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ABSTRACT. As a generalization of right p-injective rings, we introduce the
notion of right Jecp-injective rings, i.e. for any right nonsingular element ¢ of
R and any right R-homomorphism g : cR — R, there exists m € R such that
g(ca) = meca for all a € R. Some important results which are known for right

p-injective rings are shown to hold for right Jcp-injective rings.
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1. Introduction and Preliminaries

Throughout this paper, R denotes an associative ring with identity, and all
modules are unitary. We write g M and Mg to indicate a left and right R-module,
respectively. For any nonempty subset X of a ring R, r(X) and I(X) denote the
right annihilator of X and the left annihilator of X, respectively. If X = {a}, we
usually abbreviate it to I(a) and r(a). As usual, J(R) = J, Z; (Z,), S; (S,) and
N(R) stand for the Jacobson radical of R, the left (right) singular ideal of R and
the left (right) socle of R and the set of all nilpotent elements of R, respectively.

N|M will mean that submodule N is a direct summand of M.

A ring R is called right Jep-injective if for each a € R\ Z,., any homomorphism
from aR to R can be extended to one of R into R. Clearly, right p-injective rings are
right Jep-injective. In section 2, Theorem 2.1 gives some characterizations of right
Jep-injective rings. Example 2.4 points out that there exists a right Jep-injective
ring which is not right p-injective. In this section, we also consider some conditions
for a right Jep-injective ring being right p-injective.

(von Neumann) regular rings have been studied extensively by many authors (for

example, [5], [6] and [9]). It is well known that a ring R is regular if and only if every
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right R-module is p-injective. In Theorem 2.9, we give some new characterizations
of von Neumann regular rings.

Call a right R-module M nil-injective [15] if for each a € N(R), any right R-
homomorphism aR — M can be extended to R — M. If R is nil-injective as a
right R-module, then we call R a right nil-injective ring. Theorem 3.7 shows that if
R is a right Jcp-injective ring such that every simple singular right R-module is nel-
injective, then R is a right p-injective, semiprimitive and left and right nonsingular
ring.

In Section 4, we consider right weakly injective rings and obtain the following
equivalent conditions for a right weakly injective ring R: (1) R is right self-injective;
(2) R is right Jep-injective; (3) R is right weakly Gnp-injective. This generalizes
many known results which appears in [11] and [3].

In Section 5, we give some characterizations of division rings and semisimple

artinian rings.
2. Right Jcp-injective Rings

A right R-module M is Jep-injective if for each a € R\ Z,., every right R-
homomorphism from aR to M can be extended to one of R into M. If Rp is
Jep-injective, we call R is a right Jep-injective ring. Clearly, right p-injective rings

are right Jcp-injective.

Theorem 2.1. The following conditions are equivalent for a ring R.
(1) R is right Jep-injective.
(2) lr(a) = Ra for each a & Z,.
(3) r(a) Cr(b),a,b € R and a ¢ Z, implies that Rb C Ra.
(4) L(bRNr(a)) =1(b) + Ra for a,b € R with ab ¢ Z,.

Proof. (1) = (2). Clearly, Ra C Ir(a) for all a ¢ Z,. Now let x € Ir(a) and
f :aR — R defined by f(ar) = ar. Then f is a well defined right R-homomorphism
because r(a) C r(z). By (1), f = ¢ for some ¢ € R. Hence z = f(a) = ca € Ra,
which implies that Ir(a) C Ra. Consequently, Ir(a) = Ra.

(2) = (3) If r(a) C r(b) with a,b € R and a ¢ Z,, then Rb C Ir(b) C Ir(a).
Since a ¢ Z,, by (2), Ir(a) = Ra. Hence Rb C Ra.

(3) = (4) Clearly, I(b) + Ra C I(bR N r(a)). Now let € I(bRNr(a)). Then
r(ab) C r(zb). Since ab ¢ Z,., Rxb C Rab by (3). So xb = cab for some ¢ € R.
Hence x — ca € I(b), as required.

(4)= (1) Let a ¢ Z, and f : aR — R be any right R-homomorphism. Clearly,

r(a) Cr(f(a)). So f(a) €lr(f(a)) Clr(a) =1(1RN7(a)) =1(1) + Ra = Ra by (4)
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because al ¢ Z,, i.e., f(a) € Ra. Write f(a) = ca for some ¢ € R. Then we can
define g : Rg — Rp by g(r) = ¢r,r € R. Obviously, g|.r = f. Consequently, R is
right Jep-injective. (]

A ring R is called right p-injective if and only if ir(a) = Ra for all @ € R [8,
Lemma 1.1]. A ring R is called right N PP [15] if for any a € N(R), aR is projective.
Clearly, right PP rings are right NPP. [15, Theorem 2.10] shows that right NPP
rings are right nonsingular. A ring R is called von Neumann regular if a € aRa
for all a € R. Clearly, R is von Neumann regular if and only if R is right pp right
p-injective. A ring R is called ZI if ab = 0 implies that aRb = 0 for all a,b € R.
For example, a reduced ring (that is a? = 0 implies that a = 0 for all a € R) is Z1I.
Clearly, R is a regular ZI ring if and only if R is a strongly regular ring (that is,
a € a®R for all a € R).

Corollary 2.2. (1) If R satisfies one of the following conditions, then R is right
p-injective if and only if R is right Jcp-injective.
(a) R is right nonsingular.
(b) R is right NPP.
(c) R is right PP.
(2) R is von Neumann regular if and only if R is right pp and right Jep-injective.

Corollary 2.3. Let R be ZI right Jep-injective. Then the following conditions are
equivalent.

(1) R is semiprime.

(2) R is strongly reqular.

(8) R is von Neumann regular.

(4) J(R) = 0.

(5) R is reduced.

(6) R is right pp.

Proof. Assume (1). Let a € R and write T = aRNr(a). Then T? = 0 by hypothesis
and so T' = 0. This shows that R is a right nonsingular ring and r(a?) = r(a). So
Ra = Ra? by hypothesis and R = [(0) = [(aR N 7(a)) = Ra ® l(a) because R is a
right Jep-injective ring. Hence R is von Neumann regular and reduced. Certainly,
R is also a right pp ring with J(R) = 0. O

Example 2.4. Let V be a two-dimensional vector space over a field F', the trivial
extension R = T(F,V) = F @V is a commutative, local, artinian ring with J2 = 0

and J = Z,. But R is not a p-injective ring [13]. On the other hand, if z € R
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with ¢ Z,, then x is invertible. So Ir(x) = R = Rx. This implies that R is a
right Jep-injective. Hence there exists a right Jep-injective ring which is not right

p-injective.

