆ Zr. Otherwise, there exists a a ∈ J(R) such

that b /∈ Zr. So r(a) = r(e) for some e2 = e ∈ R because R is right SPP . Since

R is right Jcp-injective, Re = lr(e) = lr(a) = Ra ⊆ J(R). This is a contradiction.

Similarly, we can show that Zl ⊆ Zr. By Theorem 2.5, we have Zl ⊆ J(R) = Zr.

Next, let a /∈ Zr. Then Ra = Re, so a = ae ∈ aRa. Hence R/J(R) is von Neumann

regular.

(2) If N(R) * Zr, then there exists a ∈ N(R) such that a /∈ Zr. So r(a) = gR,

g2 = g ∈ R. Let an = 0 and an−1 6= 0. Hence an−1 ∈ r(a) = gR, so an−1 = gan−1,

Since R is abelian, an−1 = an−1g = 0, which is a contradiction. So N(R) ⊆ Zr.

(3) Follows from (2).

(4) (b) ⇒ (a) follows from (1). (c) ⇒ (d) is trivial.

(a) ⇒ (c) Let M be any right R-module, a ∈ R with a /∈ Zr and f : aR → M

any right R-homomorphism. Since R is right quasi-regular, a = aba for some

b ∈ R \ Zr. Let ab = e and f(e) = m, where m ∈ M . Then h : R → M defined

by g(r) = mr, r ∈ R is a right R-homomorphism and g(ar) = mar = f(e)ar =

f(ab)ar = f(aba)r = f(a)r = f(ar), so M is Jcp-injective.

(d) ⇒ (a). Let a /∈ Zr. By (d), aR is Jcp-injective, so the identity map aR → aR

can be extended to one of R into R. Hence a = aba for some b ∈ R. ¤

Theorem 2.12. Let e be an idempotent of R such that ReR = R and let S = eRe.

Then:

(1) If R is right Jcp-injective, then so is S.

(2) eZr(R)e ⊆ Zr(S). Hence if S is right nonsingular, then so is R.

(3) If R is right nonsingular, then so is S.

(4) If R is right SPP , then for any a ∈ S \ Zr(S), there exist an idempotent g

of R such that rS(a) = egeS.

(5) If R is right principally small injective, then so is S.

(6) If R is right quasi-regular, then so is S.

(7) If R is von Neumann regular, then so is S.

(8) If R is right p-injective, then so is S.

Proof. (1) Let x ∈ S \ Zr(S). Then x /∈ Zr. Otherwise, there exists an essential

right ideal I of R such that xI = 0. Since eR ∩ I 6= 0, eI 6= 0. Since R = ReR,

eI = eIR = eIReR = eIeR, eIe 6= 0. We claim that eIe is an essential right ideal

of S. Let K be any nonzero right ideal of S. Then KR∩I 6= 0. Let 0 6= y ∈ KR∩I
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and let 1 =
∑n

i=1 aiebi, ai, bi ∈ R. Then y = y1 =
∑n

i=1 yaiebi, so there exists

some i0 ∈ {1, 2, · · · , n} such that yai0e 6= 0. Since eyai0e = yai0e ∈ KRai0e ∩ I ⊆
K ∩ I = K ∩ eIe, eIe is an essential right ideal of S. Since xeIe = xIe = 0,

x ∈ Zr(S). This is a contradiction. Hence x /∈ Zr. Since R is right Jcp-injective,

lRrR(x) = Rx. Now let z ∈ lSrS(x). Then rS(x) ⊆ rS(z). Let a ∈ rR(x). Then

xa = 0, so 0 = xaaie = xeaaie, i = 1, 2, . . . , n. Hence eaaie ∈ rS(x) ⊆ rS(z), so

zaaie = zeaaie = 0. Thus za =
∑n

i=1 zaaiebi = 0, so a ∈ rR(z). This shows that

rR(x) ⊆ rR(z). So z ∈ lRrR(z) ⊆ lRrR(x) = Rx. Hence z = eze ∈ eRex = Sx,

which implies that lSrS(x) ⊆ Sx and so lSrS(x) = Sx. Hence S is right Jcp-

injective.

