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Abstract. In this paper, we prove that if a ring R with identity is NI and

satisfies (CZ2), then R is right (left) weakly π-regular if and only if R/N ∗(R)

is right (left) weakly π-regular, if and only if every strongly prime ideal of R

is maximal.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity. We use

P(R), N ∗(R) and N (R) to denote the prime radical of R, the unique maximal nil

ideal and the set of all nilpotent elements of R, respectively. Recall that a ring R is

called reduced if it has no non zero nilpotent elements and called nil semisimple if

it has no non zero nil ideals. An ideal P is said to be prime (semiprime) if for any

a, b ∈ R, aRb ⊆ P (aRa ⊆ P ) implies that either a ∈ P or b ∈ P (a ∈ P ). An ideal

P is called strongly prime [5] if P is prime and R/P is nil semisimple. All strongly

prime ideals are taken to be proper. We say that an ideal P of a ring R is minimal

strongly prime if P is minimal among strongly prime ideals of R. We use Spec(R)

and (m)Spec(R) to denote the set of all strongly prime ideals of R and the set of

all minimal strongly prime ideals of R, respectively. Observe that for a ring R,

N ∗ (R) = ∩{a ∈ R | (a) is nil ideal of R}
= ∩{P |P is a minimal strongly prime ideal of R}
= ∩{P |P is a strongly prime ideal of R}.

An ideal P is called completely prime if for any a, b ∈ R, ab ∈ P implies a ∈ P or

b ∈ P. Note that every completely prime ideals are strongly prime, every strongly

prime ideals are prime, but the converse need not be holds.

A ring R is called 2-primal if P(R) = N (R) [1]. We refer to [1, 2, 3] for more

detail of 2-primal rings. A ring R is called NI if N ∗(R) = N (R). Clearly, every

2-primal rings are NI, but the converse need not true by [5, Example 1.2]. Note
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that a ring R is reduced if and only if R is semiprime and 2-primal, if and only if R

is nil semisimple and NI. Hong and Kwak [4] characterized a ring R whose unique

maximal nil ideal N ∗(R) coincides with the set of all its nilpotent elements N (R)

(i.e., an NI ring in our sense). Recently Hwang, Jeon and Lee [5] studied the basic

structure of NI rings. In this paper, we show that if a ring R with identity is NI

and satisfies (CZ2), then R is right (left) weakly π-regular if and only if R/N ∗(R)

is right (left) weakly π-regular, if and only if every strongly prime ideal of R is

maximal.

2. Preliminaries

Definition 2.1. [4] An ideal I of a ring R is said to have Insertion Factors Property

(IFP) if for any a, b ∈ I, ab ∈ I implies that aRb ⊆ I. A ring R is said to have IFP

if the ideal (0) has IFP.

Definition 2.2. The Jacobson radical of a ring R is denoted by J (R), and is

defined by

J (R) = ∩{maximal left ideals of R}.

Definition 2.3. A ring R is called local if the set of all non invertible elements of

R is an ideal of R.

Definition 2.4. [3] Let R be a ring with x, y ∈ R and n a positive integer. We say

that R satisfies the

(i) (CZ1) condition if whenever (xy)n = 0 then xmym = 0 for some positive

integer m.

(ii) (CZ2) condition if whenever (xy)n = 0 then xmRym = 0 for some positive

integer m.

Observe that any local ring with nil Jacobson radical satisfies condition (CZ2)

[3, Definition 1.3].

Definition 2.5. A ring R is right (left) weakly π-regular if for any a ∈ R, there

exists a natural number n = n(a) depending on a such that an ∈ anRanR(an ∈
RanRan). A ring R is called weakly π-regular if it is both right and left weakly

π-regular.
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Definition 2.6. [4] For a ring R and P ∈ Spec(R) we get

O(P ) = {a ∈ R | aRb = 0 for some b ∈ R \ P},
OP = {a ∈ R | ab = 0 for some b ∈ R \ P},

O(P ) = {a ∈ R | am ∈ O(P ) for some positive integer m},
OP = {a ∈ R | am ∈ OP for some positive integer m},

N(P ) = {a ∈ R | aRb ⊆ N ∗(R) for some b ∈ R \ P}.

