INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA VOLUME 6 (2009) 1-22

JCP-INJECTIVE RINGS

Wei Junchao

Received: 3 July 2007; Revised: 28 May 2009 Communicated by W. Keith Nicholson

ABSTRACT. As a generalization of right *p*-injective rings, we introduce the notion of right *Jcp*-injective rings, i.e. for any right nonsingular element *c* of *R* and any right *R*-homomorphism $g: cR \to R$, there exists $m \in R$ such that g(ca) = mca for all $a \in R$. Some important results which are known for right *p*-injective rings are shown to hold for right *Jcp*-injective rings.

Mathematics Subject Classification (2000): 16E50, 16D30

Keywords: right *Jcp*-injective ring, annihilator, *GC*2 ring, weakly injective ring, von Neumann regular ring.

1. Introduction and Preliminaries

Throughout this paper, R denotes an associative ring with identity, and all modules are unitary. We write $_RM$ and M_R to indicate a left and right R-module, respectively. For any nonempty subset X of a ring R, r(X) and l(X) denote the right annihilator of X and the left annihilator of X, respectively. If $X = \{a\}$, we usually abbreviate it to l(a) and r(a). As usual, J(R) = J, $Z_l(Z_r)$, $S_l(S_r)$ and N(R) stand for the Jacobson radical of R, the left (right) singular ideal of R and the left (right) socle of R and the set of all nilpotent elements of R, respectively. N|M will mean that submodule N is a direct summand of M.

A ring R is called right Jcp-injective if for each $a \in R \setminus Z_r$, any homomorphism from aR to R can be extended to one of R into R. Clearly, right p-injective rings are right Jcp-injective. In section 2, Theorem 2.1 gives some characterizations of right Jcp-injective rings. Example 2.4 points out that there exists a right Jcp-injective ring which is not right p-injective. In this section, we also consider some conditions for a right Jcp-injective ring being right p-injective.

(von Neumann) regular rings have been studied extensively by many authors (for example, [5], [6] and [9]). It is well known that a ring R is regular if and only if every

Project supported by the Foundation of Natural Science of China(10771182) and (10771183).

right R-module is p-injective. In Theorem 2.9, we give some new characterizations of von Neumann regular rings.

Call a right *R*-module *M* nil-injective [15] if for each $a \in N(R)$, any right *R*-homomorphism $aR \to M$ can be extended to $R \to M$. If *R* is nil-injective as a right *R*-module, then we call *R* a right nil-injective ring. Theorem 3.7 shows that if *R* is a right *Jcp*-injective ring such that every simple singular right *R*-module is nil-injective, then *R* is a right *p*-injective, semiprimitive and left and right nonsingular ring.

In Section 4, we consider right weakly injective rings and obtain the following equivalent conditions for a right weakly injective ring R: (1) R is right self-injective; (2) R is right *Jcp*-injective; (3) R is right weakly *Gnp*-injective. This generalizes many known results which appears in [11] and [3].

In Section 5, we give some characterizations of division rings and semisimple artinian rings.

2. Right *Jcp*-injective Rings

A right *R*-module *M* is *Jcp*-injective if for each $a \in R \setminus Z_r$, every right *R*-homomorphism from aR to *M* can be extended to one of *R* into *M*. If R_R is *Jcp*-injective, we call *R* is a right *Jcp*-injective ring. Clearly, right *p*-injective rings are right *Jcp*-injective.

Theorem 2.1. The following conditions are equivalent for a ring R.

- (1) R is right Jcp-injective.
- (2) lr(a) = Ra for each $a \notin Z_r$.
- (3) $r(a) \subseteq r(b), a, b \in R$ and $a \notin Z_r$ implies that $Rb \subseteq Ra$.
- (4) $l(bR \cap r(a)) = l(b) + Ra$ for $a, b \in R$ with $ab \notin Z_r$.

Proof. (1) \Rightarrow (2). Clearly, $Ra \subseteq lr(a)$ for all $a \notin Z_r$. Now let $x \in lr(a)$ and $f: aR \to R$ defined by f(ar) = xr. Then f is a well defined right R-homomorphism because $r(a) \subseteq r(x)$. By (1), f = c for some $c \in R$. Hence $x = f(a) = ca \in Ra$, which implies that $lr(a) \subseteq Ra$. Consequently, lr(a) = Ra.

(2) \Rightarrow (3) If $r(a) \subseteq r(b)$ with $a, b \in R$ and $a \notin Z_r$, then $Rb \subseteq lr(b) \subseteq lr(a)$. Since $a \notin Z_r$, by (2), lr(a) = Ra. Hence $Rb \subseteq Ra$.

 $(3) \Rightarrow (4)$ Clearly, $l(b) + Ra \subseteq l(bR \cap r(a))$. Now let $x \in l(bR \cap r(a))$. Then $r(ab) \subseteq r(xb)$. Since $ab \notin Z_r$, $Rxb \subseteq Rab$ by (3). So xb = cab for some $c \in R$. Hence $x - ca \in l(b)$, as required.

 $(4) \Rightarrow (1)$ Let $a \notin Z_r$ and $f : aR \to R$ be any right *R*-homomorphism. Clearly, $r(a) \subseteq r(f(a))$. So $f(a) \in lr(f(a)) \subseteq lr(a) = l(1R \cap r(a)) = l(1) + Ra = Ra$ by (4) because $a1 \notin Z_r$, i.e., $f(a) \in Ra$. Write f(a) = ca for some $c \in R$. Then we can define $g: R_R \to R_R$ by $g(r) = cr, r \in R$. Obviously, $g|_{aR} = f$. Consequently, R is right *Jcp*-injective.

A ring R is called right p-injective if and only if lr(a) = Ra for all $a \in R$ [8, Lemma 1.1]. A ring R is called right NPP [15] if for any $a \in N(R)$, aR is projective. Clearly, right PP rings are right NPP. [15, Theorem 2.10] shows that right NPP rings are right nonsingular. A ring R is called von Neumann regular if $a \in aRa$ for all $a \in R$. Clearly, R is von Neumann regular if and only if R is right pp right p-injective. A ring R is called ZI if ab = 0 implies that aRb = 0 for all $a, b \in R$. For example, a reduced ring (that is $a^2 = 0$ implies that a = 0 for all $a \in R$) is ZI. Clearly, R is a regular ZI ring if and only if R is a strongly regular ring (that is, $a \in a^2R$ for all $a \in R$).

Corollary 2.2. (1) If R satisfies one of the following conditions, then R is right p-injective if and only if R is right Jcp-injective.

- (a) R is right nonsingular.
- (b) R is right NPP.
- (c) R is right PP.
- (2) R is von Neumann regular if and only if R is right pp and right Jcp-injective.

Corollary 2.3. Let R be ZI right Jcp-injective. Then the following conditions are equivalent.

- (1) R is semiprime.
- (2) R is strongly regular.
- (3) R is von Neumann regular.
- (4) J(R) = 0.
- (5) R is reduced.
- (6) R is right pp.

Proof. Assume (1). Let $a \in R$ and write $T = aR \cap r(a)$. Then $T^2 = 0$ by hypothesis and so T = 0. This shows that R is a right nonsingular ring and $r(a^2) = r(a)$. So $Ra = Ra^2$ by hypothesis and $R = l(0) = l(aR \cap r(a)) = Ra \oplus l(a)$ because R is a right *Jcp*-injective ring. Hence R is von Neumann regular and reduced. Certainly, R is also a right pp ring with J(R) = 0.