(2) By (1), we can easily see that eZr(R)e = Zr ∩ eRe ⊆ Zr(S). If Zr(S) = 0,

then Zr = RZr(R)R = ReRZr(R)ReR = ReZr(R)eR = 0.

(3) If Zr(S) 6= 0, then there exists 0 6= x ∈ Zr(S). Since Zr = 0, there exists

a nonzero right ideal I of R such that rR(x) ∩ I = 0. If xI 6= 0, then eIe 6= 0, so

eIe ∩ rS(x) 6= 0. Let 0 6= y ∈ eIe ∩ rS(x) and let y = ez, z ∈ I. So xz = xez =

xy = 0 and then 0 6= z ∈ rR(x) ∩ I, which is a contradiction. Hence xI = 0, so

I ⊆ rR(x) ∩ I = 0, which is also a contradiction. Thus Zr(S) = 0.

(4) Let a /∈ Zr(S). By (2), a /∈ Zr. Hence rR(a) = gR, g2 = g ∈ R by hypothesis.

So rS(a) = egeS.

(5) It is trivial.

(6) Let a ∈ S with a /∈ Zr(S). By (2), a /∈ Zr. So a = aba for some b ∈ R.

Hence a = aebea = a(ebe)a, where ebe ∈ S and so S is right quasi-regular.

(7) Follows from (3) and (6).

(8) Follows from (1), (5) and Theorem 2.9(1). ¤

The following theorem is a generalization of [11, Theorem 1.1].

Theorem 2.13. Let R be a right Jcp-injective ring, and let a, b ∈ R with b /∈ Zr.

Then:

(1) If bR embeds in aR, then Rb is an image of Ra.

(2) If aR is an image of bR, then Ra embeds in Rb.

(3) If bR ∼= aR, then Ra ∼= Rb.

(4) If K is a simple projective right ideal of R, then RK is the homogenous

component of Sr containing K.

(5) If A,B are right ideals of R with A ∩ (B + Zr) = 0 and A is an ideal of R,

then HomR(AR, BR) = 0.
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Proof. (1) Let σ : bR → aR be a monomorphism. Since R is right Jcp-injective

and b /∈ Zr, we can let σ = v·, v ∈ R. Then vb = au, u ∈ R, so define ϕ : Ra → Rb

by ϕ(ra) = rau = rvb, then ϕ is a well defined left R-homomorphism. Since vb /∈ Zr

and r(vb) = r(b), Rb = lr(b) = lr(vb) = Rvb. Hence, clearly, ϕ is epic.

(2) Let σ : bR → aR be epic, and let v, u and ϕ be as in (1). Write a = σ(bs) =

vbs, s ∈ R. Then ϕ(ra) = 0 gives 0 = rau = rvb, whence ra = rvbs = 0. Hence ϕ

is monic.

(3) Follows from the proof of (1) and (2).

(4) If K = kR where k ∈ R and σ : K → S is an R- isomorphism, where S ⊆ R,

then r(k) = r(σ(k)). So Rk = lr(k) = lr(σ(k)) = Rσ(k) because k /∈ Zr. Hence

S = σ(k)R ⊆ RkR = RK, so the K− component is in RK. The other inclusion

always holds.

(5) If there exists a 0 6= f ∈ HomR(AR, BR), then there exists 0 6= a ∈ A such

that f(a) 6= 0. Then f(a) = va where v ∈ R, because A ∩ Zr = 0. Since A

is an ideal, va ∈ A. Hence f(a) ∈ A ∩ B = 0, which is a contradiction. Hence

HomR(AR, BR) = 0. ¤

3. Finiteness conditions

In [3], a right (left) annihilator M of a ring R is called maximal if for any right

(left) annihilator N with M ⊆ N , either N = M or N = R. In this case, M = r(a)

(l(a)) for some 0 6= a ∈ R.

Using the idea of [3], we start with the following theorem.

Theorem 3.1. Let R be a semiprime right Jcp-injective ring whose complement

right ideals are non-small. Then every maximal right (left) annihilator of R is a

maximal right (left) ideal of R generated by an idempotent.