Recall that a ring R is right C2 if every right ideal T" which is isomorphic to a
summand of Rp is a summand [13]. In [13], it is shown that right p-injective rings
are right C'2. We can generalize the result to Jep-injective rings. An element a € R

is called right regular if r(a) = 0. [7, Theorem 1] is improved in the next theorem.

Theorem 2.5. Let R be right Jcp-injective. Then:
(1) Any right reqular element of R is left invertible.
(2) Z. C J(R).
(8) Every left or right R-module is divisible.
(4) If P is a reduced principal right ideal of R, then P = eR, where e = > € R
and (1 — e)R is an ideal of R.
(5) R is right C2.
(6) If aR|R,bR|R with aRNbR =0, then (aR ® bR)|R.
(7) The following conditions are equivalent for a a ¢ Z,:
(a) aR is projective.
(b) aR|R.

(c) aR is a Jep-injective module.

Proof. (1) Let ¢ € R such that 7(c) = 0. Then ¢ ¢ Z, and so by Theorem 2.1,
R = Ilr(c) = Re, which proves (1).

(2) If z € Z, and a € R, then r(1 — az) = 0 implies that v(1 — az) = 1 for some
v € R by (1). This proves that z € J(R).

(3) If ¢ is a non-zero-divisor in R, then dc = 1 for some d € R by (1). Now
[(c) = 0 implies that c¢d = 1 and for any right R-module M, M = Mdc C McC M
implies that M = Mc. Similarly, any left R-module is divisible.

(4) Let P be a non-zero reduced principal right ideal. Then P = ¢R for some
c € R. Since 2 ¢ Z,., Ir(c?) = Rc?. Hence r(c) = r(c?) shows that Re = Ir(c) =
Ir(c*) = Rc?. Therefore ¢ = bc? for some b € R, which implies that ¢ = cbe
because P is reduced, whence P is generated by the idempotent e = ¢b. Also, for
any a € R, (ea — eae)? = 0 implies ea = eae, whence eR(1 — e) = 0. Therefore
R(1—¢) C (1 — e)R which establishes the last part of (4).

(5) Assume that aR = eR, where a,e? = ¢ € R. Then a ¢ Z,, so Ra = Ir(a)
by Theorem 2.1. Since aR = eR, by [11, Theorem 1.2], there exists a f2 = f € R
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such that af = a and r(a) = r(f). Hence Ra =Ir(a) = Ir(f) = Rf. Consequently,
aR|R.

(6) Follows from (5).

(7) By (5), we have (a) < (b). Obviously, (¢) = (b) always holds.

(b) = (¢) We only need to show that l,zrr(b) = aRb for each b ¢ Z,.. In fact,
if ac € l,grrr(D), then rr(b) C rr(ac), so ac € lgrr(ac) C lgrr(b) = Rb. Because
aR = eR for some €2 = e € R, ac = eac € eRb = aRb. Hence larTr(b) C aRD
which shows that I,rrr(b) = aRb. |

Example 2.6. Faith and Menal [4] give an example of a right noetherian ring R
in which every right ideal is an annihilator, but which is not right artinian. Thus
R is left Jep-injective. But R is not right C'2, hence it is not right Jep-injective.

Therefore there exists a left Jep-injective ring which is not right Jep-injective.

A ring R is called right FGF if every finitely generated right R-module can be
embedded in a free module. It is an open question whether every right FGF ring
is quasi-Frobenius. The conjecture is known to be true if the ring is right C2 [13].
Hence we derive that if every right FGF ring R is a right Jcp-injective, then R is
quasi-Frobenius.

A ring R is called right Johns if it is right noetherian and every right ideal is
an annihilator. If the matrix ring M, (R) is right Johns for every n > 1, then R
is called strongly right Johns. [13, Theorem 4.6] shows that R is quasi-Frobenius
if and only if R is strongly right Johns and right C2. Hence we have that R is
quasi-Frobenius if and only if R is strongly right Johns and right Jep-injective.

Recall that a ring R is directly finite if uv = 1 in R implies that vu = 1. For
example, semilocal rings are directly finite. Obviously, R is directly finite if and
only if every epimorphism Rr — Rpg is an isomorphism. It is known that (1) if
each monomorphism Rr — Rpg is an isomorphism, then R is a directly finite; (2)
R is directly finite if and only if R/J(R) is directly finite.

Recall that a module Mg is GC2 if N C M with Ng = M implies that N|M.
A ring R is right GC2 if Ri is GC2. Clearly, a right C2 ring is right GC2.

Yigiang Zhou shows that if Mp is GC2 and Mpg is finite dimensional, then
End(Mg) is a semilocal ring.

Corollary 2.7. Let R be a right Jcp-injective ring. Then:
(1) If Ry is of finite Goldie dimensional, then R is semilocal.
(2) If J(R) is nilpotent, then R is right noetherian if and only if R is right

artinian.
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(8) The following conditions are equivalent.
(a) R/J(R) is directly finite.
(b) Every monomorphism Rr — Rpg is an isomorphism.
(¢) R is directly finite.
If every complement right ideal of R is not singular, then the conditions above
are also equivalent to
(d) R/Z, is directly finite.

Proof. (1) Since R is right C2, R is right GC2. Hence R = End(Rp) is semilocal,
because Rp is finite dimensional.

(2) If R is right noetherian, then R is semilocal by (1). Hence R is semiprimary
because J(R) is nilpotent. Consequently, R is right artinian.

(3) (b) = (¢) & (a) and (d) = (c) are trivial.

(¢) = (b) Assume that f : Rg — Rpg is a monomorphism. Since R is right
GC2, Im(f) = eR for some €2 = e because Im(f) = Rp. Write f(1) = a, then
aR = f(R) = eR. Hence a = ea = aba for some b € R with e = ab. Thus ba =1
because r(a) = 0. By (c¢), ab =1, so f(R) = aR = eR = abR = R. This implies
that f is an epimorphism.

(¢) = (d) Let a,b € R such that 1 — ab € Z,. Since R is right Jcp-injective,
1 —ab € J(R) by Theorem 2.7(2). Let ab = 1 + z for some z € J(R). So
ab(1 +z)~! = 1. Since R is directly finite, b(1 + z)"ta = 1. If x ¢ Z,., then there
exists a nonzero right ideal I of R which is maximal with respect to the property
that 71 Nr(x) = 0”. By hypothesis, there exists b € I such that b ¢ Z,. Hence
ab ¢ Z.. Let f: 2bR — R be defined by f(zbr) = br for all » € R. Then f is a
well defined right R-homomorphism. Since R is right Jep-injective, f = ¢, ¢ € R.
Hence b = f(ab) = cxb and so (1 — cx)b = 0. Since cx € J(R), b = 0 which is a
contradiction. Hence = € Z,., which implies that 1 — ba € Z,., so R/Z, is directly
finite. ]

In fact, from the proof of Corollary 2.7(3), we know that every monomorphism
Rpr — Rp is an isomorphism if and only if R is directly finite and right GC?2.

