DIFFERENTIAL POLYNOMIALS OVER BAER RINGS

Ebrahim Hashemi
Received: 26 May 2008; Revised: 19 May 2009
Communicated by Syed M. Tariq Rizvi

Abstract

Let R be a ring with unity and δ a derivation on R. In this paper we extend a result of Armendariz on the Baer condition in a polynomial ring to a Baer condition in a nearring of differential polynomial. The nearring of differential has substitution for its "multiplication" operation.

Mathematics Subject Classification (2000): 16Y30, 16S36
Keywords: annihilator conditions, nearrings, derivation polynomial rings, Baer rings, Armendariz rings

1. Introduction

Throughout this paper all rings are associative and all nearrings are left nearrings. We use R and N to denote a ring and a nearring respectively. The study of Rickart rings has its roots in both functional analysis and homological algebra. In [18], Rickart studied C^{*}-algebra with the property that every right annihilator of any element is generated by a projection (an idempotent p is called a projection if $p=p^{*}$, where $*$ is an involution on the algebra). This condition is modified by Kaplansky [16] through introducing Baer rings (a ring R is called Baer if the right annihilator of every nonempty subset of R is generated, as a right ideal, by an idempotent of R) to abstract various properties of AW*-algebra and von Neumann algebra. See also Berberian [2] for more details.

A ring satisfying a generalization of Rickart's condition (i.e., every right annihilator of any element in R, as a right ideal, by an idempotent) has a homological characterization as a right $P P$ ring, i.e., every principal right ideal is projective. Left PP rings are defined similarly. In [9] Clark defines a ring to be quasi-Baer if the left annihilator of every ideal is generated, as a left ideal, by an idempotent. Then he used the quasi-Baer concept to characterize when a finite-dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. Every prime ring is a quasi-Baer ring. It is natural to ask if some of these properties can extended from a ring R to the polynomial ring

This research is supported by the Shahrood University of Technology at Iran.
$(R[x],+,$.$) and vice versa. Armendariz [1] and Birkenmeier et al. [5] obtained the$ following results:

Theorem B [1]. Let R be a reduced ring (i.e. R has no nonzero nilpotent element). Then R is a Baer (resp. PP) ring if and only if $(R[x],+,$.$) is a Baer$ (resp. PP) ring.

Theorem [5]. R is quasi-Baer if and only if $R[x]$ is quasi-Baer.
Armendariz provided an example to show that the reduced condition is not superfluous. A generalization of Armendariz's result for several types of polynomial extensions over Baer and quasi-Baer rings, are obtained by various authors [5,6,7, 12,14,15]. In [15] Hong et al. studied Ore extension of Baer and quasi-Baer rings.

Three commonly used operations for polynomials are addition " + ", multiplication "." and substitution " \circ " $[8,10,11,17]$, respectively. Observe that $(R[x],+,$.$) is$ a ring and $(R[x],+, \circ)$ is a left nearring where the substitution indicates substitution of $f(x)$ into $g(x)$, explicitly $f(x) \circ g(x)=((x) f) g$ for each $f(x), g(x) \in R[x]$. It is natural to investigate the nearring of polynomials $R[x]$ and the zero-symmetric nearring of polynomials $R_{0}[x]$. Birkenmeier and Huang in [3,4], have defined the Baer-type annihilator conditions in the class of nearrings as follows (for a nonempty $S \subseteq N$, let $r_{N}(S)=\{a \in N \mid S a=0\}$ and $\left.\ell_{N}(S)=\{a \in N \mid a S=0\}\right)$:
(1) $N \in \mathcal{B}_{r 1}$ if $r_{N}(S)=e N$ for some idempotent $e \in N$;
(2) $N \in \mathcal{B}_{r 2}$ if $r_{N}(S)=r_{N}(e)$ for some idempotent $e \in N$;
(3) $N \in \mathcal{B}_{\ell 1}$ if $\ell_{N}(S)=N e$ for some idempotent $e \in N$;
(4) $N \in \mathcal{B}_{\ell 2}$ if $\ell_{N}(S)=\ell_{N}(e)$ for some idempotent $e \in N$.