Example 2.4. Let V be a two-dimensional vector space over a field F, the trivial extension $R = T(F, V) = F \oplus V$ is a commutative, local, artinian ring with $J^2 = 0$ and $J = Z_r$. But R is not a p-injective ring [13]. On the other hand, if $x \in R$

with $x \notin Z_r$, then x is invertible. So lr(x) = R = Rx. This implies that R is a right *Jcp*-injective. Hence there exists a right *Jcp*-injective ring which is not right *p*-injective.

Recall that a ring R is right C2 if every right ideal T which is isomorphic to a summand of R_R is a summand [13]. In [13], it is shown that right p-injective rings are right C2. We can generalize the result to Jcp-injective rings. An element $a \in R$ is called right regular if r(a) = 0. [7, Theorem 1] is improved in the next theorem.

Theorem 2.5. Let R be right Jcp-injective. Then:

- (1) Any right regular element of R is left invertible.
- (2) $Z_r \subseteq J(R)$.
- (3) Every left or right R-module is divisible.

(4) If P is a reduced principal right ideal of R, then P = eR, where $e = e^2 \in R$ and (1 - e)R is an ideal of R.

- (5) R is right C2.
- (6) If aR|R, bR|R with $aR \cap bR = 0$, then $(aR \oplus bR)|R$.
- (7) The following conditions are equivalent for a $a \notin Z_r$:
 - (a) aR is projective.
 - (b) aR|R.
 - (c) aR is a Jcp-injective module.

Proof. (1) Let $c \in R$ such that r(c) = 0. Then $c \notin Z_r$ and so by Theorem 2.1, R = lr(c) = Rc, which proves (1).

(2) If $z \in Z_r$ and $a \in R$, then r(1 - az) = 0 implies that v(1 - az) = 1 for some $v \in R$ by (1). This proves that $z \in J(R)$.

(3) If c is a non-zero-divisor in R, then dc = 1 for some $d \in R$ by (1). Now l(c) = 0 implies that cd = 1 and for any right R-module $M, M = Mdc \subseteq Mc \subseteq M$ implies that M = Mc. Similarly, any left R-module is divisible.

(4) Let P be a non-zero reduced principal right ideal. Then P = cR for some $c \in R$. Since $c^2 \notin Z_r$, $lr(c^2) = Rc^2$. Hence $r(c) = r(c^2)$ shows that $Rc = lr(c) = lr(c^2) = Rc^2$. Therefore $c = bc^2$ for some $b \in R$, which implies that c = cbc because P is reduced, whence P is generated by the idempotent e = cb. Also, for any $a \in R$, $(ea - eae)^2 = 0$ implies ea = eae, whence eR(1 - e) = 0. Therefore $R(1 - e) \subseteq (1 - e)R$ which establishes the last part of (4).

(5) Assume that $aR \cong eR$, where $a, e^2 = e \in R$. Then $a \notin Z_r$, so Ra = lr(a) by Theorem 2.1. Since $aR \cong eR$, by [11, Theorem 1.2], there exists a $f^2 = f \in R$

such that af = a and r(a) = r(f). Hence Ra = lr(a) = lr(f) = Rf. Consequently, aR|R.

- (6) Follows from (5).
- (7) By (5), we have $(a) \Leftrightarrow (b)$. Obviously, $(c) \Rightarrow (b)$ always holds.

 $(b) \Rightarrow (c)$ We only need to show that $l_{aR}r_R(b) = aRb$ for each $b \notin Z_r$. In fact, if $ac \in l_{aR}r_R(b)$, then $r_R(b) \subseteq r_R(ac)$, so $ac \in l_Rr_R(ac) \subseteq l_Rr_R(b) = Rb$. Because aR = eR for some $e^2 = e \in R$, $ac = eac \in eRb = aRb$. Hence $l_{aR}r_R(b) \subseteq aRb$ which shows that $l_{aR}r_R(b) = aRb$.

Example 2.6. Faith and Menal [4] give an example of a right noetherian ring R in which every right ideal is an annihilator, but which is not right artinian. Thus R is left *Jcp*-injective. But R is not right *C*2, hence it is not right *Jcp*-injective. Therefore there exists a left *Jcp*-injective ring which is not right *Jcp*-injective.

A ring R is called right FGF if every finitely generated right R-module can be embedded in a free module. It is an open question whether every right FGF ring is quasi-Frobenius. The conjecture is known to be true if the ring is right C2 [13]. Hence we derive that if every right FGF ring R is a right Jcp-injective, then R is quasi-Frobenius.

A ring R is called right Johns if it is right noetherian and every right ideal is an annihilator. If the matrix ring $M_n(R)$ is right Johns for every $n \ge 1$, then Ris called strongly right Johns. [13, Theorem 4.6] shows that R is quasi-Frobenius if and only if R is strongly right Johns and right C2. Hence we have that R is quasi-Frobenius if and only if R is strongly right Johns and right Jcp-injective.

Recall that a ring R is directly finite if uv = 1 in R implies that vu = 1. For example, semilocal rings are directly finite. Obviously, R is directly finite if and only if every epimorphism $R_R \to R_R$ is an isomorphism. It is known that (1) if each monomorphism $R_R \to R_R$ is an isomorphism, then R is a directly finite; (2) R is directly finite if and only if R/J(R) is directly finite.

Recall that a module M_R is GC2 if $N \subseteq M$ with $N_R \cong M$ implies that N|M. A ring R is right GC2 if R_R is GC2. Clearly, a right C2 ring is right GC2.

Yiqiang Zhou shows that if M_R is GC2 and M_R is finite dimensional, then $End(M_R)$ is a semilocal ring.

Corollary 2.7. Let R be a right Jcp-injective ring. Then:

(1) If R_R is of finite Goldie dimensional, then R is semilocal.

(2) If J(R) is nilpotent, then R is right noetherian if and only if R is right artinian.

(3) The following conditions are equivalent.

(a) R/J(R) is directly finite.

(b) Every monomorphism $R_R \to R_R$ is an isomorphism.

(c) R is directly finite.

If every complement right ideal of R is not singular, then the conditions above are also equivalent to

(d) R/Z_r is directly finite.

Proof. (1) Since R is right C2, R is right GC2. Hence $R \cong End(R_R)$ is semilocal, because R_R is finite dimensional.

(2) If R is right noetherian, then R is semilocal by (1). Hence R is semiprimary because J(R) is nilpotent. Consequently, R is right artinian.

(3) $(b) \Rightarrow (c) \Leftrightarrow (a)$ and $(d) \Rightarrow (c)$ are trivial.

 $(c) \Rightarrow (b)$ Assume that $f : R_R \to R_R$ is a monomorphism. Since R is right GC2, Im(f) = eR for some $e^2 = e$ because $Im(f) \cong R_R$. Write f(1) = a, then aR = f(R) = eR. Hence a = ea = aba for some $b \in R$ with e = ab. Thus ba = 1 because r(a) = 0. By (c), ab = 1, so f(R) = aR = eR = abR = R. This implies that f is an epimorphism.

 $(c) \Rightarrow (d)$ Let $a, b \in R$ such that $1 - ab \in Z_r$. Since R is right Jcp-injective, $1 - ab \in J(R)$ by Theorem 2.7(2). Let ab = 1 + x for some $x \in J(R)$. So $ab(1+x)^{-1} = 1$. Since R is directly finite, $b(1+x)^{-1}a = 1$. If $x \notin Z_r$, then there exists a nonzero right ideal I of R which is maximal with respect to the property that " $I \cap r(x) = 0$ ". By hypothesis, there exists $b \in I$ such that $b \notin Z_r$. Hence $xb \notin Z_r$. Let $f : xbR \to R$ be defined by f(xbr) = br for all $r \in R$. Then f is a well defined right R-homomorphism. Since R is right Jcp-injective, $f = c \cdot, c \in R$. Hence b = f(xb) = cxb and so (1 - cx)b = 0. Since $cx \in J(R)$, b = 0 which is a contradiction. Hence $x \in Z_r$, which implies that $1 - ba \in Z_r$, so R/Z_r is directly finite.