Call a ring R abelian if every idempotent element of R is central. As examples of
abelian rings we have Z1 rings and reduced rings. Clearly, abelian rings are directly
finite. Call a ring I-finite if it contains no infinite set of orthogonal idempotents.
I-finite rings are also directly finite.

In [11], it is proved that if R is right p-injective, then J(R) = Z,.. We do not know
whether the result holds for right Jep-injective. But, from the proof of Corollary

2.7(3), we can obtain the following corollary.
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Corollary 2.8. Let R be a right Jep-injective ring. Then:
(1) If R satisfies one of the following conditions, then every monomorphism
Rr — Rpg is an isomorphism.
(a) R is abelian.
(b) R is I-finite.
(c) R is semilocal.
(2) If each non-zero complement right ideal of R is not contained in Z,, then
(a) J(R) = Z,.
(b) for each a € R\ J(R), there exists a ¢ € R such that the inclusion

r(a) C r(a — aca) is proper.

Call a ring R right mininjective [12] if for each right minimal element k& € R,
Rk = Ir(k). Right p-injective rings are right mininjective. But we don’t know
temporarily whether the result holds for a right Jep-injective ring. Call a ring R
right principally small injective if for any a € J(R), every R-homomorphism from
aR to Rp can be extended to one from Rp into Rp. Clearly, R is right principally
small injective if and only if Ra = Ir(a) for all a € J(R).

Call a ring R right SPP if for any a ¢ Z,., aR is projective.

Call a ring R right PS [10] if each minimal right ideal of R is projective as a
right R-module. Clearly, the following conditions are equivalent for a ring R: (1) R
is right PS. (2) Z,NSoc(Rgr) = 0. (3) Every homomorphic image of a mininjective
right R-module is mininjective. Examples of right PS rings contain right pp and
right universally mininjective [12]. Clearly, R is right universally mininjective if
and only if R is right PS and right mininjective.

Call a ring R right M C2 [13] if each projective minimal right ideal is a summand
in Rr. As examples, we have right mininjective and right C2 rings. In [16], we
show that (1) R is right M C2 if and only if Z,. N Soc(Rgr) = J(R) N Soc(RR). (2)
R is right universally mininjective if and only if R is right PS and right M C2. (3)
If R is a right M C2 I- finite ring, then R = R; X Ry, where R; is semisimple and
every simple right ideal of Ry is nilpotent. Since right C2 rings are right M C2, by
Theorem 2.5, we have: if R is a right Jep-injective I-finite ring, then R = Ry X R,

where R; is semisimple and every simple right ideal of R is nilpotent.

Theorem 2.9. (1) R is right p-injective if and only if R is right Jcp-injective and
right principally small injective.

(2) R is right SPP if and only if every homomorphic image of a right Jcp-
injective R-module is Jcp-injective.

(8) The following conditions are equivalent for a ring R.
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(a) R is right pp.
(b) R is right NPP and right SPP.
(¢) R is right nonsingular and right SPP.
(4) Let R be a right Jcp-injective and right PS ring. Then R is right universally
mininjective, and so R is right mininjective.
(5) Let R be right Jep-injective and S, be essential in Rg. Then the following
conditions are equivalent.
(a) R is right PS.
(b) R is right universally mininjective.
(c) R is semiprimitive.
(d) R is right nonsingular.
(e) R is semiprime.
In this case, R is right p-injective.
(6) Let R be right Jcp-injective and semiperfect with S, essential in Rr. Then
the following conditions are equivalent.
(a) R is right PS;
(b) R is right pp;
(c) R is semisimple.
(7) The following conditions are equivalent for a ring R.
(a) R is von Neumann regular.
(b) R is right nonsingular right SPP and right C2.
(c) R is right nonsingular right SPP and right Jcp-injective.

Proof. (1) (The only if” part) Let R be a right Jep-injective and principally
small injective ring. By Theorem 2.5(2), Z, C J(R). Let a € R. If a ¢ Z,, then
Ir(a) = Ra by Theorem 2.1. If a ¢ Z,, then a € J(R). We claim that Ra = Ir(a).
Ra C Ir(a) is clear. Let = € Ir(a), then r(a) C r(x). Let f : aR — R be defined
by f(ar) = ar. Then f is a well defined right R-homomorphism. Since R is right
principally small injective, there exists a right R-homomorphism g : R — R such
that f(a) = g(a). Hence z = f(a) = g(a) = g(1)a € Ra and so Ir(a) C Ra.

(2) Similar to [15, Theorem 2.10(1)].

(3) Follows from the definitions and [15, Theorem 2.10(2)].

(4) Since R is right Jep-injective, R is right C2 by Theorem 2.5(5). Hence R is
right M C2, and so R is right universally mininjective because R is right PS. Hence

R is right mininjective.
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(5) By (4), we have (a) = (b). Assume that (b) holds, then S, N J(R) = 0.
Hence J(R) = 0 because S, is essential in Rr. So (b) = (¢) = (e) = (a) hold.
Since Z, C J(R), (¢) = (d) = (a) hold.

In this case, by Corollary 1.2, R is right p-injective.

(6) (¢c) = (b) = (a) are trivial. Assume (a). Then R is right p-injective by (5).
So R is a right GPF ring by [11], and then S, = I(J(R)) by [11, Corollary 2.2].
But by (5), J(R) =0, so S, = R. Hence R is a semisimple ring.

(7) Follows from Corollary 2.2. O

Clearly, the ring R in Example 2.4 is not PS. Otherwise, R is a semisimple
ring. In fact, since R is artinian, R is a semiperfect ring, and S, is essential in Rp.
Hence R is a semisimple ring by Theorem 2.9(6). But J(R) = Z, # 0, which is a
contradiction. Hence R is not a P.S ring, and so is not universally mininjective. On
the other hand, we claim that R is not mininjective. In fact, if V = vF @ wF, then
(0,vR) is a minimal right ideal of R, and let 6 : V' — V be a linear transformation
with 6(v) = w. Then (0,2) — (0,6(z)) is an R- linear map from (0,v)R — R
which cannot be extended to R — R because w ¢ vF. So R is not a mininjective

ring. Hence there exists a Jcp-injective ring which is not mininjective.

Example 2.10. The trivial extension R = T(Z, Z3) is a commutative ring with
Z. = J # 0 which is not right C2, so is not right Jep-injective. On the other
hand, R has a simple essential socle, so R is a mininjective ring. So there exists a

mininjective ring which is not Jep-injective.

