NI RINGS WHICH ARE WEAKLY π -REGULAR

C. Selvaraj and S. Petchimuthu

Received: 10 April 2008; Revised 17 June 2009 Communicated by A. Çiğdem Özcan

ABSTRACT. In this paper, we prove that if a ring R with identity is NI and satisfies (CZ2), then R is right (left) weakly π -regular if and only if $R/\mathcal{N}^*(R)$ is right (left) weakly π -regular, if and only if every strongly prime ideal of R is maximal.

Mathematics Subject Classification (2000): 16D50, 16E20 Key words: strongly prime, weakly π -regular, completely prime.

1. Introduction

Throughout this paper, R denotes an associative ring with identity. We use $\mathcal{P}(R)$, $\mathcal{N}^*(R)$ and $\mathcal{N}(R)$ to denote the prime radical of R, the unique maximal nil ideal and the set of all nilpotent elements of R, respectively. Recall that a ring R is called reduced if it has no non zero nilpotent elements and called nil semisimple if it has no non zero nil ideals. An ideal P is said to be prime (semiprime) if for any $a, b \in R, aRb \subseteq P(aRa \subseteq P)$ implies that either $a \in P$ or $b \in P(a \in P)$. An ideal P is called strongly prime [5] if P is prime and R/P is nil semisimple. All strongly prime ideals are taken to be proper. We say that an ideal P of a ring R is minimal strongly prime if P is minimal among strongly prime ideals of R. We use Spec(R) and (m)Spec(R) to denote the set of all strongly prime ideals of R and the set of all minimal strongly prime ideals of R, respectively. Observe that for a ring R,

 $\mathcal{N}^*(R) = \bigcap \{ a \in R \mid (a) \text{ is nil ideal of } R \}$ = $\bigcap \{ P \mid P \text{ is a minimal strongly prime ideal of } R \}$ = $\bigcap \{ P \mid P \text{ is a strongly prime ideal of } R \}.$

An ideal P is called completely prime if for any $a, b \in R, ab \in P$ implies $a \in P$ or $b \in P$. Note that every completely prime ideals are strongly prime, every strongly prime ideals are prime, but the converse need not be holds.

A ring R is called 2-primal if $\mathcal{P}(R) = \mathcal{N}(R)$ [1]. We refer to [1, 2, 3] for more detail of 2-primal rings. A ring R is called NI if $\mathcal{N}^*(R) = \mathcal{N}(R)$. Clearly, every 2-primal rings are NI, but the converse need not true by [5, Example 1.2]. Note

that a ring R is reduced if and only if R is semiprime and 2-primal, if and only if R is nil semisimple and NI. Hong and Kwak [4] characterized a ring R whose unique maximal nil ideal $\mathcal{N}^*(R)$ coincides with the set of all its nilpotent elements $\mathcal{N}(R)$ (i.e., an NI ring in our sense). Recently Hwang, Jeon and Lee [5] studied the basic structure of NI rings. In this paper, we show that if a ring R with identity is NI and satisfies (CZ2), then R is right (left) weakly π -regular if and only if $R/\mathcal{N}^*(R)$ is right (left) weakly π -regular, if and only if every strongly prime ideal of R is maximal.

2. Preliminaries

Definition 2.1. [4] An ideal I of a ring R is said to have Insertion Factors Property (IFP) if for any $a, b \in I, ab \in I$ implies that $aRb \subseteq I$. A ring R is said to have IFP if the ideal (0) has IFP.

Definition 2.2. The Jacobson radical of a ring R is denoted by $\mathcal{J}(R)$, and is defined by

$$\mathcal{J}(R) = \cap \{ maximal \ left \ ideals \ of \ R \}.$$

Definition 2.3. A ring R is called local if the set of all non invertible elements of R is an ideal of R.

Definition 2.4. [3] Let R be a ring with $x, y \in R$ and n a positive integer. We say that R satisfies the

- (i) (CZ1) condition if whenever $(xy)^n = 0$ then $x^m y^m = 0$ for some positive integer m.
- (ii) (CZ2) condition if whenever $(xy)^n = 0$ then $x^m R y^m = 0$ for some positive integer m.