When S is a singleton, the Rickart-type annihilator conditions on nearrings are also defined similarly except replacing \mathcal{B} by \mathcal{R}. If the subset S considered in the above definition is replaced with an ideal, we obtain the quasi-Baer annihilator conditions in the class of nearrings, denoted by " $q \mathcal{B}$ " in the above notations. In particular they studied Baer-type conditions on the nearring of polynomials $R[x]$ (with the operations of addition and substitution) and formal power series by obtaining the following results: Let R be a reduced ring. (1) If R is Baer, then $R_{0}[x]$ (resp. $R_{0}[[x]]$) satisfies all the Baer-type annihilator conditions. (2) If $R_{0}[x]$ (resp. $\left.R_{0}[[x]]\right)$ satisfies any one of the Baer-type annihilator conditions, then R is Baer.

Let δ be a derivation of R, that is, δ is an additive map such that $\delta(a b)=$ $\delta(a) b+a \delta(b)$, for all $a, b \in R$. Since $R[x ; \delta]$ is an abelian nearring under addition and substitution, it is natural to investigate the nearring of differential polynomials $(R[x ; \delta],+, \circ)$ when R is Baer. We use $R[x ; \delta]$ to denote the left nearring of differential polynomials $\left(R[x ; \delta],+, \circ\right.$) with coefficients from R and $R_{0}[x ; \delta]=$
$\{f \in R[x ; \delta] \mid f$ has zero constant term $\}$ the 0 -symmetric subnearring of $R[x ; \delta]$. Let $(x) f=a_{0}+a_{1} x$ and $(x) g=b_{0}+b_{1} x+b_{2} x^{2} \in R[x ; \delta]$. Through a simple calculation, we have $(x) f \circ(x) g=((x) f) g=b_{0}+b_{1}((x) f)+b_{2}((x) f)^{2}=$ $\left(b_{0}+b_{1} a_{0}+b_{2} a_{0}^{2}+b_{2} a_{1} \delta\left(a_{0}\right)\right)+\left(b_{1} a_{1}+b_{2} a_{0} a_{1}+b_{2} a_{1} a_{0}+b_{2} a_{1} \delta\left(a_{1}\right)\right) x+b_{2} a_{1}^{2} x^{2}$.

2. Main Results

A nearring N is said to have the insertion of factors property (or simply IFP) if for all $a, b, n \in N, a b=0$ implies $a n b=0$. Clearly each reduced nearring has the IFP.

Lemma 2.1. Let R be a reduced ring and $a, b \in R$. Then we have the following:
(1) If $a b=0$, then $a \delta^{m}(b)=0=\delta^{m}(a) b$ for any positive integers m.
(2) If $e^{2}=e \in R$, then $\delta(e)=0$.

Proof. (1) It is enough to show that $a \delta(b)=\delta(a) b=0$. If $a b=0$, then $\delta(a b)=$ $\delta(a) b+a \delta(b)=0$. Hence $a \delta(a) b+a^{2} \delta(b)=0$, and that $a \delta(b)=0$, since R is reduced and $a b=0$.
(2) If $e^{2}=e$, then $\delta(e)=\delta(e) e+e \delta(e)$. Since R is reduced, so e belong to the center of R. Hence $2 e \delta(e)=e \delta(e)$, and that $e \delta(e)=0$. Thus $\delta(e)=0$.

Lemma 2.2. Let δ be a derivation of a ring R and $R[x ; \delta]$ the nearring of differential polynomials over R. Let R be a reduced ring. Then:
(1) If $(x) E \in R[x ; \delta]$ is an idempotent, then $(x) E=e_{1} x+e_{0}$, where e_{1} is an idempotent in R with $e_{1} e_{0}=0$.
(2) $R[x ; \delta]$ is reduced.