A ring R is called right quasi-regular if a € aRa for all a ¢ Z,.. Clearly, R is von

Neumann regular if and only if R is right nonsingular and right quasi-regular.

Theorem 2.11. (1) Let R be a right Jcp-injective and a right SPP ring. Then
(a) 21 C J(R) = Z,;
(b) for each a ¢ Z,, a = aba for some b € R. So R/J(R) is von Neumann
regular.
(2) If R is right SPP and Abelian, then N(R) C Z,.
(8) Let R be a right SPP ring. Then the following conditions are equivalent.
(a) R is reduced.
(b) R is abelian right nonsingular.
(¢) R is abelian right NPP.
(4) The following conditions are equivalent for a ring R.
(a) R is right quasi-regular.
(b) R is right Jep-injective and right SPP.
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(¢) Every right R-module is Jep-injective.
(d) Every cyclic right R-module is Jcp-injective.

Proof. (1) First, we show that J(R) C Z,. Otherwise, there exists a a € J(R) such
that b ¢ Z,.. So r(a) = r(e) for some e? = e € R because R is right SPP. Since
R is right Jep-injective, Re = Ir(e) = lr(a) = Ra C J(R). This is a contradiction.
Similarly, we can show that Z; C Z,. By Theorem 2.5, we have Z; C J(R) = Z,.
Next, let a ¢ Z,. Then Ra = Re, so a = ae € aRa. Hence R/J(R) is von Neumann
regular.

(2) If N(R) € Z,, then there exists a € N(R) such that a ¢ Z,. So r(a) = gR,
g>=g€R. Let a” =0 and a" ! # 0. Hence a" ! € r(a) = gR, so a" ! = ga™ !,
Since R is abelian, a"~! = "~ !g = 0, which is a contradiction. So N(R) C Z,..

(3) Follows from (2).

(4) (b) = (a) follows from (1). (¢) = (d) is trivial.

(a) = (¢) Let M be any right R-module, @ € R with a ¢ Z, and f : aR — M
any right R-homomorphism. Since R is right quasi-regular, a = aba for some
be R\ Z.. Let ab= e and f(e) = m, where m € M. Then h : R — M defined
by g(r) = mr,r € R is a right R-homomorphism and g(ar) = mar = f(e)ar =
f(ab)ar = f(aba)r = f(a)r = f(ar), so M is Jep-injective.

(d) = (a). Let a ¢ Z,. By (d), aR is Jep-injective, so the identity map aR — aR

can be extended to one of R into R. Hence a = aba for some b € R. O

Theorem 2.12. Let e be an idempotent of R such that ReR = R and let S = eRe.
Then:

(1) If R is right Jcp-injective, then so is S.

(2) eZ(R)e C Z,(S). Hence if S is right nonsingular, then so is R.

(3) If R is right nonsingular, then so is S.

(4) If R is right SPP, then for any a € S\ Z.(S), there exist an idempotent g
of R such that rs(a) = egeS.

(5) If R is right principally small injective, then so is S.

(6) If R is right quasi-reqular, then so is S.

(7) If R is von Neumann reqular, then so is S.

(8) If R is right p-injective, then so is S.

Proof. (1) Let x € S\ Z,(S). Then = ¢ Z,. Otherwise, there exists an essential
right ideal I of R such that I = 0. Since eRN I # 0, el # 0. Since R = ReR,
el =elR =elReR = eleR, ele # 0. We claim that ele is an essential right ideal
of S. Let K be any nonzero right ideal of S. Then KRNI #0. Let 0 Ay € KRNI
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and let 1 = >°"  aeb;, a;,b; € R. Then y = yl = Y | ya;eb;, so there exists
some 49 € {1,2,---,n} such that ya; e # 0. Since eya;,e = ya;,e € KRa;;e NI C
KNI = Knele, ele is an essential right ideal of S. Since zele = xle = 0,
x € Z.(S). This is a contradiction. Hence x ¢ Z,.. Since R is right Jep-injective,
Irrr(x) = Rx. Now let z € lgrg(z). Then rg(x) C rg(z). Let a € rr(z). Then
za = 0, so 0 = zaa;e = zeaae, i = 1,2,...,n. Hence eaae € rg(x) C rg(z), so
zaa;e = zeaa;e = 0. Thus za = Z?:l zaazeb; = 0, so a € rr(z). This shows that
rr(z) C rr(2). So z € lgrr(2) C lgrr(x) = Rx. Hence z = eze € eRex = Su,
which implies that lgrg(z) € Sz and so lgrs(x) = Sz. Hence S is right Jep-
injective.

(2) By (1), we can easily see that eZ.(R)e = Z. NeRe C Z,.(S). If Z.(S) = 0,
then Z, = RZ,(R)R = ReRZ,(R)ReR = ReZ,(R)eR = 0.

(3) If Z,.(S) # 0, then there exists 0 # « € Z,.(S). Since Z, = 0, there exists
a nonzero right ideal I of R such that rg(z) NI = 0. If I # 0, then ele # 0, so
eleNrg(x) #0. Let 0 £y € eleNrg(x) and let y = ez,z € I. So xz = xez =
xy = 0 and then 0 # z € rg(x) N I, which is a contradiction. Hence zI = 0, so
I Crr(x) NI =0, which is also a contradiction. Thus Z,.(S) = 0.

(4) Let a ¢ Z,.(S). By (2), a ¢ Z,. Hence rr(a) = gR, g*> = g € R by hypothesis.
So rg(a) = egeS.

(5) Tt is trivial.

(6) Let a € S with a ¢ Z,.(S). By (2), a ¢ Z.. So a = aba for some b € R.
Hence a = aebea = a(ebe)a, where ebe € S and so S is right quasi-regular.

(7) Follows from (3) and (6).

(8) Follows from (1), (5) and Theorem 2.9(1). O

The following theorem is a generalization of [11, Theorem 1.1].

Theorem 2.13. Let R be a right Jep-injective ring, and let a,b € R with b ¢ Z,.
Then:

(1) If bR embeds in aR, then Rb is an image of Ra.

(2) If aR is an image of bR, then Ra embeds in Rb.

(8) If bR = aR, then Ra = Rb.

(4) If K is a simple projective right ideal of R, then RK is the homogenous
component of Sy containing K.

(5) If A, B are right ideals of R with AN (B+ Z,) =0 and A is an ideal of R,
then Homg(Ag, Br) = 0.