Proof. Let L be a maximal right annihilator, then by [3, Theorem 3.1], there exists

0 6= a ∈ R such that

(1) L = r(a); (2) r(a) = r(y) for every 0 6= y ∈ Ra; (3) Zr ∩Ra = 0.

Hence, there exists a non-zero complement right ideal I of r(a) such that r(a)⊕I

is essential in RR. Then, by hypothesis, there exists 0 6= b ∈ I such that b /∈ Zr

and ab 6= 0. Since r(ab) = r(b), ab /∈ Zr. Hence Rb = lr(b) = lr(ab) = Rab. Write

b = cab, c ∈ R. Then b ∈ r(a− aca). But b /∈ r(a) and hence a = aca. Let d = ca,

by [3, Theorem 3.1], L = r(a) = r(d) = eR, where e = 1− d, d2 = d.

Now, we claim that L is a maximal right ideal of R. Similar to [3, Theorem

3.1], we only need to show that dRd is a division ring. In fact, we can assume

that a = d, if 0 6= x ∈ dRd, then r(x) = r(d) by (2). Hence, x /∈ Zr by (3), so,
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Rx = lr(x) = lr(d) = Rd. Write d = ux where u ∈ R. Then d = d2 = dux = dudx

because x = dx. That is, dRd is indeed a division ring. ¤

It is well known that if R is semiprime, then Sr = Sl. Hence from Theorem 3.1,

we have the following result.

Corollary 3.2. Let R be a right Jcp-injective ring whose complement right ideals

are non-small. Then the following hold.

(1) If R is semiprime, then R contains a maximal right (left) annihilator if and

only if Sr = Sl 6= 0.

(2) If R is prime and contains a maximal right (left) annihilator, then R is left

and right primitive and left and right nonsingular ring. So R is right p-injective.

Proof. (1) It is trivial.

(2) Since R is prime, R is left and right PS. Hence Zr ∩ Sr = Zl ∩ Sl = 0, so

Zl = Zr = 0 because 0 6= Sr = Sl is an essential left and right ideal. Hence R is

left and right nonsingular. Let kR be a minimal right ideal of R. Then R/r(k) is a

faithful simple right R-module and hence R is right primitive. Similarly, R is left

primitive. ¤

Let R be a ring and let S be an ideal of R such that R/S satisfies ACC on right

annihilators. If Y1, Y2, · · · are subsets of l(S), then [11, Lemma 2.1] shows that

there exists n ≥ 1 such that r(Yn+1Yn · · ·Y2Y1) = r(Yn · · ·Y2Y1). The following

theorem is similar to [11, Theorem 2.2].

Theorem 3.3. Let R be a right Jcp-injective ring whose complement right ideals

are non-small. If R/Sr satisfies ACC on right annihilators, then

(1) J(R) is nilpotent;

(2) R is semiprime if and only if R is semiprimitive.

Proof. (1) First, if I is a complement right ideal of R, then I " J(R). Since

R is right Jcp-injective, Zr ⊆ J(R). So I " Zr, by the proof of (c) ⇒ (d) of

Corollary 2.7(3), J(R) = Zr. Hence J(R)Sr = ZrSr = 0. Let a1, a2, · · · be

given in J(R) ⊆ l(Sr). We have r(anan−1 · · · a1) = r(an+1anan−1 · · · a1) for some

n ≥ 1. This implies that anan−1 · · · a1R∩r(an+1) = 0, so anan−1 · · · a1 = 0 because

an+1 ∈ J(R) = Zr. Hence J(R) is left T−nilpotent, and so (J(R) + Sr)/Sr is left

T− nilpotent. But R/Sr has ACC on right annihilators. Hence (J(R) + Sr)/Sr is

nilpotent. Then there exists an integer m such that Jm ⊆ Sr, and so J2m ⊆ JSr =

0. ¤
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[1, Remark 1] conjecture that every flat right R-module is finitely projective if

and only if the ascending chain r(a1) j r(a2a1) j r(a3a2a1) j · · · terminates for

every infinite sequence a1, a2, a3, . . . of R. But [17] has answered this conjecture in

the negative. However, the following Theorem gives an affirmative answer to this

conjecture for right Jcp-injective ring. On the other hand, it is also a generalization

of [3, Theorem 3.4].