In fact, from the proof of Corollary 2.7(3), we know that every monomorphism $R_R \to R_R$ is an isomorphism if and only if R is directly finite and right GC2.

Call a ring R abelian if every idempotent element of R is central. As examples of abelian rings we have ZI rings and reduced rings. Clearly, abelian rings are directly finite. Call a ring I-finite if it contains no infinite set of orthogonal idempotents. I-finite rings are also directly finite.

In [11], it is proved that if R is right p-injective, then $J(R) = Z_r$. We do not know whether the result holds for right Jcp-injective. But, from the proof of Corollary 2.7(3), we can obtain the following corollary.

 $\mathbf{6}$

Corollary 2.8. Let R be a right Jcp-injective ring. Then:

(1) If R satisfies one of the following conditions, then every monomorphism $R_R \to R_R$ is an isomorphism.

- (a) R is abelian.
- (b) R is I-finite.
- (c) R is semilocal.
- (2) If each non-zero complement right ideal of R is not contained in Z_r , then (a) $J(R) = Z_r$.

(b) for each $a \in R \setminus J(R)$, there exists $a \ c \in R$ such that the inclusion $r(a) \subset r(a - aca)$ is proper.

Call a ring R right mininjective [12] if for each right minimal element $k \in R$, Rk = lr(k). Right p-injective rings are right mininjective. But we don't know temporarily whether the result holds for a right Jcp-injective ring. Call a ring R right principally small injective if for any $a \in J(R)$, every R-homomorphism from aR to R_R can be extended to one from R_R into R_R . Clearly, R is right principally small injective if and only if Ra = lr(a) for all $a \in J(R)$.

Call a ring R right SPP if for any $a \notin Z_r$, aR is projective.

Call a ring R right PS [10] if each minimal right ideal of R is projective as a right R-module. Clearly, the following conditions are equivalent for a ring R: (1) R is right PS. (2) $Z_r \cap Soc(R_R) = 0$. (3) Every homomorphic image of a mininjective right R-module is mininjective. Examples of right PS rings contain right pp and right universally mininjective [12]. Clearly, R is right universally mininjective if and only if R is right PS and right mininjective.

Call a ring R right MC2 [13] if each projective minimal right ideal is a summand in R_R . As examples, we have right miniplective and right C2 rings. In [16], we show that (1) R is right MC2 if and only if $Z_r \cap Soc(R_R) = J(R) \cap Soc(R_R)$. (2) R is right universally miniplective if and only if R is right PS and right MC2. (3) If R is a right MC2 I- finite ring, then $R \cong R_1 \times R_2$, where R_1 is semisimple and every simple right ideal of R_2 is nilpotent. Since right C2 rings are right MC2, by Theorem 2.5, we have: if R is a right Jcp-injective I-finite ring, then $R \cong R_1 \times R_2$, where R_1 is semisimple and every simple right ideal of R_2 is nilpotent.

Theorem 2.9. (1) R is right p-injective if and only if R is right Jcp-injective and right principally small injective.

(2) R is right SPP if and only if every homomorphic image of a right Jcpinjective R-module is Jcp-injective.

(3) The following conditions are equivalent for a ring R.

(a) R is right pp.

(b) R is right NPP and right SPP.

(c) R is right nonsingular and right SPP.

(4) Let R be a right Jcp-injective and right PS ring. Then R is right universally mininjective, and so R is right mininjective.

(5) Let R be right Jcp-injective and S_r be essential in R_R . Then the following conditions are equivalent.

(a) R is right PS.

(b) R is right universally mininjective.

- (c) R is semiprimitive.
- (d) R is right nonsingular.
- (e) R is semiprime.

In this case, R is right p-injective.

(6) Let R be right Jcp-injective and semiperfect with S_r essential in R_R . Then the following conditions are equivalent.

- (a) R is right PS;
- (b) R is right pp;
- (c) R is semisimple.

(7) The following conditions are equivalent for a ring R.

- (a) R is von Neumann regular.
- (b) R is right nonsingular right SPP and right C2.
- (c) R is right nonsingular right SPP and right Jcp-injective.

Proof. (1) (The "only if" part) Let R be a right Jcp-injective and principally small injective ring. By Theorem 2.5(2), $Z_r \subseteq J(R)$. Let $a \in R$. If $a \notin Z_r$, then lr(a) = Ra by Theorem 2.1. If $a \notin Z_r$, then $a \in J(R)$. We claim that Ra = lr(a). $Ra \subseteq lr(a)$ is clear. Let $x \in lr(a)$, then $r(a) \subseteq r(x)$. Let $f : aR \to R$ be defined by f(ar) = xr. Then f is a well defined right R-homomorphism. Since R is right principally small injective, there exists a right R-homomorphism $g : R \to R$ such that f(a) = g(a). Hence $x = f(a) = g(a) = g(1)a \in Ra$ and so $lr(a) \subseteq Ra$.

(2) Similar to [15, Theorem 2.10(1)].

(3) Follows from the definitions and [15, Theorem 2.10(2)].

(4) Since R is right Jcp-injective, R is right C2 by Theorem 2.5(5). Hence R is right MC2, and so R is right universally mininjective because R is right PS. Hence R is right mininjective.

8

(5) By (4), we have $(a) \Rightarrow (b)$. Assume that (b) holds, then $S_r \cap J(R) = 0$. Hence J(R) = 0 because S_r is essential in R_R . So $(b) \Rightarrow (c) \Rightarrow (e) \Rightarrow (a)$ hold. Since $Z_r \subseteq J(R), (c) \Rightarrow (d) \Rightarrow (a)$ hold.

In this case, by Corollary 1.2, R is right p-injective.

(6) $(c) \Rightarrow (b) \Rightarrow (a)$ are trivial. Assume (a). Then R is right p-injective by (5). So R is a right GPF ring by [11], and then $S_r = l(J(R))$ by [11, Corollary 2.2]. But by (5), J(R) = 0, so $S_r = R$. Hence R is a semisimple ring.

(7) Follows from Corollary 2.2.

Clearly, the ring R in Example 2.4 is not PS. Otherwise, R is a semisimple ring. In fact, since R is artinian, R is a semiperfect ring, and S_r is essential in R_R . Hence R is a semisimple ring by Theorem 2.9(6). But $J(R) = Z_r \neq 0$, which is a contradiction. Hence R is not a PS ring, and so is not universally mininjective. On the other hand, we claim that R is not mininjective. In fact, if $V = vF \oplus wF$, then (0, vR) is a minimal right ideal of R, and let $\theta : V \to V$ be a linear transformation with $\theta(v) = w$. Then $(0, x) \longmapsto (0, \theta(x))$ is an R- linear map from $(0, v)R \to R$ which cannot be extended to $R \to R$ because $w \notin vF$. So R is not a mininjective ring. Hence there exists a Jcp-injective ring which is not mininjective.

Example 2.10. The trivial extension $R = T(Z, Z_{2^{\infty}})$ is a commutative ring with $Z_r = J \neq 0$ which is not right C2, so is not right *Jcp*-injective. On the other hand, R has a simple essential socle, so R is a mininjective ring. So there exists a mininjective ring which is not *Jcp*-injective.

A ring R is called right quasi-regular if $a \in aRa$ for all $a \notin Z_r$. Clearly, R is von Neumann regular if and only if R is right nonsingular and right quasi-regular.