Observe that any local ring with nil Jacobson radical satisfies condition (CZ2) [3, Definition 1.3].

Definition 2.5. A ring R is right (left) weakly π -regular if for any $a \in R$, there exists a natural number n = n(a) depending on a such that $a^n \in a^n Ra^n R(a^n \in Ra^n Ra^n)$. A ring R is called weakly π -regular if it is both right and left weakly π -regular.

Definition 2.6. [4] For a ring R and $P \in Spec(R)$ we get

$$O(P) = \{a \in R \mid aRb = 0 \text{ for some } b \in R \setminus P\},\$$

$$O_P = \{a \in R \mid ab = 0 \text{ for some } b \in R \setminus P\},\$$

$$\overline{O(P)} = \{a \in R \mid a^m \in O(P) \text{ for some positive integer } m\},\$$

$$\overline{O}_P = \{a \in R \mid a^m \in O_P \text{ for some positive integer } m\},\$$

$$N(P) = \{a \in R \mid aRb \subseteq \mathcal{N}^*(R) \text{ for some } b \in R \setminus P\}.$$

3. NI rings which are weakly π -regular

In this section, we show that if R is an NI ring which satisfies the condition (CZ2), then (i) every strongly prime ideals are maximal if and only if R is right (left) weakly π -regular; (ii) $P \in (m)Spec(R)$ if and only if $P = \overline{O(P)}$ and give an example which illustrates the condition (CZ2) is not superfluous in (ii).

The proof of the following theorem is given in [4, Corollary 13]. But we prove it in a different way.

Theorem 3.1. For a ring R, the following are equivalent.

- (i) R is an NI ring;
- (ii) Every minimal strongly prime ideal of R is completely prime.

Proof. (ii) \Rightarrow (i) Let $x^n = 0$ for some positive integer n. Then $x^n \in P$ for all completely prime ideal P of R. Hence $x \in P$ for all P. Since every minimal strongly prime ideal of R is completely prime, $x \in \bigcap_{P \in (m)Spec(R)} P = \mathcal{N}^*(R)$. Therefore R is an NI ring.

(i) \Rightarrow (ii) Let P be a minimal strongly prime ideal of R. Let $a, b \in R$ such that $ab \in P$ and $b \notin P$. We show that $a \in P$.

Case (i) Suppose that $(ab)^k = 0$ for some k. Then $(ab)^k \in \mathcal{N}^*(R)$. Since $\mathcal{N}^*(R)$ is completely semiprime (*i.e.*, $a^2 \in \mathcal{N}^*(R)$ implies $a \in \mathcal{N}^*(R)$ for $a \in R$), $a^k b^k \in \mathcal{N}^*(R)$. Since $b \notin P$, there exist $z_1, z_2, z_3, \cdots, z_{k-1} \in R$ such that $bz_1bz_2\cdots z_{k-1}b \notin P$ and since $\mathcal{N}^*(R)$ has IFP, $a^k R(bz_1bz_2\cdots z_{k-1}b) \in \mathcal{N}^*(R)$. Again using completely semiprimeness of $\mathcal{N}^*(R)$, we have $aRbz_1bz_2\cdots z_{k-1}b \in \mathcal{N}^*(R)$. Hence $a \in N(P) \subseteq P$.

Case (ii) Suppose $(ab)^k \neq 0$ for all k > 0. Let $S = \{(ab)^n \mid n \ge 1\}, L = R \setminus P$ and $T = \{r \in R \mid r \neq 0, r = (ab)^{t_0} x_1 (ab)^{t_1} x_2 \cdots (ab)^{t_n}$ where $t_i \ge 1, i = 1, 2, \cdots, n - 1, t_i \ge 0, i = 0, n$ and $x_i \in L$ for all $i\}$. Clearly, $S \neq \{0\}$ and $L \subseteq T$. Let $M = S \cup T$. We shall prove that M is a multiplicative monoid in $R \setminus \{0\}$. Let $x, y \in M$. If $x, y \in S$, then $xy \in S \subseteq M$. If $x \in S$ and $y \in T$, then let $x = (ab)^q$ for some q > 0 and $y = (ab)^{t_0} x_1 (ab)^{t_1} \cdots x_n (ab)^{t_n}$. Suppose xy = 0. Take m = 1.