3. NI rings which are weakly π-regular

In this section, we show that if R is an NI ring which satisfies the condition

(CZ2), then (i) every strongly prime ideals are maximal if and only if R is right

(left) weakly π-regular; (ii) P ∈ (m)Spec(R) if and only if P = O(P ) and give an

example which illustrates the condition (CZ2) is not superfluous in (ii).

The proof of the following theorem is given in [4, Corollary 13]. But we prove it

in a different way.

Theorem 3.1. For a ring R, the following are equivalent.

(i) R is an NI ring;

(ii) Every minimal strongly prime ideal of R is completely prime.

Proof. (ii) ⇒ (i) Let xn = 0 for some positive integer n. Then xn ∈ P for all

completely prime ideal P of R. Hence x ∈ P for all P . Since every minimal strongly

prime ideal of R is completely prime, x ∈ ∩
P∈(m)Spec(R)

P = N ∗(R). Therefore R is

an NI ring.

(i) ⇒ (ii) Let P be a minimal strongly prime ideal of R. Let a, b ∈ R such that

ab ∈ P and b /∈ P. We show that a ∈ P.

Case (i) Suppose that (ab)k = 0 for some k. Then (ab)k ∈ N ∗(R). Since N ∗(R)

is completely semiprime (i.e., a2 ∈ N ∗(R) implies a ∈ N ∗(R) for a ∈ R) , akbk ∈
N ∗(R). Since b /∈ P, there exist z1, z2, z3, · · · , zk−1 ∈ R such that bz1bz2 · · · zk−1b /∈
P and since N ∗(R) has IFP, akR( bz1bz2 · · · zk−1b) ∈ N ∗(R). Again using com-

pletely semiprimeness of N ∗(R) , we have aRbz1bz2 · · · zk−1b ∈ N ∗(R). Hence

a ∈ N(P ) ⊆ P.

Case (ii) Suppose (ab)k 6= 0 for all k > 0. Let S = {(ab)n |n ≥ 1}, L = R \ P and

T = {r ∈ R | r 6= 0, r = (ab)t0x1(ab)t1x2 · · · (ab)tn where ti ≥ 1, i = 1, 2, · · · , n −
1, ti ≥ 0, i = 0, n and xi ∈ L for all i}. Clearly, S 6= {0} and L ⊆ T. Let M = S∪T.

We shall prove that M is a multiplicative monoid in R \ {0}. Let x, y ∈ M.

If x, y ∈ S, then xy ∈ S ⊆ M . If x ∈ S and y ∈ T, then let x = (ab)q for

some q > 0 and y = (ab)t0x1(ab)t1 · · ·xn(ab)tn . Suppose xy = 0. Take m =
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q + t0 + t1 + · · · + tn and w = by1x1y2x2 · · · ynxn /∈ P for some y1, y2, · · · , yn ∈ R

because b, x1, x2, · · · , xn /∈ P. Since xy = 0 and N ∗(R) has IFP, we can easily

prove that (aw)m ∈ N ∗(R). By case (i), a ∈ P. Therefore assume that xy 6= 0.

Then clearly from the definition of T, xy ∈ T ⊆ M. Similarly, we can show that if

x, y ∈ T then xy ∈ T ⊆ M. Thus we have M is a multiplicative monoid in R \ {0}.
By Zorn’s lemma, there is an ideal Q of R which is maximal with respect to the

property that Q ∩ M = φ. By [5, Lemma 2.2], Q is a strongly prime ideal of R.

Since Q∩M = φ, ab /∈ Q and Q ⊆ P. Since P is a minimal strongly prime, Q = P.

Therefore ab /∈ P, which is a contradiction and consequently a ∈ P. ¤

The following theorem shows that in the case of NI ring which satisfies (CZ2),

the condition “R/N ∗(R) is right weakly π-regular” in [4, Proposition 18] can be

replaced by the condition “R is right weakly π-regular”.

Theorem 3.2. Let R be an NI ring satisfying (CZ2). Then the following are

equivalent.