Theorem 2.11. (1) Let R be a right Jcp-injective and a right SPP ring. Then

(a) $Z_l \subseteq J(R) = Z_r;$

(b) for each $a \notin Z_r$, a = aba for some $b \in R$. So R/J(R) is von Neumann regular.

(2) If R is right SPP and Abelian, then $N(R) \subseteq Z_r$.

- (3) Let R be a right SPP ring. Then the following conditions are equivalent.
 - (a) R is reduced.
 - (b) R is abelian right nonsingular.
 - (c) R is abelian right NPP.
- (4) The following conditions are equivalent for a ring R.
 - (a) R is right quasi-regular.
 - (b) R is right Jcp-injective and right SPP.

- (c) Every right R-module is Jcp-injective.
- (d) Every cyclic right R-module is Jcp-injective.

Proof. (1) First, we show that $J(R) \subseteq Z_r$. Otherwise, there exists a $a \in J(R)$ such that $b \notin Z_r$. So r(a) = r(e) for some $e^2 = e \in R$ because R is right *SPP*. Since R is right *Jcp*-injective, $Re = lr(e) = lr(a) = Ra \subseteq J(R)$. This is a contradiction. Similarly, we can show that $Z_l \subseteq Z_r$. By Theorem 2.5, we have $Z_l \subseteq J(R) = Z_r$. Next, let $a \notin Z_r$. Then Ra = Re, so $a = ae \in aRa$. Hence R/J(R) is von Neumann regular.

(2) If $N(R) \not\subseteq Z_r$, then there exists $a \in N(R)$ such that $a \notin Z_r$. So r(a) = gR, $g^2 = g \in R$. Let $a^n = 0$ and $a^{n-1} \neq 0$. Hence $a^{n-1} \in r(a) = gR$, so $a^{n-1} = ga^{n-1}$, Since R is abelian, $a^{n-1} = a^{n-1}g = 0$, which is a contradiction. So $N(R) \subseteq Z_r$.

- (3) Follows from (2).
- (4) $(b) \Rightarrow (a)$ follows from (1). $(c) \Rightarrow (d)$ is trivial.

 $(a) \Rightarrow (c)$ Let M be any right R-module, $a \in R$ with $a \notin Z_r$ and $f: aR \to M$ any right R-homomorphism. Since R is right quasi-regular, a = aba for some $b \in R \setminus Z_r$. Let ab = e and f(e) = m, where $m \in M$. Then $h: R \to M$ defined by $g(r) = mr, r \in R$ is a right R-homomorphism and g(ar) = mar = f(e)ar =f(ab)ar = f(aba)r = f(a)r = f(ar), so M is Jcp-injective.

 $(d) \Rightarrow (a)$. Let $a \notin Z_r$. By (d), aR is *Jcp*-injective, so the identity map $aR \to aR$ can be extended to one of R into R. Hence a = aba for some $b \in R$.

Theorem 2.12. Let e be an idempotent of R such that ReR = R and let S = eRe. Then:

- (1) If R is right Jcp-injective, then so is S.
- (2) $eZ_r(R)e \subseteq Z_r(S)$. Hence if S is right nonsingular, then so is R.
- (3) If R is right nonsingular, then so is S.

(4) If R is right SPP, then for any $a \in S \setminus Z_r(S)$, there exist an idempotent g of R such that $r_S(a) = egeS$.

(5) If R is right principally small injective, then so is S.

(6) If R is right quasi-regular, then so is S.

- (7) If R is von Neumann regular, then so is S.
- (8) If R is right p-injective, then so is S.

Proof. (1) Let $x \in S \setminus Z_r(S)$. Then $x \notin Z_r$. Otherwise, there exists an essential right ideal I of R such that xI = 0. Since $eR \cap I \neq 0$, $eI \neq 0$. Since R = ReR, eI = eIR = eIReR = eIeR, $eIe \neq 0$. We claim that eIe is an essential right ideal of S. Let K be any nonzero right ideal of S. Then $KR \cap I \neq 0$. Let $0 \neq y \in KR \cap I$

10

and let $1 = \sum_{i=1}^{n} a_i eb_i$, $a_i, b_i \in R$. Then $y = y1 = \sum_{i=1}^{n} ya_i eb_i$, so there exists some $i_0 \in \{1, 2, \dots, n\}$ such that $ya_{i_0}e \neq 0$. Since $eya_{i_0}e = ya_{i_0}e \in KRa_{i_0}e \cap I \subseteq K \cap I = K \cap eIe$, eIe is an essential right ideal of S. Since xeIe = xIe = 0, $x \in Z_r(S)$. This is a contradiction. Hence $x \notin Z_r$. Since R is right Jcp-injective, $l_R r_R(x) = Rx$. Now let $z \in l_S r_S(x)$. Then $r_S(x) \subseteq r_S(z)$. Let $a \in r_R(x)$. Then xa = 0, so $0 = xaa_ie = xeaa_ie$, $i = 1, 2, \dots, n$. Hence $eaa_ie \in r_S(x) \subseteq r_S(z)$, so $zaa_ie = zeaa_ie = 0$. Thus $za = \sum_{i=1}^{n} zaa_ieb_i = 0$, so $a \in r_R(z)$. This shows that $r_R(x) \subseteq r_R(z)$. So $z \in l_R r_R(z) \subseteq l_R r_R(x) = Rx$. Hence $z = eze \in eRex = Sx$, which implies that $l_S r_S(x) \subseteq Sx$ and so $l_S r_S(x) = Sx$. Hence S is right Jcpinjective.

(2) By (1), we can easily see that $eZ_r(R)e = Z_r \cap eRe \subseteq Z_r(S)$. If $Z_r(S) = 0$, then $Z_r = RZ_r(R)R = ReRZ_r(R)ReR = ReZ_r(R)eR = 0$.

(3) If $Z_r(S) \neq 0$, then there exists $0 \neq x \in Z_r(S)$. Since $Z_r = 0$, there exists a nonzero right ideal I of R such that $r_R(x) \cap I = 0$. If $xI \neq 0$, then $eIe \neq 0$, so $eIe \cap r_S(x) \neq 0$. Let $0 \neq y \in eIe \cap r_S(x)$ and let $y = ez, z \in I$. So xz = xez =xy = 0 and then $0 \neq z \in r_R(x) \cap I$, which is a contradiction. Hence xI = 0, so $I \subseteq r_R(x) \cap I = 0$, which is also a contradiction. Thus $Z_r(S) = 0$.

(4) Let $a \notin Z_r(S)$. By (2), $a \notin Z_r$. Hence $r_R(a) = gR, g^2 = g \in R$ by hypothesis. So $r_S(a) = egeS$.

(5) It is trivial.

(6) Let $a \in S$ with $a \notin Z_r(S)$. By (2), $a \notin Z_r$. So a = aba for some $b \in R$. Hence a = aebea = a(ebe)a, where $ebe \in S$ and so S is right quasi-regular.

(7) Follows from (3) and (6).

(8) Follows from (1), (5) and Theorem 2.9(1).

The following theorem is a generalization of [11, Theorem 1.1].

Theorem 2.13. Let R be a right Jcp-injective ring, and let $a, b \in R$ with $b \notin Z_r$. Then:

(1) If bR embeds in aR, then Rb is an image of Ra.

(2) If aR is an image of bR, then Ra embeds in Rb.

(3) If $bR \cong aR$, then $Ra \cong Rb$.

(4) If K is a simple projective right ideal of R, then RK is the homogenous component of S_r containing K.