Theorem 3.4. Let R be a right Jcp-injective ring whose complement right ideals

are non-small. Then the following are equivalent.

(1) R is right perfect.

(2) Every flat right R-module is finitely projective.

(3) Every flat right R-module is singly projective.

(4) The ascending chain r(a1) j r(a2a1) j r(a3a2a1) j · · · terminates for every

infinite sequence a1, a2, a3, . . . of R.

It is well known that Zr is nilpotent for any ring R with ACC on right annihi-

lators.

In [3], Chen and Ding show that if Zr 6= 0 and the ascending chain r(a1) j
r(a2a1) j r(a3a2a1) j · · · terminates for every infinite sequence a1, a2, a3, . . . of R,

then there exists a 0 6= b ∈ Zr such that r(b) = r(y) for every 0 6= y ∈ Rb. Hence

we have the following corollary.

Corollary 3.5. Let R be a right Jcp-injective ring whose complement right ideals

are non-small. Then the following hold.

(1) If R satisfies ACC on right annihilators, then R is semiprimary.

(2) If R is semiprime and the ascending chain r(a1) j r(a2a1) j r(a3a2a1) j
· · · terminates for every infinite sequence a1, a2, a3, . . . of R, then R is a semisimple

artinian ring.

Proof. (1) By Theorem 3.4, R/J(R) is semisimple artinian. Hence R is semipri-

mary because J(R) = Zr is nilpotent.

(2) If Zr 6= 0, then there exists a 0 6= b ∈ Zr such that r(b) = r(y) for every

0 6= y ∈ Rb. Since R is semiprime, there exists a 0 6= c ∈ R such that bcb 6= 0.

Hence r(b) = r(bcb). Consequently, bc is not nilpotent. But Zr = J(R) is right T−
nilpotent, which is a contradiction. Hence J(R) = Zr = 0 and by Theorem 3.4, R

is semisimple artinian. ¤

Call a left ideal L of a ring R left weakly essential, if for all 0 6= a ∈ R with

a /∈ Zr, Ra ∩ L 6= 0. Clearly, an essential left ideal is left weakly essential.
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A ring R is called right Kasch if every simple right modules can be embedded in

R, or equivalently if l(M) 6= 0 for every maximal right ideal M of R.

The following theorem is similar to [11, Theorem 2.4].

Theorem 3.6. Let R be a right Jcp-injective ring. Then:

(1) If R is right Kasch, then l(J) is left weakly essential.

(2) If R is semiperfect, then R is a right Kasch ring if and only if Sr is left

weakly essential.

Proof. (1) Let 0 6= b ∈ R, b /∈ Zr and choose M maximal in bR. Let σ : bR/M →
RR is a monomorphism. If γ : bR → R is defined by γ(x) = σ(x + M), then γ = a·
where a ∈ R because b /∈ Zr. So ab = γ(b) = σ(b + M) 6= 0. But abJ = σ(bJ) = 0

because (bR/M)J = 0. Therefore 0 6= ab ∈ Rb ∩ l(J), as required.

(2) If R is right Kasch, then l(J) is left weakly essential by (1). Since R is a

semiperfect ring, Sr = l(J). Hence Sr is left weakly essential.

Conversely, we assume that Sr is left weakly essential. Let M be a maximal

right ideal of R. Then there exists a e2 = e ∈ R such that 1 − e ∈ M and

eR∩M ⊆ J because R is a semiperfect ring. Hence Sr ⊆ l(J) ⊆ l(eR∩M), and so

l(eR∩M) is left weakly essential by hypothesis. Since e /∈ Zr, 0 6= Re∩l(eR∩M) =

l((1− e)R) ∩ l(eR ∩M) = l((1− e)R + (eR ∩M)) = l(M). This implies that R is

right Kasch. ¤

Call a right R-module M right nil-injective [15] if for each nilpotent element

a ∈ R, the right R-homomorphism from aR to M can be extended to one from R

into M . If R is nil-injective as a right R-module, then we call R a right nil-injective

ring.