12 WEI JUNCHAO

Proof. (1) Let 0 : bR — aR be a monomorphism. Since R is right Jep-injective
and b ¢ Z,, we can let 0 = v-,v € R. Then vb = au,u € R, so define ¢ : Ra — Rb
by ¢(ra) = rau = rvb, then ¢ is a well defined left R-homomorphism. Since vb ¢ Z,.
and r(vb) = r(b), Rb = lr(b) = lr(vb) = Rub. Hence, clearly, ¢ is epic.

(2) Let 0 : bR — aR be epic, and let v,u and ¢ be as in (1). Write a = o(bs) =
vbs,s € R. Then ¢(ra) = 0 gives 0 = rau = rvb, whence ra = rvbs = 0. Hence ¢
is monic.

(3) Follows from the proof of (1) and (2).

(4) If K = kR where k € R and 0 : K — S is an R- isomorphism, where S C R,
then r(k) = r(o(k)). So Rk = lr(k) = Ir(o(k)) = Ro(k) because k ¢ Z,. Hence
S =o(k)R C RER = RK, so the K— component is in RK. The other inclusion
always holds.

(5) If there exists a 0 # f € Hompg(Agr, Br), then there exists 0 # a € A such
that f(a) # 0. Then f(a) = va where v € R, because AN Z, = 0. Since A
is an ideal, va € A. Hence f(a) € AN B = 0, which is a contradiction. Hence
Homp(Agr, Br) = 0. ]

3. Finiteness conditions

In [3], a right (left) annihilator M of a ring R is called maximal if for any right
(left) annihilator N with M C N, either N = M or N = R. In this case, M = r(a)
(I(a)) for some 0 # a € R.

Using the idea of [3], we start with the following theorem.

Theorem 3.1. Let R be a semiprime right Jcp-injective ring whose complement
right ideals are non-small. Then every mazimal right (left) annihilator of R is a

mazimal right (left) ideal of R generated by an idempotent.

Proof. Let L be a maximal right annihilator, then by [3, Theorem 3.1], there exists
0 # a € R such that

(1) L=r(a); (2) r(a) =r(y) for every 0 #y € Ra; (3) Z, N Ra =0.

Hence, there exists a non-zero complement right ideal I of r(a) such that r(a)& I
is essential in Rr. Then, by hypothesis, there exists 0 # b € I such that b ¢ Z,.
and ab # 0. Since r(ab) = r(b), ab ¢ Z,. Hence Rb = lr(b) = Ir(ab) = Rab. Write
b=cab, c € R. Then b € r(a — aca). But b ¢ r(a) and hence a = aca. Let d = ca,
by [3, Theorem 3.1], L = r(a) = r(d) = eR, where e = 1 — d, d* = d.

Now, we claim that L is a maximal right ideal of R. Similar to [3, Theorem
3.1}, we only need to show that dRd is a division ring. In fact, we can assume
that @ = d, if 0 # = € dRd, then r(z) = r(d) by (2). Hence, z ¢ Z, by (3), so,
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Rz =lIr(z) = Ir(d) = Rd. Write d = uz where u € R. Then d = d? = dux = dudz

because x = dz. That is, dRd is indeed a division ring. (]

It is well known that if R is semiprime, then S, = .S;. Hence from Theorem 3.1,

we have the following result.

Corollary 3.2. Let R be a right Jcp-injective ring whose complement right ideals
are non-small. Then the following hold.

(1) If R is semiprime, then R contains a mazimal right (left) annihilator if and
only if S = S; # 0.

(2) If R is prime and contains a mazximal right (left) annihilator, then R is left

and right primitive and left and right nonsingular ring. So R is right p-injective.

Proof. (1) It is trivial.

(2) Since R is prime, R is left and right PS. Hence Z,. N S, = Z;NS; =0, so
Z; = Z, = 0 because 0 # S, = 5 is an essential left and right ideal. Hence R is
left and right nonsingular. Let kR be a minimal right ideal of R. Then R/r(k) is a
faithful simple right R-module and hence R is right primitive. Similarly, R is left

primitive. O

Let R be a ring and let S be an ideal of R such that R/S satisfies ACC' on right
annihilators. If Y;,Ys,--- are subsets of I(S), then [11, Lemma 2.1] shows that
there exists n > 1 such that 7(Y,41Y, - - Y2Yy) = (Y, --- Y2Y7). The following

theorem is similar to [11, Theorem 2.2].

Theorem 3.3. Let R be a right Jcp-injective ring whose complement right ideals
are non-small. If R/S, satisfies ACC' on right annihilators, then
(1) J(R) is nilpotent;

(2) R is semiprime if and only if R is semiprimitive.

Proof. (1) First, if I is a complement right ideal of R, then I € J(R). Since
R is right Jep-injective, Z, C J(R). So I € Z,, by the proof of (¢) = (d) of
Corollary 2.7(3), J(R) = Z,. Hence J(R)S, = Z.S. = 0. Let aj,as,--- be
given in J(R) C I(S,). We have r(anan—1---a1) = r(apt1anan_1 - a1) for some
n > 1. This implies that a,an—_1 - - a1 RNr(ap+1) =0, S0 apan,—1 - - -a; = 0 because
ant1 € J(R) = Z,. Hence J(R) is left T—nilpotent, and so (J(R) + Sy)/ Sy is left
T— nilpotent. But R/S, has ACC on right annihilators. Hence (J(R) + S,.)/S, is
nilpotent. Then there exists an integer m such that J™ C S,., and so J?>™ C JS, =
0. (]
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[1, Remark 1] conjecture that every flat right R-module is finitely projective if
and only if the ascending chain r(a1) € r(aza1) € r(aszaga;) € - - - terminates for
every infinite sequence ay, ag, as, ... of R. But [17] has answered this conjecture in
the negative. However, the following Theorem gives an affirmative answer to this
conjecture for right Jep-injective ring. On the other hand, it is also a generalization
of [3, Theorem 3.4].

Theorem 3.4. Let R be a right Jep-injective ring whose complement right ideals
are non-small. Then the following are equivalent.

(1) R is right perfect.

(2) Every flat right R-module is finitely projective.

(8) Every flat right R-module is singly projective.

(4) The ascending chain r(a;) € r(aza1) € r(azazay) C - - terminates for every

infinite sequence ai,as,as, ... of R.

It is well known that Z, is nilpotent for any ring R with ACC on right annihi-

lators.
In [3], Chen and Ding show that if Z, # 0 and the ascending chain r(a;) &
r(agay) € r(agaza;) € - - - terminates for every infinite sequence aq, as, as, ... of R,

then there exists a 0 # b € Z,. such that r(b) = r(y) for every 0 # y € Rb. Hence

we have the following corollary.

Corollary 3.5. Let R be a right Jcp-injective ring whose complement right ideals
are non-small. Then the following hold.

(1) If R satisfies ACC on right annihilators, then R is semiprimary.