(1) R is right (left) weakly π-regular;

(2) R/N ∗(R) is right (left) weakly π-regular;

(3) Every strongly prime ideal of R is maximal.

Proof. It is enough to prove that (3) ⇒ (1), because (1) ⇒ (2) is clear and (2)

⇒(3) is proved in [4, Proposition 18]. Suppose R is not right weakly π-regular.

Then there exists an element a ∈ R such that a is not right weakly π-regular. So

we have ak /∈ akRakR for every positive integer k. Hence ak 6= 0 for all k > 0

and a /∈ aRaR. Then RaR is contained in a maximal ideal which is also a strongly

prime ideal. Let T be the union of all strongly prime ideals which contain a. Let

S = R\T. Since every strongly prime ideal is maximal, every strongly prime ideal is

minimal. Since every minimal strongly prime ideal is completely prime by Theorem

3.1, S is a multiplicatively closed set. Let F = {at0b1a
t1 ...bnatn 6= 0 | bi ∈ S and

ti ∈ {0} ∪ N where N is the set of all positive integers}. Let L = {a, a2, ...}. Let

M = F ∪L. Clearly, S ⊆ F ⊆ M. We shall claim that M is a multiplicative monoid

in R \ {0}. Let x, y ∈ M . Assume x ∈ F and y ∈ L. Suppose that xy = 0.

Take x = at0b1a
t1 ...bnatn and y = ar. Choose m = t0 + t1 + ... + tn + r and

b = b1y1b2y2...yn−1bn /∈ P for some y1, y2, ..., yn−1 ∈ R. Then xy = 0 implies that

(ab)m ∈ N ∗(R) and hence (ab)k = 0 for some k. Since R satisfies (CZ2), aqRbq = 0

for some q > 0. Observe that a strongly prime ideal cannot contain both aq and

bq, otherwise a strongly prime ideal would contain both of them which contradicts

the definition of S and T . Hence RaqR + RbqR = R. So aqR = aqRaqR + aqRbqR.
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Since aqRbq = 0, aq ∈ aqRaqR. This shows that a is right weakly π-regular, a

contradiction. Hence 0 6= xy ∈ M. Similarly, we can prove that if x, y ∈ F then

0 6= xy ∈ M. Thus M is a multiplicative monoid in R\{0}. By Zorn’s Lemma, there

is an ideal Q which is maximal with respect to the property that Q ∩M = φ. By

[5, Lemma 2.2], Q is a strongly prime ideal of R. Since a /∈ Q,Q+RaR = R. Hence

1 = b + c for some b ∈ Q and c ∈ RaR. This gives b /∈ T. So that b ∈ S ⊆ F ⊆ M,

which implies Q ∩ M 6= φ, a contradiction and consequently R is right weakly

π-regular. The proof of the left case is similar. ¤

Corollary 3.3. Let R be a 2-primal ring satisfying condition (CZ2). Then the

following are equivalent.

(1) R is right weakly π-regular;

(2) R/N ∗(R) is right weakly π-regular;

(3) R/P(R) is right weakly π-regular;

(4) Every prime ideal of R is maximal;

(5) Every strongly prime ideal of R is maximal.

Proof. (1) ⇒ (3) is clear. (3) ⇒ (4) and (4) ⇒ (5) are proved in [4, Corollary 19].

(1) ⇒ (2) and (2) ⇒ (5) follow from Theorem 3.2. ¤

Theorem 3.4. Let R be an NI ring and P a strongly prime ideal of R.

(1) If R satisfies (CZ1), then P is a minimal strongly prime ideal of R if and

only if P = OP .

(2) If R satisfies (CZ2), then P is a minimal strongly prime ideal of R if and

only if P = O(P ).