(5) If A, B are right ideals of R with $A \cap (B + Z_r) = 0$ and A is an ideal of R, then $Hom_R(A_R, B_R) = 0$. **Proof.** (1) Let $\sigma : bR \to aR$ be a monomorphism. Since R is right *Jcp*-injective and $b \notin Z_r$, we can let $\sigma = v \cdot, v \in R$. Then $vb = au, u \in R$, so define $\varphi : Ra \to Rb$ by $\varphi(ra) = rau = rvb$, then φ is a well defined left R-homomorphism. Since $vb \notin Z_r$ and r(vb) = r(b), Rb = lr(b) = lr(vb) = Rvb. Hence, clearly, φ is epic.

(2) Let $\sigma : bR \to aR$ be epic, and let v, u and φ be as in (1). Write $a = \sigma(bs) = vbs, s \in R$. Then $\varphi(ra) = 0$ gives 0 = rau = rvb, whence ra = rvbs = 0. Hence φ is monic.

(3) Follows from the proof of (1) and (2).

(4) If K = kR where $k \in R$ and $\sigma : K \to S$ is an R- isomorphism, where $S \subseteq R$, then $r(k) = r(\sigma(k))$. So $Rk = lr(k) = lr(\sigma(k)) = R\sigma(k)$ because $k \notin Z_r$. Hence $S = \sigma(k)R \subseteq RkR = RK$, so the K- component is in RK. The other inclusion always holds.

(5) If there exists a $0 \neq f \in Hom_R(A_R, B_R)$, then there exists $0 \neq a \in A$ such that $f(a) \neq 0$. Then f(a) = va where $v \in R$, because $A \cap Z_r = 0$. Since A is an ideal, $va \in A$. Hence $f(a) \in A \cap B = 0$, which is a contradiction. Hence $Hom_R(A_R, B_R) = 0$.

3. Finiteness conditions

In [3], a right (left) annihilator M of a ring R is called maximal if for any right (left) annihilator N with $M \subseteq N$, either N = M or N = R. In this case, M = r(a) (l(a)) for some $0 \neq a \in R$.

Using the idea of [3], we start with the following theorem.

Theorem 3.1. Let R be a semiprime right Jcp-injective ring whose complement right ideals are non-small. Then every maximal right (left) annihilator of R is a maximal right (left) ideal of R generated by an idempotent.

Proof. Let *L* be a maximal right annihilator, then by [3, Theorem 3.1], there exists $0 \neq a \in R$ such that

(1) L = r(a); (2) r(a) = r(y) for every $0 \neq y \in Ra;$ (3) $Z_r \cap Ra = 0.$

Hence, there exists a non-zero complement right ideal I of r(a) such that $r(a) \oplus I$ is essential in R_R . Then, by hypothesis, there exists $0 \neq b \in I$ such that $b \notin Z_r$ and $ab \neq 0$. Since r(ab) = r(b), $ab \notin Z_r$. Hence Rb = lr(b) = lr(ab) = Rab. Write $b = cab, c \in R$. Then $b \in r(a - aca)$. But $b \notin r(a)$ and hence a = aca. Let d = ca, by [3, Theorem 3.1], L = r(a) = r(d) = eR, where e = 1 - d, $d^2 = d$.

Now, we claim that L is a maximal right ideal of R. Similar to [3, Theorem 3.1], we only need to show that dRd is a division ring. In fact, we can assume that a = d, if $0 \neq x \in dRd$, then r(x) = r(d) by (2). Hence, $x \notin Z_r$ by (3), so,

12

Rx = lr(x) = lr(d) = Rd. Write d = ux where $u \in R$. Then $d = d^2 = dux = dudx$ because x = dx. That is, dRd is indeed a division ring.

It is well known that if R is semiprime, then $S_r = S_l$. Hence from Theorem 3.1, we have the following result.

Corollary 3.2. Let R be a right Jcp-injective ring whose complement right ideals are non-small. Then the following hold.

(1) If R is semiprime, then R contains a maximal right (left) annihilator if and only if $S_r = S_l \neq 0$.

(2) If R is prime and contains a maximal right (left) annihilator, then R is left and right primitive and left and right nonsingular ring. So R is right p-injective.

Proof. (1) It is trivial.

(2) Since R is prime, R is left and right PS. Hence $Z_r \cap S_r = Z_l \cap S_l = 0$, so $Z_l = Z_r = 0$ because $0 \neq S_r = S_l$ is an essential left and right ideal. Hence R is left and right nonsingular. Let kR be a minimal right ideal of R. Then R/r(k) is a faithful simple right R-module and hence R is right primitive. \Box

Let R be a ring and let S be an ideal of R such that R/S satisfies ACC on right annihilators. If Y_1, Y_2, \cdots are subsets of l(S), then [11, Lemma 2.1] shows that there exists $n \ge 1$ such that $r(Y_{n+1}Y_n \cdots Y_2Y_1) = r(Y_n \cdots Y_2Y_1)$. The following theorem is similar to [11, Theorem 2.2].

Theorem 3.3. Let R be a right Jcp-injective ring whose complement right ideals are non-small. If R/S_r satisfies ACC on right annihilators, then

(1) J(R) is nilpotent;

(2) R is semiprime if and only if R is semiprimitive.

Proof. (1) First, if I is a complement right ideal of R, then $I \nsubseteq J(R)$. Since R is right Jcp-injective, $Z_r \subseteq J(R)$. So $I \nsubseteq Z_r$, by the proof of $(c) \Rightarrow (d)$ of Corollary 2.7(3), $J(R) = Z_r$. Hence $J(R)S_r = Z_rS_r = 0$. Let a_1, a_2, \cdots be given in $J(R) \subseteq l(S_r)$. We have $r(a_n a_{n-1} \cdots a_1) = r(a_{n+1}a_n a_{n-1} \cdots a_1)$ for some $n \ge 1$. This implies that $a_n a_{n-1} \cdots a_1 R \cap r(a_{n+1}) = 0$, so $a_n a_{n-1} \cdots a_1 = 0$ because $a_{n+1} \in J(R) = Z_r$. Hence J(R) is left T-nilpotent, and so $(J(R) + S_r)/S_r$ is left T- nilpotent. But R/S_r has ACC on right annihilators. Hence $(J(R) + S_r)/S_r$ is nilpotent. Then there exists an integer m such that $J^m \subseteq S_r$, and so $J^{2m} \subseteq JS_r = 0$.

[1, Remark 1] conjecture that every flat right *R*-module is finitely projective if and only if the ascending chain $r(a_1) \subseteq r(a_2a_1) \subseteq r(a_3a_2a_1) \subseteq \cdots$ terminates for every infinite sequence a_1, a_2, a_3, \ldots of *R*. But [17] has answered this conjecture in the negative. However, the following Theorem gives an affirmative answer to this conjecture for right *Jcp*-injective ring. On the other hand, it is also a generalization of [3, Theorem 3.4].

Theorem 3.4. Let R be a right Jcp-injective ring whose complement right ideals are non-small. Then the following are equivalent.

- (1) R is right perfect.
- (2) Every flat right R-module is finitely projective.
- (3) Every flat right R-module is singly projective.

(4) The ascending chain $r(a_1) \subseteq r(a_2a_1) \subseteq r(a_3a_2a_1) \subseteq \cdots$ terminates for every infinite sequence a_1, a_2, a_3, \ldots of R.

It is well known that Z_r is nilpotent for any ring R with ACC on right annihilators.

In [3], Chen and Ding show that if $Z_r \neq 0$ and the ascending chain $r(a_1) \subseteq r(a_2a_1) \subseteq r(a_3a_2a_1) \subseteq \cdots$ terminates for every infinite sequence a_1, a_2, a_3, \ldots of R, then there exists a $0 \neq b \in Z_r$ such that r(b) = r(y) for every $0 \neq y \in Rb$. Hence we have the following corollary.