Theorem 3.7. Let R be a right Jcp-injective ring. Assume that every simple

singular right R-module is right nil-injective. Then the following hold.

(1) R is right p-injective, and so R is semiprimitive right nonsingular.

(2) If R is right SPP , then R is von Neumann regular.

(3) Zl = 0.

Proof. First, we show that Zr = 0. If not, then there exists 0 6= b ∈ Zr such that

b2 = 0. We claim that Zr + r(b) = R. Otherwise, there exists a maximal essential

right ideal M of R such that Zr + r(b) ⊆ M , then R/M is a right nil-injective

R-module. Define f : bR → R/M by f(br) = r + M for all r ∈ R. Clearly, f is a

well defined right R-module homomorphism. Hence there exists a a ∈ R such that
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1 − ab ∈ M . So 1 ∈ M because ab ∈ Zr ⊆ M , which is a contradiction. Hence

Zr + r(b) = R. Since R is right Jcp-injective, Zr ⊆ J(R) by Theorem 2.5. So

J(R)+r(b) = R. This implies that r(b) = R and so b = 0, which is a contradiction.

Hence Zr = 0. By Corollary 2.2, R is right p-injective. By [11, Theorem 2.1],

J(R) = 0.

(2) This is an immediate consequence of Theorem 2.9(7).

(3) If Zl 6= 0, then there exists 0 6= b ∈ Zl such that b2 = 0. We show that

Zl+r(b) = R. Otherwise, there exists a maximal right ideal M such that Zl+r(b) ⊆
M . If M is not an essential right ideal of R, then M = r(e), where e2 = e ∈ R. If

be 6= 0, then beR ∼= eR as right R-module. By Theorem 2.5(5), beR = gR, where

g2 = g ∈ R, so g ∈ Zl because beR ⊆ Zl. This is a contradiction. So be = 0.

Then e ∈ r(b) ⊆ M = r(e), which is impossible. Thus M is an essential right

ideal of R, so R/M is nil-injective R-module. Similar to the proof of (1), there

exists a ∈ R such that 1 − ab ∈ M . So 1 ∈ M because ab ∈ Zl ⊆ M , which is a

contradiction. Hence Zl + r(b) = R. Let 1 = x + y, x ∈ Zl, y ∈ r(b). Then b = bx

and so b(1− x) = 0. Since x ∈ Zl and l(x)∩ l(1− x) = 0, l(1− x) = 0. This shows

that b = 0, which is a contradiction. So Zl = 0. ¤

4. Weakly injectivity

Let E(M) be an injective hull of MR. M is called right weakly injective if for any

finite generated submodule NR ⊆ E(M), there exists XR
∼= M and NR ⊆ XR ⊆

E(M). Clearly, right injective rings are right weakly injective, but the converse is

not true in general.

Lemma 4.1. Let R be a right Jcp-injective ring. If RR is essential in XR, where

XR
∼= RR, then X = R.

Proof. Let f : RR → XR be the isomorphism and f(1) = b ∈ X. Then bR =

Im(f) = X. Since 1 ∈ R ⊆ X, let 1 = bu, u ∈ R. Hence RR = 1R = buR and

r(u) = 0. Since R is right Jcp-injective, by Theorem 2.5(1), there exists d ∈ R such

that du = 1. Let e = ud. Then e2 = e and uR = eR. Hence R = buR = beR. It is

clear that X = bR = b(eR⊕(1−e)R) = beR+b(1−e)R. If x ∈ beR∩b(1−e)R, then

there exist r1, r2 ∈ R such that x = ber1 = b(1− e)r2, so f−1(x) = er1 = (1− e)r2.

Hence f−1(x) = 0 and then x = 0, so X = bR = beR⊕ b(1− e)R = R⊕ b(1− e)R.

Since RR is essential in XR, b(1− e)R = 0, and so X = beR = R.