Proof. (1) Let $(x) E=e_{0}+\cdots+e_{n} x^{n}$ be an idempotent of $R[x ; \delta]$. Since (x) E 。 $(x) E=(x) E$, we have $e_{n}^{n+1}=0$, if $n \geq 2$. Thus $e_{n}=0$, since R is reduced. Therefore $(x) E=e_{0}+e_{1} x$. Clearly e_{1} is an idempotent of R and $e_{1} e_{0}=0$.
(2) Let $(x) f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \delta]$ such that $(x) f \circ(x) f=0$. Then $a_{n}^{n+1}=0$. Hence $a_{n}=0$, since R is reduced. By using induction on n, we have $a_{i}=0$ for each $0 \leq i \leq n$. Therefore $(x) f=0$ and $R[x ; \delta]$ is reduced.

The following example ([3], Example 3.5), shows that there exists a finite reduced commutative Baer ring R such that $R[x] \notin \mathcal{B}_{r 2}$.

Example 2.3. Let $R=Z_{6}$ and $S=\{2 x+2,2 x+5\}$. From Lemma 2.2, all idempotents in $Z_{6}[x]$ are $\{0,1,2,3,4,5, x, 3 x, 3 x+2,3 x+4,4 x, 4 x+3\}$. Note that $x-c \in r(c)$ and $x-c \notin r(S)$ for all constant idempotents $c \in Z_{6}[x]$. Also the possible idempotents $(x) E \in Z_{6}[x]$ such that $r(S)=r((x) E)$ are either $4 x$ or $4 x+3$.

Observe that $3 x \in r(4 x)$ but $3 x \notin r(S)$, and also $3 x^{3}+3 \in r(4 x+3)$ but $3 x^{3}+3 \notin$ $r(S)$. Therefore, there is no idempotent $(x) E \in Z_{6}[x]$ such that $r(S)=r((x) E)$. Consequently, $Z_{6}[x] \notin \mathcal{B}_{r 2}$.

$$
\text { If }(x) f=\sum_{i=0}^{n} a_{i} x^{i} \in R[x ; \delta] \text {, let } S_{f}^{*}=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} .
$$

Proposition 2.4. Let R be a reduced ring. Then:
(1) $R \in \mathcal{B}_{r 1}$ if and only if $R_{0}[x ; \delta] \in \mathcal{B}_{\ell 1}$.
(2) $R \in \mathcal{B}_{r 2}$ if and only if $R_{0}[x ; \delta] \in \mathcal{B}_{\ell 2}$.

Proof. (1) Assume $R \in \mathcal{B}_{r 1}$. Let S be a nonempty subset of $R_{0}[x ; \delta]$. Then $T=\cup_{f \in S} S_{f}^{*}$ is a nonempty subset of R. Hence $r_{R}(T)=e R$ for some idempotent $e \in R$, since $R \in \mathcal{B}_{r 1}$. We show that $\ell(S)=R_{0}[x ; \delta] \circ(e x)=e \cdot R_{0}[x ; \delta]$. Let $(x) f=$ $\sum_{i=1}^{m} a_{i} x^{i} \in S$. Since $\delta(e)=0$, we have $(e x) \circ(x) f=\sum_{i=1}^{m} a_{i}(e x)^{i}=\sum_{i=1}^{m} a_{i} e x^{i}=$ 0 . Thus $e x \in \ell(S)$ and hence $e \cdot R_{0}[x ; \delta] \subseteq \ell(S)$. Now, let $(x) h=\sum_{k=1}^{n} c_{k} x^{k} \in \ell(S)$ and $(x) f=a_{1} x \cdots+a_{m} x^{m} \in S$. Then $\sum_{i=1}^{m} a_{i}((x) h)^{i}=0$ and that $a_{m}\left(c_{n}\right)^{m}=0$. Hence $a_{m} c_{n}=c_{n} a_{m}=0$, since R is reduced. Thus $\sum_{i=0}^{m-1} a_{i} c_{n}((x) h)^{i}=0$ and that $(x) h \circ\left(c_{n} a_{1} x+\cdots+c_{n} a_{m-1} x^{m-1}\right)=0$. By using induction on $m+n$, we have $a_{i} c_{j}=0$ for $1 \leq i \leq m-1$ and $1 \leq j \leq n$. Therefore $c_{k}=e c_{k}$ for all $1 \leq k \leq n$. Hence $(x) h=e \sum_{k=1}^{n} c_{k} x^{k} \in e R_{0}[x ; \delta]$ and so $\ell(S)=R_{0}[x ; \delta] \circ(e x)$. Thus $R_{0}[x ; \delta] \in \mathcal{B}_{\ell 1}$.