Corollary 3.5. Let R be a right Jcp-injective ring whose complement right ideals are non-small. Then the following hold.

(1) If R satisfies ACC on right annihilators, then R is semiprimary.

(2) If R is semiprime and the ascending chain $r(a_1) \subseteq r(a_2a_1) \subseteq r(a_3a_2a_1) \subseteq \cdots$ terminates for every infinite sequence a_1, a_2, a_3, \ldots of R, then R is a semisimple artinian ring.

Proof. (1) By Theorem 3.4, R/J(R) is semisimple artinian. Hence R is semiprimary because $J(R) = Z_r$ is nilpotent.

(2) If $Z_r \neq 0$, then there exists a $0 \neq b \in Z_r$ such that r(b) = r(y) for every $0 \neq y \in Rb$. Since R is semiprime, there exists a $0 \neq c \in R$ such that $bcb \neq 0$. Hence r(b) = r(bcb). Consequently, bc is not nilpotent. But $Z_r = J(R)$ is right T-nilpotent, which is a contradiction. Hence $J(R) = Z_r = 0$ and by Theorem 3.4, R is semisimple artinian.

Call a left ideal L of a ring R left weakly essential, if for all $0 \neq a \in R$ with $a \notin Z_r$, $Ra \cap L \neq 0$. Clearly, an essential left ideal is left weakly essential.

A ring R is called right Kasch if every simple right modules can be embedded in R, or equivalently if $l(M) \neq 0$ for every maximal right ideal M of R.

The following theorem is similar to [11, Theorem 2.4].

Theorem 3.6. Let R be a right Jcp-injective ring. Then:

(1) If R is right Kasch, then l(J) is left weakly essential.

(2) If R is semiperfect, then R is a right Kasch ring if and only if S_r is left weakly essential.

Proof. (1) Let $0 \neq b \in R$, $b \notin Z_r$ and choose M maximal in bR. Let $\sigma : bR/M \to R_R$ is a monomorphism. If $\gamma : bR \to R$ is defined by $\gamma(x) = \sigma(x+M)$, then $\gamma = a$ -where $a \in R$ because $b \notin Z_r$. So $ab = \gamma(b) = \sigma(b+M) \neq 0$. But $abJ = \sigma(bJ) = 0$ because (bR/M)J = 0. Therefore $0 \neq ab \in Rb \cap l(J)$, as required.

(2) If R is right Kasch, then l(J) is left weakly essential by (1). Since R is a semiperfect ring, $S_r = l(J)$. Hence S_r is left weakly essential.

Conversely, we assume that S_r is left weakly essential. Let M be a maximal right ideal of R. Then there exists a $e^2 = e \in R$ such that $1 - e \in M$ and $eR \cap M \subseteq J$ because R is a semiperfect ring. Hence $S_r \subseteq l(J) \subseteq l(eR \cap M)$, and so $l(eR \cap M)$ is left weakly essential by hypothesis. Since $e \notin Z_r$, $0 \neq Re \cap l(eR \cap M) = l((1 - e)R) \cap l(eR \cap M) = l((1 - e)R + (eR \cap M)) = l(M)$. This implies that R is right Kasch.

Call a right *R*-module *M* right *nil*-injective [15] if for each nilpotent element $a \in R$, the right *R*-homomorphism from aR to *M* can be extended to one from *R* into *M*. If *R* is *nil*-injective as a right *R*-module, then we call *R* a right *nil*-injective ring.

Theorem 3.7. Let R be a right Jcp-injective ring. Assume that every simple singular right R-module is right nil-injective. Then the following hold.

- (1) R is right p-injective, and so R is semiprimitive right nonsingular.
- (2) If R is right SPP, then R is von Neumann regular.
- (3) $Z_l = 0.$

Proof. First, we show that $Z_r = 0$. If not, then there exists $0 \neq b \in Z_r$ such that $b^2 = 0$. We claim that $Z_r + r(b) = R$. Otherwise, there exists a maximal essential right ideal M of R such that $Z_r + r(b) \subseteq M$, then R/M is a right *nil*-injective R-module. Define $f : bR \to R/M$ by f(br) = r + M for all $r \in R$. Clearly, f is a well defined right R-module homomorphism. Hence there exists a $a \in R$ such that

 $1-ab \in M$. So $1 \in M$ because $ab \in Z_r \subseteq M$, which is a contradiction. Hence $Z_r + r(b) = R$. Since R is right *Jcp*-injective, $Z_r \subseteq J(R)$ by Theorem 2.5. So J(R) + r(b) = R. This implies that r(b) = R and so b = 0, which is a contradiction. Hence $Z_r = 0$. By Corollary 2.2, R is right *p*-injective. By [11, Theorem 2.1], J(R) = 0.

(2) This is an immediate consequence of Theorem 2.9(7).

(3) If $Z_l \neq 0$, then there exists $0 \neq b \in Z_l$ such that $b^2 = 0$. We show that $Z_l + r(b) = R$. Otherwise, there exists a maximal right ideal M such that $Z_l + r(b) \subseteq M$. If M is not an essential right ideal of R, then M = r(e), where $e^2 = e \in R$. If $be \neq 0$, then $beR \cong eR$ as right R-module. By Theorem 2.5(5), beR = gR, where $g^2 = g \in R$, so $g \in Z_l$ because $beR \subseteq Z_l$. This is a contradiction. So be = 0. Then $e \in r(b) \subseteq M = r(e)$, which is impossible. Thus M is an essential right ideal of R, so R/M is nil-injective R-module. Similar to the proof of (1), there exists $a \in R$ such that $1 - ab \in M$. So $1 \in M$ because $ab \in Z_l \subseteq M$, which is a contradiction. Hence $Z_l + r(b) = R$. Let $1 = x + y, x \in Z_l, y \in r(b)$. Then b = bx and so b(1 - x) = 0. Since $x \in Z_l$ and $l(x) \cap l(1 - x) = 0$, l(1 - x) = 0. This shows that b = 0, which is a contradiction. So $Z_l = 0$.

4. Weakly injectivity

Let E(M) be an injective hull of M_R . M is called right weakly injective if for any finite generated submodule $N_R \subseteq E(M)$, there exists $X_R \cong M$ and $N_R \subseteq X_R \subseteq$ E(M). Clearly, right injective rings are right weakly injective, but the converse is not true in general.

Lemma 4.1. Let R be a right Jcp-injective ring. If R_R is essential in X_R , where $X_R \cong R_R$, then X = R.

Proof. Let $f: R_R \to X_R$ be the isomorphism and $f(1) = b \in X$. Then bR = Im(f) = X. Since $1 \in R \subseteq X$, let $1 = bu, u \in R$. Hence $R_R = 1R = buR$ and r(u) = 0. Since R is right *Jcp*-injective, by Theorem 2.5(1), there exists $d \in R$ such that du = 1. Let e = ud. Then $e^2 = e$ and uR = eR. Hence R = buR = beR. It is clear that $X = bR = b(eR \oplus (1-e)R) = beR + b(1-e)R$. If $x \in beR \cap b(1-e)R$, then there exist $r_1, r_2 \in R$ such that $x = ber_1 = b(1-e)r_2$, so $f^{-1}(x) = er_1 = (1-e)r_2$. Hence $f^{-1}(x) = 0$ and then x = 0, so $X = bR = beR \oplus b(1-e)R = R \oplus b(1-e)R$. Since R_R is essential in X_R , b(1-e)R = 0, and so X = beR = R.

The following theorem is a generalization of [11, Theorem 1.3].