(2) If R is semiprime and the ascending chain r(a1) € r(agay) € r(agaza;) €
-+ - terminates for every infinite sequence ay,as,as, ... of R, then R is a semisimple

artintan ring.

Proof. (1) By Theorem 3.4, R/J(R) is semisimple artinian. Hence R is semipri-
mary because J(R) = Z, is nilpotent.

(2) If Z, # 0, then there exists a 0 # b € Z, such that r(b) = r(y) for every
0 # y € Rb. Since R is semiprime, there exists a 0 # ¢ € R such that bcb # 0.
Hence r(b) = r(bcb). Consequently, be is not nilpotent. But Z,. = J(R) is right T—
nilpotent, which is a contradiction. Hence J(R) = Z,, = 0 and by Theorem 3.4, R

is semisimple artinian. O

Call a left ideal L of a ring R left weakly essential, if for all 0 # a € R with
a ¢ Z., RaN L # 0. Clearly, an essential left ideal is left weakly essential.
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A ring R is called right Kasch if every simple right modules can be embedded in
R, or equivalently if (M) # 0 for every maximal right ideal M of R.

The following theorem is similar to [11, Theorem 2.4].

Theorem 3.6. Let R be a right Jcp-injective ring. Then:
(1) If R is right Kasch, then I(J) is left weakly essential.
(2) If R is semiperfect, then R is a right Kasch ring if and only if S, is left

weakly essential.

Proof. (1) Let 0#b € R, b ¢ Z, and choose M maximal in bR. Let o : bR/M —
Rp is a monomorphism. If v : bR — R is defined by v(z) = o(x + M), then v = a-
where a € R because b ¢ Z,.. So ab=~v(b) =o(b+ M) # 0. But abJ = o(bJ) =0
because (bR/M)J = 0. Therefore 0 # ab € RbNI(J), as required.

(2) If R is right Kasch, then [(J) is left weakly essential by (1). Since R is a
semiperfect ring, S, = I(J). Hence S, is left weakly essential.

Conversely, we assume that S, is left weakly essential. Let M be a maximal
right ideal of R. Then there exists a €2 = e € R such that 1 —e € M and
eRNM C J because R is a semiperfect ring. Hence S, C I(J) C l(eRN M), and so
l(eRN M) is left weakly essential by hypothesis. Since e ¢ Z,., 0 # ReNl(eRNM) =
I({(1—e)R)Nl(eRNM) =1((1—e)R+ (eRNM)) =1(M). This implies that R is
right Kasch. O

Call a right R-module M right nil-injective [15] if for each nilpotent element
a € R, the right R-homomorphism from aR to M can be extended to one from R
into M. If R is nil-injective as a right R-module, then we call R a right nil-injective

ring.

Theorem 3.7. Let R be a right Jcp-injective ring. Assume that every simple
singular right R-module is right nil-injective. Then the following hold.

(1) R is right p-injective, and so R is semiprimitive right nonsingular.

(2) If R is right SPP, then R is von Neumann regular.

(8) Z; = 0.

Proof. First, we show that Z,. = 0. If not, then there exists 0 # b € Z,. such that
b?> = 0. We claim that Z, + r(b) = R. Otherwise, there exists a maximal essential
right ideal M of R such that Z, + r(b) C M, then R/M is a right nil-injective
R-module. Define f : bR — R/M by f(br) =r+ M for all r € R. Clearly, f is a

well defined right R-module homomorphism. Hence there exists a a € R such that
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1—abe M. Sol € M because ab € Z, C M, which is a contradiction. Hence
Z, + r(b) = R. Since R is right Jcp-injective, Z, C J(R) by Theorem 2.5. So
J(R)+r(b) = R. This implies that r(b) = R and so b = 0, which is a contradiction.
Hence Z, = 0. By Corollary 2.2, R is right p-injective. By [11, Theorem 2.1],
J(R) =0.

(2) This is an immediate consequence of Theorem 2.9(7).

(3) If Z; # 0, then there exists 0 # b € Z; such that > = 0. We show that
Z,+7r(b) = R. Otherwise, there exists a maximal right ideal M such that Z;+r(b) C
M. If M is not an essential right ideal of R, then M = r(e), where ¢? = ¢ € R. If
be # 0, then beR = eR as right R-module. By Theorem 2.5(5), beR = gR, where
9> =g € R, s0o g € Z; because beR C Z;. This is a contradiction. So be = 0.
Then e € r(b) C M = r(e), which is impossible. Thus M is an essential right
ideal of R, so R/M is nil-injective R-module. Similar to the proof of (1), there
exists a € R such that 1 —ab € M. So 1 € M because ab € Z; C M, which is a
contradiction. Hence Z; + r(b) = R. Let 1 =z +y,z € Z;,y € r(b). Then b = bx
and so b(1 —x) = 0. Since z € Z; and I(z) NI(1 —x) =0, I(1 —z) = 0. This shows
that b = 0, which is a contradiction. So Z; = 0. O

4. Weakly injectivity

Let E(M) be an injective hull of M. M is called right weakly injective if for any
finite generated submodule N C E(M), there exists Xgp =2 M and Ngp C Xp C
E(M). Clearly, right injective rings are right weakly injective, but the converse is

not true in general.

Lemma 4.1. Let R be a right Jcp-injective ring. If Ry is essential in X g, where
XR = RR, then X = R.

Proof. Let f : Rg — Xpg be the isomorphism and f(1) = b € X. Then bR =
Im(f) =X. Since 1 € R C X, let 1 = bu,u € R. Hence Rg = 1R = buR and
r(u) = 0. Since R is right Jcp-injective, by Theorem 2.5(1), there exists d € R such
that du = 1. Let e = ud. Then e = e and uR = eR. Hence R = buR = beR. It is
clear that X = bR = b(eR®(1—e)R) = beR+b(1—e)R. If z € beRNb(1—e)R, then
there exist 71,72 € R such that z = ber; = b(1 —e)r, so f~1(x) = er; = (1 —e)ra.
Hence f~'(x) =0 and then x =0, s0 X =bR =beRDb(1 —e)R = R®b(1 —e)R.
Since Rp is essential in Xg, b(1 —e)R =0, and so X = beR = R.

([l

The following theorem is a generalization of [11, Theorem 1.3].
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Theorem 4.2. A ring R is right self-injective if and only if R is right Jcp-injective

and Rp is weakly injective.

Proof. We only need to show that E(Rg) C R. For each a € E(Rg), since
R+ aR C E(RR), there exists X C F(Rg) such that R+ aR C X and Xg & Rpg.
Since R is right Jep-injective, X = R by Lemma 4.1. Hence R = E(RRg).