Now, assume $R_{0}[x ; \delta] \in \mathcal{B}_{\ell 1}$. Let S be a nonempty subset of R, and define $S_{x}=\{s x \mid s \in S\}$ a subset of $R_{0}[x ; \delta]$. Then $\ell\left(S_{x}\right)=R_{0}[x ; \delta] \circ(e x)$ for some idempotent $e \in R$, by Lemma 2.2. For each $s x \in S_{x}, 0=(e x) \circ(s x)=$ sex. Therefore $e \in r_{R}(S)$. Now, let $a \in r_{R}(S)$. Then $(a x) \circ(s x)=s a x=0$ for each $s x \in S_{x}$. Thus $a x \in \ell\left(S_{x}\right)=R_{0}[x ; \delta] \circ(e x)=e \cdot R_{0}[x ; \delta]$. Hence $a=e a \in e R$. Thus $r_{R}(S)=e R$. Therefore $R \in \mathcal{B}_{r 1}$.
(2) Assume $R \in \mathcal{B}_{r 2}$. Let S be a nonempty subset of $R_{0}[x ; \delta]$. By a similar construction to that used in (1), we have $r_{R}(T)=r_{R}(e)$ for some idempotent $e \in R$. We claim $\ell(S)=\ell(e x)$. Let $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in \ell(e x)$. Then $0=(x) g \circ e x=e \cdot(x) g$. Hence $e b_{j}=0$ for all $1 \leq j \leq n$. Consequently, $b_{j} \in r_{R}(e)=r_{R}(T)$, for all $1 \leq$ $j \leq n$. Let $(x) f=\sum_{i=1}^{m} a_{i} x^{i} \in S$. Then $(x) g \circ(x) f=\sum_{i=1}^{m} a_{i}\left(\sum_{j=1}^{n} b_{j} x^{j}\right)^{i}=0$. Therefore $\ell(e x) \subseteq \ell(S)$. Now, let $(x) g=\sum_{j=1}^{n} b_{j} x^{j} \in \ell(S)$. Then by a similar way as used in $(1), b_{j} \in r_{R}(T)=r_{R}(e)$ for all $1 \leq j \leq n$. Thus $(x) g \circ(e x)=e \cdot(x) g=0$. Therefore $\ell(S)=\ell(e x)$ and so $R_{0}[x ; \delta] \in \mathcal{B}_{\ell 2}$.

Assume $R_{0}[x ; \delta] \in \mathcal{B}_{\ell 2}$. Let S be a nonempty subset of R and let $S_{x}=\{s x \mid s \in$ $S\}$. Then $\ell\left(S_{x}\right)=\ell((x) E)$ for some idempotent $(x) E=e x \in R_{0}[x ; \delta]$, by Lemma 2.2. We show that $r_{R}(S)=r_{R}(e)$. Let $a \in r_{R}(S)$. Then $a x \circ s x=s a x=0$ for all
$s x \in S_{x}$. Hence $a x \in \ell\left(S_{x}\right)=\ell((x) E)$. Thus $a x \circ e x=e a x=0$ and that $a \in r_{R}(e)$. Therefore $r_{R}(S) \subseteq r_{R}(e)$. Now, let $b \in r_{R}(e)$. Then $b x \circ e x=e b x=0$ and that $b x \in \ell\left(S_{x}\right)$. Thus $b x \circ s x=s b x=0$ for all $s \in S$. Hence $b \in r_{R}(S)$. Therefore $R \in \mathcal{B}_{r 2}$.