Theorem 4.2. A ring R is right self-injective if and only if R is right Jcp-injective and R_R is weakly injective.

Proof. We only need to show that $E(R_R) \subseteq R$. For each $a \in E(R_R)$, since $R + aR \subseteq E(R_R)$, there exists $X \subseteq E(R_R)$ such that $R + aR \subseteq X$ and $X_R \cong R_R$. Since R is right *Jcp*-injective, X = R by Lemma 4.1. Hence $R = E(R_R)$.

Call a ring R right coflat if for each finitely generated right ideal I of R, every homomorphism from I_R to R can be extended to the one of R into R. Call R right FP-injective if for each finitely presented right ideal I of R, every homomorphism from I_R to R can be extended to the one of R to R. Right FP-injective rings are right coflat rings and right self-injective rings are right FP-injective rings.

Corollary 4.3. The following conditions are equivalent for a right weakly injective ring R.

- (1) R is right self-injective.
- (2) R is right p-injective.
- (3) R is right coflat.
- (4) R is right FP-injective.
- (5) R is right Jcp-injective.

Call a ring R right np-injective, if for any non-nilpotent element c of R and any right R-homomorphism $g: cR \to R$, there exists $m \in R$ such g(ca) = mca for all $a \in R$. An important source of right np- injective rings is given by Yue Chi Ming [8], which is a generalization of right p- injective ring.

Call a ring R right weakly np-injective, if for any non-nilpotent element c of R, there exists a positive integer number n such that for any right R-homomorphism $g: c^n R \to R$, there exists $m \in R$ such $g(c^n a) = mc^n a$ for all $a \in R$. Evidently, right weakly np-injective rings are the generalization of right np-injective and right YJ-injective.

Call a ring R right Gnp-injective, if for any non-nilpotent element c of R, $lr(c) = Rc \oplus X_c$, where X_c is a left ideal of R. Obviously, right Gnp-injective rings are the generalization of right np-injective and right AP-injective.

Call a ring R right weakly Gnp-injective, if for any non-nilpotent element c of R, there exists a positive integer number n such that $lr(c^n) = Rc^n \oplus X_c$, where X_c is a left ideal of R. Obviously, right weakly Gnp-injective rings are the generalization of right weakly np-injective and right AGP-injective [14].

Lemma 4.4. Let R be a right weakly Gnp-injective ring. If R_R is essential in X_R , where $X_R \cong R_R$, then X = R.

Proof. Let $f : R_R \to X_R$ be the isomorphism and $f(1) = b \in X$. Then bR = Im(f) = X. Since $1 \in R \subseteq X$, let $1 = bu, u \in R$. Hence $R_R = 1R = buR$ and r(u) = 0. Since R is right weakly Gnp-injective, there exists an $n \ge 1$ such that $lr(u^n) = Ru^n \oplus X_u$ where X_u is a left ideal of R because u is a non-nilpotent element. Hence $R = l(0) = lr(u^n) = Ru^n \oplus X_u$ because r(u) = 0. Write $Ru^n = Re, e^2 = e \in R$, then $u^n = u^n e = u^n du^n$ where $e = du^n$. So $1 - du^n \in r(u^n) = r(u) = 0$, this implies that vu = 1, where $v = du^{n-1}$, Then, similar to the proof of Lemma 4.1, we can complete the proof.

Similar to Theorem 4.2, we have the following theorem.

Theorem 4.5. A ring R is right self-injective if and only if R is right weakly Gnpinjective and R_R is weakly injective.

Corollary 4.6. The following are equivalent for a right weakly injective ring R.

- (1) R is right self-injective.
- (2) R is right YJ-injective.
- (3) R is right AP-injective.
- (4) R is right AGP-injective.
- (5) R is right np-injective.
- (6) R is right Gnp-injective.
- (7) R is right weakly np-injective.
- (8) R is right weakly Gnp-injective.

5. On a Theorem of Camillo

Camillo [2], Nicholson and Yousif [11] and Chen and Ding [3] have studied p-injective rings and YJ-injective rings. In this section, we extend their works.

An element $u \in R$ is said to be right uniform if $u \neq 0$ and uR is a uniform right ideal of R.

Theorem 5.1. Let R be a right Jcp-injective ring. If $u \in R$ is right uniform with $u \notin Z_r$, then $M_u := \{x \in R \mid uR \cap r(x) \neq 0\}$ is a maximal left ideal containing l(u).

Proof. Since uR is uniform, M_u is a left ideal. Clearly, $l(u) \subseteq M_u \neq R$. If $a \notin M_u$, then $au \neq 0$ because $uR \cap r(a) = 0$. Since $u \notin Z_r$ and r(u) = r(au), $au \notin Z_r$. Hence Ru = lr(u) = lr(au) = Rau because R is right *Jcp*-injective, write u = cau where $c \in R$. So $1 - ca \in l(u) \subseteq M_u$. Hence $R = Ra + M_u$, which implies that M_u is maximal.

Corollary 5.2. If R is a right Jcp-injective right uniform ring, then R is local and $Z_l \subseteq J(R) = Z_r$

Proof. By hypothesis, $Z_r = \{x \in R | r(x) \text{ is essential in } R_R\} = \{x \in R | r(x) \neq 0\} = \{x \in R | 1R \cap r(x) \neq 0\} = M_1 \supseteq J(R) \text{ because } 1 \notin Z_r. \text{ Hence } J(R) = Z_r = M_1 \text{ is a maximal left ideal. So } R \text{ is local.}$

Corollary 5.3. Let R be right Jcp-injective and left Kasch. Assume that every nonzero right ideal contains a uniform right ideal, which is not contained in Z_r . Then every maximal left ideal M has the form $M = M_u$ for some right uniform element u.

Proof. Let M be a maximal left ideal. Then $r(M) \neq 0$ because R is left Kasch. By hypothesis, there exists a uniform right ideal uR such that $uR \subseteq r(M)$ and $u \notin Z_r$. So $M = lr(M) \subseteq l(u) \subseteq M_u$. Hence $M = M_u$.

Similar to [11, Lemma 3.1 and Theorem 3.1], we can obtain the following theorems.

Theorem 5.4. Let R be right Jcp-injective, and assume that $Rb_1 \oplus Rb_2 \oplus \cdots \oplus Rb_n \subseteq R$ is a direct sum with $(Rb_1 \oplus Rb_2 \oplus \cdots \oplus Rb_n) \cap Z_r = 0$. Then:

(1) Any R-linear map $\alpha: b_1R + b_2R + \cdots + b_nR \to R$ extends to $\alpha: R \to R$.

(2) Write $S = b_1R + b_2R + \dots + b_kR$ and $T = b_{k+1}R + b_{k+2}R + \dots + b_nR$, $1 \le k < n$, then $l(S \cap T) = l(S) + l(T)$.

Theorem 5.5. If R is right Jcp-injective and $\bigoplus_{i\geq 1}B_i$ is a direct sum of ideals of R with $(\bigoplus_{i\geq 1}B_i) \cap Z_r = 0$, then $A \cap (\bigoplus_{i\geq 1}B_i) = \bigoplus_{i\geq 1}(A \cap B_i)$ for any ideal A of R.

Theorem 5.6. Let R be right Jcp-injective and let $W = u_1 R \oplus \cdots \oplus u_n R$ be a direct sum of uniform right ideals $u_i R$ of R with $W \cap Z_r = 0$. If $M \subseteq R$ is a maximal left ideal that is not of the form M_u for any right uniform element u, then there exists $m \in M$ such that $r(1-m) \cap W$ is essential in M.