(]

Call a ring R right coflat if for each finitely generated right ideal I of R, every
homomorphism from I to R can be extended to the one of R into R. Call R right
F P-injective if for each finitely presented right ideal I of R, every homomorphism
from Ir to R can be extended to the one of R to R. Right F'P-injective rings are

right coflat rings and right self-injective rings are right F'P-injective rings.

Corollary 4.3. The following conditions are equivalent for a right weakly injective
ring R.
(1) R is right self-injective.
(2) R is right p-injective.
(3) R is right coflat.
(4)
(5)

R is right F P-injective.
R s right Jcp-injective.

Call a ring R right np-injective, if for any non-nilpotent element ¢ of R and any
right R-homomorphism ¢ : ¢cR — R, there exists m € R such g(ca) = mca for all
a € R. An important source of right np- injective rings is given by Yue Chi Ming
[8], which is a generalization of right p- injective ring.

Call a ring R right weakly np-injective, if for any non-nilpotent element ¢ of R,
there exists a positive integer number n such that for any right R-homomorphism
g : "R — R, there exists m € R such g(c"a) = mc"a for all a« € R. Evidently,
right weakly np-injective rings are the generalization of right np-injective and right
Y J-injective.

Call a ring R right Gnp-injective, if for any non-nilpotent element ¢ of R, Ir(c) =
Rc® X, where X, is a left ideal of R. Obviously, right Gnp-injective rings are the
generalization of right np-injective and right AP-injective.

Call a ring R right weakly Gnp-injective, if for any non-nilpotent element c of R,
there exists a positive integer number n such that ir(c") = Re™ @ X, where X, is
a left ideal of R. Obviously, right weakly Gnp-injective rings are the generalization

of right weakly np-injective and right AG P-injective [14].
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Lemma 4.4. Let R be a right weakly Gnp-injective ring. If Ry is essential in Xg,
where Xr = Rg, then X = R.

Proof. Let f : R — Xg be the isomorphism and f(1) = b € X. Then bR =
Im(f) = X. Since 1 € R C X, let 1 = bu,u € R. Hence R = 1R = buR and
r(u) = 0. Since R is right weakly Gnp-injective, there exists an n > 1 such that
Ir(u™) = Ru™®X, where X, is a left ideal of R because u is a non-nilpotent element.
Hence R = 1(0) = Ir(u™) = Ru™ & X,, because r(u) = 0. Write Ru™ = Re,e?> = e €
R, then v" = u"e = u"du™ where e = du”. So 1 — du™ € r(u") = r(u) = 0, this
implies that vu = 1, where v = du™~', Then, similar to the proof of Lemma 4.1,

we can complete the proof. O
Similar to Theorem 4.2, we have the following theorem.

Theorem 4.5. A ring R is right self-injective if and only if R is right weakly Gnp-

injective and Rp is weakly injective.

Corollary 4.6. The following are equivalent for a right weakly injective ring R.
(1) R is right self-injective.

(2) R is right Y J-injective.

(3) R is right AP-injective.

(4) R is right AGP-injective.

(5) R is right np-injective.

(6) R is right Gnp-injective.

(7) R is right weakly np-injective.

(8) R is right weakly Gnp-injective.

5. On a Theorem of Camillo

Camillo [2], Nicholson and Yousif [11] and Chen and Ding [3] have studied p-
injective rings and Y J-injective rings. In this section, we extend their works.

An element u € R is said to be right uniform if v # 0 and «R is a uniform right
ideal of R.

Theorem 5.1. Let R be a right Jcp-injective ring. If u € R is right uniform with
u ¢ Zy, then My = {x € R|uRNr(x) # 0} is a mazimal left ideal containing I(u).

Proof. Since uR is uniform, M, is a left ideal. Clearly, [(u) C M,, # R. If a ¢ M,,
then au # 0 because uR N r(a) = 0. Since u ¢ Z, and r(u) = r(au), au ¢ Z,.

Hence Ru = lr(u) = lr(au) = Rau because R is right Jcp-injective, write u = cau
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where ¢ € R. So 1 —ca € l(u) C M,,. Hence R = Ra + M,,, which implies that M,

is maximal. O

Corollary 5.2. If R is a right Jcp-injective right uniform ring, then R is local and
Z, CJ(R) = Z,

Proof. By hypothesis, Z, = {z € R|r(x) is essential in R} = {x € R|r(z) #
0} ={z € R|1RNr(x) # 0} = M; D J(R) because 1 ¢ Z,. Hence J(R) = Z, = My

is a maximal left ideal. So R is local. O

Corollary 5.3. Let R be right Jep-injective and left Kasch. Assume that every
nonzero right ideal contains a uniform right ideal, which is not contained in Z,.
Then every mazimal left ideal M has the form M = M, for some right uniform

element u.

Proof. Let M be a maximal left ideal. Then r(M) # 0 because R is left Kasch.
By hypothesis, there exists a uniform right ideal uR such that uR C r(M) and
ué¢ Z.. So M =1r(M) Cl(u) C M,. Hence M = M,,. O

Similar to [11, Lemma 3.1 and Theorem 3.1], we can obtain the following theo-

rems.

Theorem 5.4. Let R be right Jcp-injective, and assume that Rby®Rby®- - -BRb,, C
R is a direct sum with (Rby @ Rby @& --- @ Rb,) N Z,. =0. Then:
(1) Any R-linear map o : byR+bs R+ ---+ b, R — R extends to a: R — R.
(2) Write S = bR+ bsR+ -+ bR and T = byy1R + b 2R+ -+ + by R,
1<k<mn, then I(SNT)=1(S)+U(T).

Theorem 5.5. If R is right Jcp-injective and ©;>1B; is a direct sum of ideals of
R with (®;>1B;) N Z, = 0, then AN (P;>1B;) = ®;>1(AN B;) for any ideal A of
R.

Theorem 5.6. Let R be right Jcp-injective and let W = u1 R®- - -Bu, R be a direct
sum of uniform right ideals u; R of R with WNZ,. =0. If M C R is a maximal left
ideal that is not of the form M, for any right uniform element u, then there exists
m € M such that r(1 —m) N W is essential in M.

Since division rings are von Neumann regular, every module over division rings
is p-injective. Hence every right module over division rings is right Jcp-injective.
We now characterize division rings in terms of the following notion: R is called a
right F-ring if, for any maximal right ideal M of R and any b € M, R/bM is a flat

right R-module. Division rings are right F-rings.
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Theorem 5.7. The following are equivalent for a semiprime right uniform ring R.
(1) R is a division ring;
(2) R is a right p-injective right F-ring;
(8) R is a right Y J-injective right F-ring;
(4) R is a right Jep-injective right F-ring.