Corollary 2.5. Let R be a reduced ring. Then the following are equivalent:
(1) R is Baer;
(2) $(R[x ; \delta],+, \cdot)$ is Baer;
(3) $\left(R_{0}[x ; \delta],+, \circ\right) \in \mathcal{B}_{\ell 1} \cup \mathcal{B}_{\ell 2}$.

Proof. (1) $\Leftrightarrow(2)$ follows from [9], and (1) \Leftrightarrow (3) follows from Proposition 2.4.
Example 2.6. One can show that the following nearrings satisfy all the Baertype annihilator conditions discussed in this paper when R is reduced Baer ring: (i) $\{a x \mid a \in R\}$; (ii) $\left\{(x) f=\sum_{i=1}^{n} a_{2 i-1} x^{2 i-1} \in R_{0}[x] \mid a_{2 i-1} \in R, n \in N\right\}$; (iii) $E_{0}[x ; \delta]$, where E is a subring containing all idempotents of R.

An ideal I of a ring R is called δ-ideal whenever $\delta(I) \subseteq I$.
Theorem 2.7. Let R be a reduced ring. Then the following are equivalent:
(1) R is quasi-Baer;
(2) $R[x ; \delta] \in q \mathcal{B}_{r 2}$;
(3) $(R[x ; \delta],+,$.$) is quasi-Baer;$
(4) $R_{0}[x ; \delta] \in q \mathcal{B}_{r 1}$.