Since division rings are von Neumann regular, every module over division rings is *p*-injective. Hence every right module over division rings is right *Jcp*-injective. We now characterize division rings in terms of the following notion: R is called a right *F*-ring if, for any maximal right ideal M of R and any $b \in M$, R/bM is a flat right *R*-module. Division rings are right *F*-rings. **Theorem 5.7.** The following are equivalent for a semiprime right uniform ring R.

- (1) R is a division ring;
- (2) R is a right p-injective right F-ring;
- (3) R is a right YJ-injective right F-ring;
- (4) R is a right Jcp-injective right F-ring.

Proof. It is obvious that (1) implies (2), which, in turn, implies (3) and (4).

Assume (4). Since R is a right uniform ring and right Jcp-injective, by Corollary 5.2, R is a local ring with $Z_r = J(R)$. Since R is a right F- ring, $J(R)^2 = 0$ and so J(R) = 0 because R is a semiprime ring. Hence R is a division ring.

R is called a right CAM-ring if, for any maximal essential right ideal M of R (if it exists) and for any right subideal I of M which is either a complement right subideal of M or a right annihilator ideal in R, I is an ideal of M.

Right CAM-rings generalize semisimple artinian. [8] shows that semiprime right CAM-ring R is either semisimple artinian or reduced. If R is also right Jcp-injective, then R is either semisimple artinian or strongly regular ring. We yield the following theorem.

Theorem 5.8. The following are equivalent for a ring R.

(1) R is either a semisimple artinian or a strongly regular ring.

(2) R is a semiprime right CAM-ring whose singular simple right modules are flat.

(3) R is a semiprime right Jcp-injective, right CAM-ring.

(4) R is a semiprime right CAM-ring, MERT ring whose singular simple right R-modules are Jcp-injective.

Proof. (1) \Rightarrow (i) where i = 2, 3, 4 are obvious.

 $(2) \Rightarrow (1)$ Assume (2). If R is not a semisimple artinian ring, then R is reduced. Let $0 \neq a \in R$. If $aR \oplus r(a) \neq R$, then $aR \oplus r(a) \subseteq M$ for some maximal right ideal M of R. If M is not an essential right ideal of R, then M = eR, where $e^2 = e \in R$. Because R is reduced, ae = ea = 0 and $e \in r(a) \subseteq M = r(e)$, a contradiction. Hence M is an essential right ideal of R and so R/M is a singular simple right R-module. By (2), R/M is flat, then there exists $m \in M$ such that a = ma. But then a = am, because R is reduced. Now we obtain $1 - m \in r(a)$, and so $1 \in M$, a contradiction. Hence $aR \oplus r(a) = R$ and then R is a strongly regular ring.

 $(3) \Rightarrow (1)$ If R is not a semisimple artinian ring, then R is reduced. By Corollary 1.5, R is a regular ring, But R is an abelian ring, so R is a strongly regular ring.

 $(4) \Rightarrow (1)$ We can directly assume that R is reduced. So R is a right nonsingular ring. Let $0 \neq a \in R$. If $aR \oplus r(a) \neq R$, then $aR \oplus r(a) \subseteq M$ for some maximal essential right ideal M of R. Hence R/M is a singular simple right R-module. By hypothesis, R/M is right Jcp-injective. Then there exists a $c \in R$ such that $1 - ca \in M$. But then $1 \in M$, because R is a MERT ring and M is an ideal. It is a contradiction. Hence $aR \oplus r(a) = R$ and then R is a strongly regular ring. \Box

A ring R is called right CM if, for any maximal essential right ideal M of R, every complement right subideal is an ideal of M. [8, Proposition 3] shows that simple projective right module over right CM ring is injective.

A ring R is right finitely embedded if, $Soc(R_R)$ is finite generated and right essential in R_R . Note that a right finitely embedded right PS ring need not be semiprime. We conclude the paper with a few characteristic properties of semisimple artinian rings.

Theorem 5.9. The following are equivalent for a ring R.

- (1) R is a semisimple artinian ring.
- (2) R is a right CM, right finitely embedded and right PS ring.
- (3) R is a semiprime, right Jcp-injective and left or right Goldie ring.

Proof. Clearly, $(1) \Rightarrow (2)$ and (3).

 $(2) \Rightarrow (1)$ Since R is a right PS right finitely embedded ring, $Soc(R_R)$ is a semisimple projective right R-module. Because R is a right CM ring, $Soc(R_R)$ is an injective right R-module. Hence $Soc(R_R) = eR$, where $e^2 = e \in R$. But then $Soc(R_R) = R$, because $Soc(R_R)$ is essential in R_R . Hence R is semisimple artinian.

 $(3) \Rightarrow (1)$ Assume (3). Then R has a left (or right) fraction ring Q, and Q is a semisimple artinian ring. If Q is a left fraction ring, then for every $x \in Q$, $x = a^{-1}b$, where $a, b \in R$ and l(a) = r(a) = 0, so $a \notin Z_r$. Since R is a right *Jcp*-injective ring, there exists $c \in R$ such that ca = 1 and then ac = 1. Hence $a^{-1} \in R$ and so $x \in R$. Thus R = Q is a semisimple artinian ring.

References

- G. Azumaya, Finite splitness and finite projectivity, J. Algebra, 106 (1987),114-134.
- [2] V. Camillo, Commutative ring whose principal ideals are annihilators, Port. Math., 46 (1)(1989), 33-37.
- [3] J.L. Chen and N.Q. Ding, On General principally injective rings, Comm. Algebra, 27 (1999), 2097-2116.

WEI JUNCHAO

- [4] C. Faith and P. Menal, A counter example to a conjecture of Johns, Proc. Amer. Math. Soc., 116 (1992), 21-26.
- [5] J.Y. Kim, N.K. Kim and S.B. Nam, Some comments on simple singular GPinjective modules, Kyungpook Math. J., 41 (2001), 23-27.
- [6] N.K. Kim, S.B. Nam and J.Y. Kim, On simple singular GP-injective modules, Comm. Algebra, 27(5) (1999), 2087-2096.
- [7] R. Yue Chi Ming, On annihilator ideals, Math. J. Okayama Univ., 19 (1976), 51-53.
- [8] R. Yue Chi Ming, On Quasi-Frobeniusean and artinian rings, Publications De L'institut Math ématique, 33(47) (1983),239-245.
- [9] S.B. Nam, N.K. Kim and J.Y. Kim, On simple GP-injective modules, Comm. Algebra, 23(14) (1995), 5437-5444.
- [10] W.K. Nicholson and J.F. Watters, *Rings with projective socle*, Proc. Amer. Math. Soc., 102 (1988), 443-450.
- [11] W.K. Nicholson and M.F. Yousif, *Principally injective rings*, J. Algebra, 174 (1995), 77-93.
- [12] W.K. Nicholson and M.F. Yousif, *Mininjective rings*, J. Algebra, 187 (1997), 548-578.
- [13] W.K. Nicholson and M.F. Yousif, Weakly continuous and C2-rings, Comm. Algebra, 29(6) (2001), 2429-2466.
- [14] S. Page and Y. Zhou, Generalization of principally injective ring, J. Algebra, 206 (1998), 706-721.
- [15] J.C. Wei and J.H. Chen, Nil-injective rings, Int. Electron. J. Algebra, 2 (2007), 1-21.
- [16] J.C. Wei, The rings characterized by minimal left ideal, Acta Math. Sin.(Engl. Ser.), 21(3) (2005), 473-482.
- [17] S.L. Zhu, On rings over which every flat left module is finitely projective, J. Algebra, 139 (1991), 19-27.

Wei Junchao

School of Mathematics Science, Yangzhou University, Yangzhou,225002, Jiangsu, P. R. China e-mail: jcweiyz@yahoo.com.cn