¤

The following theorem is a generalization of [11, Theorem 1.3].
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Theorem 4.2. A ring R is right self-injective if and only if R is right Jcp-injective

and RR is weakly injective.

Proof. We only need to show that E(RR) ⊆ R. For each a ∈ E(RR), since

R + aR ⊆ E(RR), there exists X ⊆ E(RR) such that R + aR ⊆ X and XR
∼= RR.

Since R is right Jcp-injective, X = R by Lemma 4.1. Hence R = E(RR).

¤

Call a ring R right coflat if for each finitely generated right ideal I of R, every

homomorphism from IR to R can be extended to the one of R into R. Call R right

FP -injective if for each finitely presented right ideal I of R, every homomorphism

from IR to R can be extended to the one of R to R. Right FP -injective rings are

right coflat rings and right self-injective rings are right FP -injective rings.

Corollary 4.3. The following conditions are equivalent for a right weakly injective

ring R.

(1) R is right self-injective.

(2) R is right p-injective.

(3) R is right coflat.

(4) R is right FP -injective.

(5) R is right Jcp-injective.

Call a ring R right np-injective, if for any non-nilpotent element c of R and any

right R-homomorphism g : cR → R, there exists m ∈ R such g(ca) = mca for all

a ∈ R. An important source of right np- injective rings is given by Yue Chi Ming

[8], which is a generalization of right p- injective ring.

Call a ring R right weakly np-injective, if for any non-nilpotent element c of R,

there exists a positive integer number n such that for any right R-homomorphism

g : cnR → R, there exists m ∈ R such g(cna) = mcna for all a ∈ R. Evidently,

right weakly np-injective rings are the generalization of right np-injective and right

Y J-injective.

Call a ring R right Gnp-injective, if for any non-nilpotent element c of R, lr(c) =

Rc⊕Xc, where Xc is a left ideal of R. Obviously, right Gnp-injective rings are the

generalization of right np-injective and right AP -injective.

Call a ring R right weakly Gnp-injective, if for any non-nilpotent element c of R,

there exists a positive integer number n such that lr(cn) = Rcn ⊕Xc, where Xc is

a left ideal of R. Obviously, right weakly Gnp-injective rings are the generalization

of right weakly np-injective and right AGP -injective [14].
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Lemma 4.4. Let R be a right weakly Gnp-injective ring. If RR is essential in XR,

where XR
∼= RR, then X = R.

Proof. Let f : RR → XR be the isomorphism and f(1) = b ∈ X. Then bR =

Im(f) = X. Since 1 ∈ R ⊆ X, let 1 = bu, u ∈ R. Hence RR = 1R = buR and

r(u) = 0. Since R is right weakly Gnp-injective, there exists an n ≥ 1 such that

lr(un) = Run⊕Xu where Xu is a left ideal of R because u is a non-nilpotent element.

Hence R = l(0) = lr(un) = Run⊕Xu because r(u) = 0. Write Run = Re, e2 = e ∈
R, then un = une = undun where e = dun. So 1 − dun ∈ r(un) = r(u) = 0, this

implies that vu = 1, where v = dun−1, Then, similar to the proof of Lemma 4.1,

we can complete the proof. ¤

Similar to Theorem 4.2, we have the following theorem.

Theorem 4.5. A ring R is right self-injective if and only if R is right weakly Gnp-

injective and RR is weakly injective.

Corollary 4.6. The following are equivalent for a right weakly injective ring R.

(1) R is right self-injective.

(2) R is right Y J-injective.

(3) R is right AP -injective.

(4) R is right AGP -injective.

(5) R is right np-injective.

(6) R is right Gnp-injective.

(7) R is right weakly np-injective.

(8) R is right weakly Gnp-injective.

5. On a Theorem of Camillo

Camillo [2], Nicholson and Yousif [11] and Chen and Ding [3] have studied p-

injective rings and Y J-injective rings. In this section, we extend their works.

An element u ∈ R is said to be right uniform if u 6= 0 and uR is a uniform right

ideal of R.