Proof. (1) $\Rightarrow(2)$ Let J be an ideal of $R[x ; \delta]$ and $B=r_{R[x ; \delta]}(J)$. Let J^{1} and B^{1} denote the set of all coefficients of elements of J and B respectively. Let $J^{1(\delta)}$ and $B^{1(\delta)}$ be the δ-ideals of R generated by J^{1} and B^{1} respectively. Hence $r_{R}\left(J^{1(\delta)}\right)=$ $r_{R}\left(J^{1}\right)$, by Lemma 2.1. We claim that $r_{R}\left(J^{1(\delta)}\right)=B^{1(\delta)}$ and $r_{S}(J)=B_{0}^{1(\delta)}[x ; \delta]$. Since $0 \in J$, we have $B \subseteq R_{0}[x ; \delta]$. Let $\sum_{i=1}^{n} b_{i} x^{i} \in B$ and $(x) g=\sum_{j=0}^{m} g_{j} x^{j} \in J$. Then $\left(\sum_{j=0}^{m} g_{j} x^{j}\right) \circ\left(\sum_{i=1}^{n} b_{i} x^{i}\right)=0$ and that $b_{i} g_{j}=g_{j} b_{i}=0$ for each $1 \leq i \leq$ $n, 1 \leq j \leq m$, since R is reduced. Hence $\left((x) g+b_{i} x^{2 m+1}\right) \circ x^{2}-b_{i} x^{2 m+1} \circ x^{2}=$ $g_{0}^{2}+\cdots+g_{0} b_{i} x^{2 m+1} \in J$ for each $1 \leq i \leq n$. Therefore $b_{i} g_{0} b_{i}=0$ for each $1 \leq i \leq n$, since R is reduced. Hence $g b=b g=0$ for each $g \in J^{1}$ and $b \in B^{1}$. Consequently $g \delta^{j}(b)=b \delta^{j}(g)=0$ for each nonnegative integers j and $b \in B^{1}, g \in J^{1}$, by Lemma 2.1. Therefore $B^{1(\delta)} \subseteq r_{R}\left(J^{1}\right)=r_{R}\left(J^{1(\delta)}\right)$ and $B_{0}^{1(\delta)}[x ; \delta] \subseteq r_{S}(J)$. But $r_{S}(J)=$ $B \subseteq B_{0}^{1(\delta)}[x ; \delta]$, so $r_{S}(J)=B_{0}^{1(\delta)}[x ; \delta]$. Let $t \in r_{R}\left(J^{1(\delta)}\right)$. Then $t J^{1}=J^{1} t=0$ and that $\sum_{j=0}^{m} g_{j} x^{j} \circ t x=0$ for each $\sum_{j=0}^{m} g_{j} x^{j} \in J$. Hence $t x \in B$ and that $t \in B^{1}$. Therefore $r_{R}\left(J^{1(\delta)}\right)=B^{1(\delta)}$. Since R is quasi-Baer and every idempotent of R is central, there exists an idempotent $e \in R$ such that $r_{R}\left(J^{1(\delta)}\right)=e R=R e$. Then
$\left.r_{R[x ; \delta]}(J)=e R_{0}[x ; \delta]=e x \circ R_{0}[x ; \delta]=r_{R[x ; \delta]}((1-e) x)\right)$, since $\delta(e)=0$. Therefore $R[x ; \delta] \in q \mathcal{B}_{r 2}$.
$(2) \Rightarrow(1)$ Let I be an ideal of R. Assume $I^{(\delta)}$ be the δ-ideal of R generated by I. Then $I^{(\delta)}[x ; \delta]$ is a left nearring of differential polynomials with coefficients from $I^{(\delta)}$. We first show that $I^{(\delta)}[x ; \delta]$ is an ideal of $R[x ; \delta]$. Let $(x) a=\sum_{i=0}^{n} a_{i} x^{i} \in$ $I^{(\delta)}[x ; \delta]$ and $(x) f,(x) g=\sum_{j=0}^{m} g_{j} x^{j} \in R[x ; \delta]$. Observe that $(x) f \circ(x) a=$ $\sum_{i=0}^{\infty} a_{i}((x) f)^{i} \in I^{(\delta)}[x ; \delta]$ and $((x) a+(x) f) \circ(x) g-(x) f \circ(x) g=\sum_{j=1}^{m} g_{j}((x) a+$ $(x) f)^{j}-\sum_{j=1}^{m} g_{j}((x) f)^{j}=\sum_{j=1}^{m} g_{j}\left[((x) a+(x) f)^{j}-((x) f)^{j}\right] \in I^{(\delta)}[x ; \delta]$, since the coefficients of $\left[((x) a+(x) f)^{j}-((x) f)^{j}\right]$ and $a_{j}((x) f)^{j}$ belong to $I^{(\delta)}$ for each j. Therefore $I^{(\delta)}[x ; \delta]$ is an ideal of $R[x ; \delta]$. Since $R[x ; \delta] \in q \mathcal{B}_{r 2}$, there exists an idempotent $(x) E=e_{1} x+e_{0} \in R[x ; \delta]$, where e_{1} is an idempotent in R with $e_{1} e_{0}=0$, such that $r_{R[x ; \delta]}\left(I^{(\delta)}[x ; \delta]\right)=r_{R[x ; \delta]}((x) E)$. Since $-e_{0}+\left(1-e_{1}\right) x \in r_{R[x ; \delta]}((x) E)$, we have $e_{0}=0$. On the other hand $r_{R[x ; \delta]}\left(e_{1} x\right)=\left(1-e_{1}\right) x \circ R_{0}[x ; \delta]=\left(1-e_{0}\right) R_{0}[x ; \delta]$. One can show that $r_{R}(I)=\left(1-e_{1}\right) R$. Therefore R is quasi-Baer.