Proof. It is obvious that (1) implies (2), which, in turn, implies (3) and (4).
Assume (4). Since R is a right uniform ring and right Jep-injective, by Corollary
5.2, R is a local ring with Z, = J(R). Since R is a right F- ring, J(R)? = 0 and so

J(R) = 0 because R is a semiprime ring. Hence R is a division ring. O

R is called a right CAM-ring if, for any maximal essential right ideal M of R
(if it exists) and for any right subideal I of M which is either a complement right
subideal of M or a right annihilator ideal in R, I is an ideal of M.

Right C AM-rings generalize semisimple artinian. [8] shows that semiprime right
CAM-ring R is either semisimple artinian or reduced. If R is also right Jep-
injective, then R is either semisimple artinian or strongly regular ring. We yield

the following theorem.

Theorem 5.8. The following are equivalent for a ring R.

(1) R is either a semisimple artinian or a strongly regqular ring.

(2) R is a semiprime right C AM -ring whose singular simple right modules are
flat.

(8) R is a semiprime right Jcp-injective, right C AM —ring.

(4) R is a semiprime right CAM -ring, M ERT ring whose singular simple right

R-modules are Jcp-injective.

Proof. (1) = (i) where ¢ = 2,3, 4 are obvious.

(2) = (1) Assume (2). If R is not a semisimple artinian ring, then R is reduced.
Let 0 #a € R. If aR®r(a) # R, then aR®r(a) C M for some maximal right ideal
M of R. If M is not an essential right ideal of R, then M = eR, where 2 = ¢ € R.
Because R is reduced, ae = ea = 0 and e € r(a) C M = r(e), a contradiction.
Hence M is an essential right ideal of R and so R/M is a singular simple right
R-module. By (2), R/M is flat, then there exists m € M such that a« = ma. But
then a = am, because R is reduced. Now we obtain 1 —m € r(a), and so 1 € M, a
contradiction. Hence aR @ r(a) = R and then R is a strongly regular ring.

(3) = (1) If R is not a semisimple artinian ring, then R is reduced. By Corollary

1.5, R is a regular ring, But R is an abelian ring, so R is a strongly regular ring.
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(4) = (1) We can directly assume that R is reduced. So R is a right nonsingular
ring. Let 0 # a € R. If aR @ r(a) # R, then aR @ r(a) C M for some maximal
essential right ideal M of R. Hence R/M is a singular simple right R-module.
By hypothesis, R/M is right Jep-injective. Then there exists a ¢ € R such that
1—ca € M. But then 1 € M, because R is a M ERT ring and M is an ideal. It is

a contradiction. Hence aR @ r(a) = R and then R is a strongly regular ring. O

A ring R is called right CM if, for any maximal essential right ideal M of R,
every complement right subideal is an ideal of M. [8, Proposition 3] shows that
simple projective right module over right CM ring is injective.

A ring R is right finitely embedded if, Soc(Rg) is finite generated and right
essential in Rp. Note that a right finitely embedded right PS ring need not be
semiprime. We conclude the paper with a few characteristic properties of semisim-

ple artinian rings.

Theorem 5.9. The following are equivalent for a ring R.
(1) R is a semisimple artinian ring.
(2) R is a right CM, right finitely embedded and right PS ring.
(8) R is a semiprime, right Jep-injective and left or right Goldie ring.

Proof. Clearly, (1) = (2) and (3).

(2) = (1) Since R is a right PS right finitely embedded ring, Soc(Rg) is a
semisimple projective right R-module. Because R is a right CM ring, Soc(Rg) is
an injective right R-module. Hence Soc(Rg) = eR, where € = ¢ € R. But then
Soc(RRr) = R, because Soc(Rp) is essential in Rp. Hence R is semisimple artinian.

(3) = (1) Assume (3). Then R has a left (or right) fraction ring @, and Q is a
semisimple artinian ring. If Q is a left fraction ring, then for every x € Q, z = a~'b,
where a,b € R and I(a) =7(a) = 0,80 a ¢ Z,. Since R is a right Jep-injective ring,
there exists ¢ € R such that ca = 1 and then ac = 1. Hence a~! € R and so = € R.

Thus R = @ is a semisimple artinian ring. (I

References

[1] G. Azumaya, Finite splitness and finite projectivity, J. Algebra, 106 (1987),114-
134.

[2] V. Camillo, Commutative ring whose principal ideals are annihilators, Port.
Math., 46 (1)(1989), 33-37.

[3] J.L. Chen and N.Q. Ding, On General principally injective rings, Comm. Al-
gebra, 27 (1999), 2097-2116.



22

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

WEI JUNCHAO

C. Faith and P. Menal, A counter example to a conjecture of Johns, Proc.
Amer. Math. Soc., 116 (1992), 21-26.

J.Y. Kim, N.K. Kim and S.B. Nam, Some comments on simple singular GP-
injective modules, Kyungpook Math. J., 41 (2001), 23-27.

N.K. Kim, S.B. Nam and J.Y. Kim, On simple singular GP-injective modules,
Comm. Algebra, 27(5) (1999), 2087-2096.

R. Yue Chi Ming, On annihilator ideals, Math. J. Okayama Univ., 19 (1976),
51-53.

R. Yue Chi Ming, On Quasi-Frobeniusean and artinian rings, Publications De
L-institut Math ématique, 33(47) (1983),239-245.

S.B. Nam, N.K. Kim and J.Y. Kim, On simple GP-injective modules, Comm.
Algebra, 23(14) (1995), 5437-5444.

W .K. Nicholson and J.F. Watters, Rings with projective socle, Proc. Amer.
Math. Soc., 102 (1988), 443-450.

W.K. Nicholson and M.F. Yousif, Principally injective rings, J. Algebra, 174
(1995), 77-93.

W.K. Nicholson and M.F. Yousif, Mininjective rings, J. Algebra, 187 (1997),
548-578.

W.K. Nicholson and M.F. Yousif, Weakly continuous and C2-rings, Comm.
Algebra, 29(6) (2001), 2429-2466.

S. Page and Y. Zhou, Generalization of principally injective ring, J. Algebra,
206 (1998), 706-721.

J.C. Wei and J.H. Chen, Nil-injective rings, Int. Electron. J. Algebra, 2 (2007),
1-21.

J.C. Wei, The rings characterized by minimal left ideal, Acta Math. Sin.(Engl.
Ser.), 21(3) (2005), 473-482.

S.L. Zhu, On rings over which every flat left module is finitely projective, J.
Algebra, 139 (1991), 19-27.

‘Wei Junchao

School of Mathematics Science,

Yangzhou University,
Yangzhou,225002, Jiangsu,
P. R. China

e-mail: jeweiyz@yahoo.com.cn