 $q + t_0 + t_1 + \dots + t_n$ and $w = by_1 x_1 y_2 x_2 \dots y_n x_n \notin P$ for some $y_1, y_2, \dots, y_n \in R$ because $b, x_1, x_2, \dots, x_n \notin P$. Since xy = 0 and $\mathcal{N}^*(R)$ has IFP, we can easily prove that $(aw)^m \in \mathcal{N}^*(R)$. By case (i), $a \in P$. Therefore assume that $xy \neq 0$. Then clearly from the definition of $T, xy \in T \subseteq M$. Similarly, we can show that if $x, y \in T$ then $xy \in T \subseteq M$. Thus we have M is a multiplicative monoid in $R \setminus \{0\}$. By Zorn's lemma, there is an ideal Q of R which is maximal with respect to the property that $Q \cap M = \phi$. By [5, Lemma 2.2], Q is a strongly prime ideal of R. Since $Q \cap M = \phi, ab \notin Q$ and $Q \subseteq P$. Since P is a minimal strongly prime, Q = P. Therefore $ab \notin P$, which is a contradiction and consequently $a \in P$.

The following theorem shows that in the case of NI ring which satisfies (CZ2), the condition " $R/\mathcal{N}^*(R)$ is right weakly π -regular" in [4, Proposition 18] can be replaced by the condition "R is right weakly π -regular".

Theorem 3.2. Let R be an NI ring satisfying (CZ2). Then the following are equivalent.

- (1) R is right (left) weakly π -regular;
- (2) $R/\mathcal{N}^*(R)$ is right (left) weakly π -regular;
- (3) Every strongly prime ideal of R is maximal.

Proof. It is enough to prove that $(3) \Rightarrow (1)$, because $(1) \Rightarrow (2)$ is clear and (2) \Rightarrow (3) is proved in [4, Proposition 18]. Suppose R is not right weakly π -regular. Then there exists an element $a \in R$ such that a is not right weakly π -regular. So we have $a^k \notin a^k R a^k R$ for every positive integer k. Hence $a^k \neq 0$ for all k > 0and $a \notin aRaR$. Then RaR is contained in a maximal ideal which is also a strongly prime ideal. Let T be the union of all strongly prime ideals which contain a. Let $S = R \setminus T$. Since every strongly prime ideal is maximal, every strongly prime ideal is minimal. Since every minimal strongly prime ideal is completely prime by Theorem 3.1, S is a multiplicatively closed set. Let $F = \{a^{t_0}b_1a^{t_1}...b_na^{t_n} \neq 0 \mid b_i \in S \text{ and }$ $t_i \in \{0\} \cup \mathbb{N}$ where \mathbb{N} is the set of all positive integers}. Let $L = \{a, a^2, ...\}$. Let $M = F \cup L$. Clearly, $S \subseteq F \subseteq M$. We shall claim that M is a multiplicative monoid in $R \setminus \{0\}$. Let $x, y \in M$. Assume $x \in F$ and $y \in L$. Suppose that xy = 0. Take $x = a^{t_0} b_1 a^{t_1} \dots b_n a^{t_n}$ and $y = a^r$. Choose $m = t_0 + t_1 + \dots + t_n + r$ and $b = b_1 y_1 b_2 y_2 \dots y_{n-1} b_n \notin P$ for some $y_1, y_2, \dots, y_{n-1} \in R$. Then xy = 0 implies that $(ab)^m \in \mathcal{N}^*(R)$ and hence $(ab)^k = 0$ for some k. Since R satisfies (CZ2), $a^q R b^q = 0$ for some q > 0. Observe that a strongly prime ideal cannot contain both a^q and b^q , otherwise a strongly prime ideal would contain both of them which contradicts the definition of S and T. Hence $Ra^qR + Rb^qR = R$. So $a^qR = a^qRa^qR + a^qRb^qR$. Since $a^q R b^q = 0$, $a^q \in a^q R a^q R$. This shows that a is right weakly π -regular, a contradiction. Hence $0 \neq xy \in M$. Similarly, we can prove that if $x, y \in F$ then $0 \neq xy \in M$. Thus M is a multiplicative monoid in $R \setminus \{0\}$. By Zorn's Lemma, there is an ideal Q which is maximal with respect to the property that $Q \cap M = \phi$. By [5, Lemma 2.2], Q is a strongly prime ideal of R. Since $a \notin Q, Q + RaR = R$. Hence 1 = b + c for some $b \in Q$ and $c \in RaR$. This gives $b \notin T$. So that $b \in S \subseteq F \subseteq M$, which implies $Q \cap M \neq \phi$, a contradiction and consequently R is right weakly π -regular. The proof of the left case is similar.