Theorem 5.1. Let R be a right Jcp-injective ring. If u ∈ R is right uniform with

u /∈ Zr, then Mu := {x ∈ R |uR∩ r(x) 6= 0} is a maximal left ideal containing l(u).

Proof. Since uR is uniform, Mu is a left ideal. Clearly, l(u) ⊆ Mu 6= R. If a /∈ Mu,

then au 6= 0 because uR ∩ r(a) = 0. Since u /∈ Zr and r(u) = r(au), au /∈ Zr.

Hence Ru = lr(u) = lr(au) = Rau because R is right Jcp-injective, write u = cau
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where c ∈ R. So 1− ca ∈ l(u) ⊆ Mu. Hence R = Ra + Mu, which implies that Mu

is maximal. ¤

Corollary 5.2. If R is a right Jcp-injective right uniform ring, then R is local and

Zl ⊆ J(R) = Zr

Proof. By hypothesis, Zr = {x ∈ R | r(x) is essential in RR} = {x ∈ R | r(x) 6=
0} = {x ∈ R | 1R∩r(x) 6= 0} = M1 ⊇ J(R) because 1 /∈ Zr. Hence J(R) = Zr = M1

is a maximal left ideal. So R is local. ¤

Corollary 5.3. Let R be right Jcp-injective and left Kasch. Assume that every

nonzero right ideal contains a uniform right ideal, which is not contained in Zr.

Then every maximal left ideal M has the form M = Mu for some right uniform

element u.

Proof. Let M be a maximal left ideal. Then r(M) 6= 0 because R is left Kasch.

By hypothesis, there exists a uniform right ideal uR such that uR ⊆ r(M) and

u /∈ Zr. So M = lr(M) ⊆ l(u) ⊆ Mu. Hence M = Mu. ¤

Similar to [11, Lemma 3.1 and Theorem 3.1], we can obtain the following theo-

rems.

Theorem 5.4. Let R be right Jcp-injective, and assume that Rb1⊕Rb2⊕· · ·⊕Rbn ⊆
R is a direct sum with (Rb1 ⊕Rb2 ⊕ · · · ⊕Rbn) ∩ Zr = 0. Then:

(1) Any R-linear map α : b1R + b2R + · · ·+ bnR → R extends to α : R → R.

(2) Write S = b1R + b2R + · · · + bkR and T = bk+1R + bk+2R + · · · + bnR,

1 ≤ k < n, then l(S ∩ T ) = l(S) + l(T ).

Theorem 5.5. If R is right Jcp-injective and ⊕i≥1Bi is a direct sum of ideals of

R with (⊕i≥1Bi) ∩ Zr = 0, then A ∩ (⊕i≥1Bi) = ⊕i≥1(A ∩ Bi) for any ideal A of

R.

Theorem 5.6. Let R be right Jcp-injective and let W = u1R⊕· · ·⊕unR be a direct

sum of uniform right ideals uiR of R with W ∩Zr = 0. If M ⊆ R is a maximal left

ideal that is not of the form Mu for any right uniform element u, then there exists

m ∈ M such that r(1−m) ∩W is essential in M .

Since division rings are von Neumann regular, every module over division rings

is p-injective. Hence every right module over division rings is right Jcp-injective.

We now characterize division rings in terms of the following notion: R is called a

right F -ring if, for any maximal right ideal M of R and any b ∈ M , R/bM is a flat

right R-module. Division rings are right F -rings.
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Theorem 5.7. The following are equivalent for a semiprime right uniform ring R.

(1) R is a division ring;

(2) R is a right p-injective right F -ring;

(3) R is a right Y J-injective right F -ring;

(4) R is a right Jcp-injective right F -ring.

Proof. It is obvious that (1) implies (2), which, in turn, implies (3) and (4).

Assume (4). Since R is a right uniform ring and right Jcp-injective, by Corollary

5.2, R is a local ring with Zr = J(R). Since R is a right F - ring, J(R)2 = 0 and so

J(R) = 0 because R is a semiprime ring. Hence R is a division ring. ¤

R is called a right CAM -ring if, for any maximal essential right ideal M of R

(if it exists) and for any right subideal I of M which is either a complement right

subideal of M or a right annihilator ideal in R, I is an ideal of M .