Proof. (1) Let P be a minimal strongly prime ideal of R. Then by Theorem 3.1, P

is completely prime and so S = R \P is a multiplicatively closed set. If we suppose

that ak = 0 for some k > 0, then there is nothing to prove. Assume that ak 6= 0

for all k > 0. Construct M as in the proof of Theorem 3.2. Let x, y ∈ M. Then

either xy = 0 or xy 6= 0. By the similar method to that of Theorem 3.2, we obtain

either (ad)k = 0 for some k, d ∈ R \ P or Q ∩M = φ for some strongly prime ideal

Q. Suppose the latter is true. Then Q ⊆ P. Since P is minimal strongly prime,

Q = P . So that a ∈ Q and hence Q ∩M 6= φ, a contradiction. Thus

(ad)k = 0 for some k > 0 (1)

Since R satisfies (CZ1), aqdq = 0 for some q > 0. Hence aq ∈ OP , because dq ∈ S

and consequently a ∈ OP . Hence P ⊆ OP . Let x ∈ OP . Then there exist a positive

integer n and s ∈ R\P such that xns = 0 and so xns ∈ N ∗(R). Since R is NI ,
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N ∗(R) is completely semiprime and therefore we obtain xs ∈ N ∗(R). Since N ∗(R)

has IFP, xRs ⊆ N ∗(R) ⊆ P. Since P is strongly prime, x ∈ P . Therefore OP ⊆ P.

Thus OP = P.

Conversely, assume that OP = P. We have to show that P is a minimal strongly

prime ideal of R. Suppose that there is a strongly prime ideal Q of R such that

Q ⊆ P. Then P = OP ⊆ OQ ⊆ Q. So that P = Q. Therefore P is a minimal

strongly prime ideal of R.

(2) Let P be a minimal strongly prime ideal of R and let a ∈ P. From equation (1) of

part (1), we have (ad)k = 0 for some k > 0 and d ∈ R \ P. Since R satisfies (CZ2),

aqRdq = 0 for some q > 0. Since P is minimal strongly prime, P is completely

prime by Theorem 3.1. Hence dq ∈ R \P and so that aq ∈ O(P ) and consequently

a ∈ O(P ) . Let x ∈ O(P ). Then xnRs = 0 for some n > 0 and s ∈ R \ P.

Hence xnRs ⊆ N ∗(R). From the completely semiprimeness of N ∗(R) and strongly

primeness of P , we obtain x ∈ P. Therefore O(P ) ⊆ P. Thus P = O(P ).

The converse is similar to the converse of part (1). ¤

Corollary 3.5. Let R be a ring which satisfies the condition (CZ1). Then R is

NI if and only if P = OP for every minimal strongly prime ideal P of R.

Proof. Suppose that P = OP for every minimal strongly prime ideal P of R.

Then N ∗(R) =
⋂

P∈(m)Spec(R)

OP . Let xn = 0 for some n > 0. Then xn ∈ OP for all

P ∈ (m)Spec(R) and consequently x ∈ N ∗(R). Thus R is NI. The converse follows

from Theorem 3.4. ¤

The following example shows that the conditions (CZ1) and (CZ2) are not su-

perfluous in Theorem 3.4.

Example 3.6. There is an NI ring in which OP 6= P and O(P ) 6= P for some

minimal strongly prime ideal P of R:

Let S be a domain that is not right Ore. So there are two non zero elements a

and b in S such that aS ∩ bS = 0. Consider the ring R =

(
S S

0 S

)
. Since S is

NI, the ring R is also NI by [5, Proposition 4.1]. It can be easily checked that the

ideal P =

(
S S

0 S

)
is a minimal strongly prime ideal of R.

Clearly, x =

(
a b

0 0

)
∈ P. But we claim that x /∈ OP . Assume to the contrary

that x ∈ OP . Then there is a positive integer n and an element y ∈ R \P such that

xny = 0, say y =

(
α β

0 γ

)
, where α, β, γ ∈ S. Since y ∈ R \ P, γ 6= 0.
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Now

xny =

(
an an−1b

0 0

)(
α β

0 γ

)
= 0.

It follows that anβ+an−1bγ = 0 and so aβ+bγ = 0. Thus aβ = b(−γ) ∈ aS∩bS =

0. So bγ = 0. Since γ 6= 0 and S is a domain, b = 0, which is a contradiction and

consequently x /∈ OP . Thus P 6= OP .

We note that if O(P ) = P then OP = P, for any strongly prime ideal P of R.

Therefore O(P ) 6= P .
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