Corollary 3.3. Let R be a 2-primal ring satisfying condition (CZ2). Then the following are equivalent.

- (1) R is right weakly π -regular;
- (2) $R/\mathcal{N}^*(R)$ is right weakly π -regular;
- (3) $R/\mathcal{P}(R)$ is right weakly π -regular;
- (4) Every prime ideal of R is maximal;
- (5) Every strongly prime ideal of R is maximal.

Proof. (1) \Rightarrow (3) is clear. (3) \Rightarrow (4) and (4) \Rightarrow (5) are proved in [4, Corollary 19]. (1) \Rightarrow (2) and (2) \Rightarrow (5) follow from Theorem 3.2.

Theorem 3.4. Let R be an NI ring and P a strongly prime ideal of R.

- (1) If R satisfies (CZ1), then P is a minimal strongly prime ideal of R if and only if $P = \overline{O}_P$.
- (2) If R satisfies (CZ2), then P is a minimal strongly prime ideal of R if and only if $P = \overline{O(P)}$.

Proof. (1) Let P be a minimal strongly prime ideal of R. Then by Theorem 3.1, P is completely prime and so $S = R \setminus P$ is a multiplicatively closed set. If we suppose that $a^k = 0$ for some k > 0, then there is nothing to prove. Assume that $a^k \neq 0$ for all k > 0. Construct M as in the proof of Theorem 3.2. Let $x, y \in M$. Then either xy = 0 or $xy \neq 0$. By the similar method to that of Theorem 3.2, we obtain either $(ad)^k = 0$ for some $k, d \in R \setminus P$ or $Q \cap M = \phi$ for some strongly prime ideal Q. Suppose the latter is true. Then $Q \subseteq P$. Since P is minimal strongly prime, Q = P. So that $a \in Q$ and hence $Q \cap M \neq \phi$, a contradiction. Thus

$$(ad)^k = 0 \text{ for some } k > 0 \tag{1}$$

Since R satisfies (CZ1), $a^q d^q = 0$ for some q > 0. Hence $a^q \in O_P$, because $d^q \in S$ and consequently $a \in \overline{O}_P$. Hence $P \subseteq \overline{O}_P$. Let $x \in \overline{O}_P$. Then there exist a positive integer n and $s \in R \setminus P$ such that $x^n s = 0$ and so $x^n s \in \mathcal{N}^*(R)$. Since R is NI, $\mathcal{N}^*(R)$ is completely semiprime and therefore we obtain $xs \in \mathcal{N}^*(R)$. Since $\mathcal{N}^*(R)$ has IFP, $xRs \subseteq \mathcal{N}^*(R) \subseteq P$. Since P is strongly prime, $x \in P$. Therefore $\overline{O}_P \subseteq P$. Thus $\overline{O}_P = P$.

Conversely, assume that $\overline{O}_P = P$. We have to show that P is a minimal strongly prime ideal of R. Suppose that there is a strongly prime ideal Q of R such that $Q \subseteq P$. Then $P = \overline{O}_P \subseteq \overline{O}_Q \subseteq Q$. So that P = Q. Therefore P is a minimal strongly prime ideal of R.