Right CAM -rings generalize semisimple artinian. [8] shows that semiprime right

CAM -ring R is either semisimple artinian or reduced. If R is also right Jcp-

injective, then R is either semisimple artinian or strongly regular ring. We yield

the following theorem.

Theorem 5.8. The following are equivalent for a ring R.

(1) R is either a semisimple artinian or a strongly regular ring.

(2) R is a semiprime right CAM -ring whose singular simple right modules are

flat.

(3) R is a semiprime right Jcp-injective, right CAM−ring.

(4) R is a semiprime right CAM -ring, MERT ring whose singular simple right

R-modules are Jcp-injective.

Proof. (1) ⇒ (i) where i = 2, 3, 4 are obvious.

(2) ⇒ (1) Assume (2). If R is not a semisimple artinian ring, then R is reduced.

Let 0 6= a ∈ R. If aR⊕r(a) 6= R, then aR⊕r(a) ⊆ M for some maximal right ideal

M of R. If M is not an essential right ideal of R, then M = eR, where e2 = e ∈ R.

Because R is reduced, ae = ea = 0 and e ∈ r(a) ⊆ M = r(e), a contradiction.

Hence M is an essential right ideal of R and so R/M is a singular simple right

R-module. By (2), R/M is flat, then there exists m ∈ M such that a = ma. But

then a = am, because R is reduced. Now we obtain 1−m ∈ r(a), and so 1 ∈ M , a

contradiction. Hence aR⊕ r(a) = R and then R is a strongly regular ring.

(3) ⇒ (1) If R is not a semisimple artinian ring, then R is reduced. By Corollary

1.5, R is a regular ring, But R is an abelian ring, so R is a strongly regular ring.
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(4) ⇒ (1) We can directly assume that R is reduced. So R is a right nonsingular

ring. Let 0 6= a ∈ R. If aR ⊕ r(a) 6= R, then aR ⊕ r(a) ⊆ M for some maximal

essential right ideal M of R. Hence R/M is a singular simple right R-module.

By hypothesis, R/M is right Jcp-injective. Then there exists a c ∈ R such that

1− ca ∈ M . But then 1 ∈ M , because R is a MERT ring and M is an ideal. It is

a contradiction. Hence aR⊕ r(a) = R and then R is a strongly regular ring. ¤

A ring R is called right CM if, for any maximal essential right ideal M of R,

every complement right subideal is an ideal of M . [8, Proposition 3] shows that

simple projective right module over right CM ring is injective.

A ring R is right finitely embedded if, Soc(RR) is finite generated and right

essential in RR. Note that a right finitely embedded right PS ring need not be

semiprime. We conclude the paper with a few characteristic properties of semisim-

ple artinian rings.

Theorem 5.9. The following are equivalent for a ring R.

(1) R is a semisimple artinian ring.

(2) R is a right CM , right finitely embedded and right PS ring.

(3) R is a semiprime, right Jcp-injective and left or right Goldie ring.

Proof. Clearly, (1) ⇒ (2) and (3).

(2) ⇒ (1) Since R is a right PS right finitely embedded ring, Soc(RR) is a

semisimple projective right R-module. Because R is a right CM ring, Soc(RR) is

an injective right R-module. Hence Soc(RR) = eR, where e2 = e ∈ R. But then

Soc(RR) = R, because Soc(RR) is essential in RR. Hence R is semisimple artinian.

(3) ⇒ (1) Assume (3). Then R has a left (or right) fraction ring Q, and Q is a

semisimple artinian ring. If Q is a left fraction ring, then for every x ∈ Q, x = a−1b,

where a, b ∈ R and l(a) = r(a) = 0, so a /∈ Zr. Since R is a right Jcp-injective ring,

there exists c ∈ R such that ca = 1 and then ac = 1. Hence a−1 ∈ R and so x ∈ R.

Thus R = Q is a semisimple artinian ring. ¤
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