(2) Let P be a minimal strongly prime ideal of R and let $a \in P$. From equation (1) of part (1), we have $(ad)^k = 0$ for some k > 0 and $d \in R \setminus P$. Since R satisfies (CZ2), $a^q R d^q = 0$ for some q > 0. Since P is minimal strongly prime, P is completely prime by Theorem 3.1. Hence $d^q \in R \setminus P$ and so that $a^q \in O(P)$ and consequently $a \in \overline{O(P)}$. Let $x \in \overline{O(P)}$. Then $x^n Rs = 0$ for some n > 0 and $s \in R \setminus P$. Hence $x^n Rs \subseteq \mathcal{N}^*(R)$. From the completely semiprimeness of $\mathcal{N}^*(R)$ and strongly primeness of P, we obtain $x \in P$. Therefore $\overline{O(P)} \subseteq P$. Thus $P = \overline{O(P)}$.

The converse is similar to the converse of part (1).

Corollary 3.5. Let R be a ring which satisfies the condition (CZ1). Then R is NI if and only if $P = \overline{O}_P$ for every minimal strongly prime ideal P of R.

Proof. Suppose that $P = \overline{O}_P$ for every minimal strongly prime ideal P of R. Then $\mathcal{N}^*(R) = \bigcap_{P \in (m) Spec(R)} \overline{O}_P$. Let $x^n = 0$ for some n > 0. Then $x^n \in O_P$ for all $P \in (m) Spec(R)$ and consequently $x \in \mathcal{N}^*(R)$. Thus R is NI. The converse follows from Theorem 3.4.

The following example shows that the conditions (CZ1) and (CZ2) are not superfluous in Theorem 3.4.

Example 3.6. There is an NI ring in which $\overline{O}_P \neq P$ and $\overline{O(P)} \neq P$ for some minimal strongly prime ideal P of R:

Let S be a domain that is not right Ore. So there are two non zero elements a and b in S such that $aS \cap bS = 0$. Consider the ring $R = \begin{pmatrix} S & S \\ 0 & S \end{pmatrix}$. Since S is NI, the ring R is also NI by [5, Proposition 4.1]. It can be easily checked that the ideal $P = \begin{pmatrix} S & S \\ 0 & S \end{pmatrix}$ is a minimal strongly prime ideal of R. Clearly, $x = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \in P$. But we claim that $x \notin \overline{O}_P$. Assume to the contrary that $x \in \overline{O}_P$. Then there is a positive integer n and an element $y \in R \setminus P$ such that $x^n y = 0$, say $y = \begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix}$, where $\alpha, \beta, \gamma \in S$. Since $y \in R \setminus P, \gamma \neq 0$. Now

$$x^{n}y = \begin{pmatrix} a^{n} & a^{n-1}b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix} = 0.$$

It follows that $a^n\beta + a^{n-1}b\gamma = 0$ and so $a\beta + b\gamma = 0$. Thus $a\beta = b(-\gamma) \in aS \cap bS = 0$. So $b\gamma = 0$. Since $\gamma \neq 0$ and S is a domain, b = 0, which is a contradiction and consequently $x \notin \overline{O}_P$. Thus $P \neq \overline{O}_P$.

We note that if $\overline{O(P)} = P$ then $\overline{O}_P = P$, for any strongly prime ideal P of R. Therefore $\overline{O(P)} \neq P$.

Acknowledgment: The authors wish to express their indebtedness and gratitude to the referee for the helpful suggestions and valuable comments.

References

- G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison conference 1992, edited by S.K. Jain and S.T. Rizvi, World Scientific, New Jersey (1993), 102-129.
- [2] G.F. Birkenmeier, J.Y. Kim and J.K. Park, A connection between weak regularity and the simplicity of prime factor rings, Proc. Amer. Math. Soc., 122 (1994), 53-58.
- [3] G.F. Birkenmeier, J.Y. Kim and J.K. Park, A characterization of minimal prime ideals, Glasgow Math J., 40 (1998) 223-236.
- [4] C.Y. Hong and T.K. Kwak, On minimal strongly prime ideals, Comm. Algebra, 28 (2000), 4867-4878.
- [5] S.U. Hwang, Y.C. Jeon and Y. Lee, Structure and topological conditions of NI rings, J. Algebra, 302 (2006),186-199.

C. Selvaraj and S. Petchimuthu

Department of Mathematics Periyar University Salem-636 011, India. email: selvavlr@yahoo.com (C. Selvaraj) spmuthuss@yahoo.co.in (S. Petchimuthu)