The equivalence of (1) and (3) follows from Hong et al. [15].
$(4) \Rightarrow(1)$ Let I be an ideal of R. Assume that $I^{(\delta)}$ be the δ-ideal of R generated by I. Hence $I_{0}^{(\delta)}[x ; \delta]$, the 0 -symmetric left nearring of differential polynomials with coefficients from $I^{(\delta)}$, is an ideal of $R_{0}[x ; \delta]$. Since $R_{0}[x ; \delta] \in q \mathcal{B}_{r 1}$, there exists an idempotent $(x) \varepsilon \in R_{0}[x ; \delta]$ such that $r_{R_{0}[x ; \delta]}\left(I_{0}^{(\delta)}[x ; \delta]\right)=(x) \varepsilon \circ R_{0}[x ; \delta]$. By Lemma 2.2, $(x) \varepsilon=e x$ for some idempotent $e \in R$. Hence $r_{R_{0}[x ; \delta]}\left(I_{0}^{(\delta)}[x ; \delta]\right)=$ $(x) \varepsilon \circ R_{0}[x ; \delta]=e R_{0}[x ; \delta]$, since $\delta(e)=0$ and e is a central idempotent of R. Since $I \subseteq I^{(\delta)}$, hence reax $=a x \circ(e x \circ r x)=0$ for each $a \in I$ and $r \in R$. Consequently $e R I=I e R=0$, since R is reduced and e is a central idempotent of R. Hence $e R \subseteq r_{R}(I)$. Now, let $t \in r_{R}(I)$. Then $I t=t I=0$ an that $t I^{(\delta)}=0$, by Lemma 2.1. Hence $I_{0}^{(\delta)}[x ; \delta] \circ t x=0$. Thus $t x \in r_{S_{0}}\left(I_{0}^{(\delta)}[x ; \delta]\right)=e x \circ R_{0}[x ; \delta]$. Therefore $t x=e x \circ t x=t e x$ and that $t=e t \in e R$. Consequently $r_{R}(I)=e R$. Therefore R is a quasi-Baer ring.
$(1) \Rightarrow(4)$ Assume that R is a quasi-Baer ring. Let J be an ideal of $R_{0}[x ; \delta]$. Assume that $J^{1(\delta)}$ be the δ-ideal of R generated by the set of all coefficients of elements of J. Then $J_{0}^{1(\delta)}[x ; \delta]$, the 0 -symmetric left nearring of differential polynomials with coefficients from $J^{1(\delta)}$, is an ideal of $R_{0}[x ; \delta]$. By using Lemma 2.1 one can show that $r_{R_{0}[x ; \delta]}(J)=r_{R_{0}[x ; \delta]}\left(J_{0}^{1(\delta)}[x ; \delta]\right)$. Since R is quasi-Baer, hence $\ell_{R}\left(J^{1(\delta)}\right)=r_{R}\left(J^{1(\delta)}\right)=e R$ for some idempotent $e \in R$. We show that $r_{R_{0}[x ; \delta]}(J)=e x \circ R_{0}[x ; \delta]$. Since $e \in r_{R}\left(J^{1(\delta)}\right)$, we have $e x \circ R_{0}[x ; \delta] \subseteq r_{R_{0}[x ; \delta]}(J)$. Now, let $(x) g=g_{1} x+\cdots+g_{m} x^{m} \in r_{R_{0}[x ; \delta]}(J)=r_{R_{0}[x ; \delta]}\left(J_{0}^{1(\delta)}[x ; \delta]\right)$. Then $J^{1(\delta)} g_{i}=$ $g_{i} J^{1(\delta)}=0$ for each $i=1, \cdots, m$, since R is reduced. Therefore $g_{i} \in r_{R}\left(J^{1(\delta)}\right)=e R$
and that $g_{i}=e g_{i}=g_{i} e$ for each $i=1, \cdots, m$. Hence $(x) g=e x \circ(x) g$, since $\delta(e)=0$. Consequently $r_{R_{0}[x ; \delta]}(J)=r_{R_{0}[x ; \delta]}\left(J_{0}^{1(\delta)}[x ; \delta]\right)=e x \circ R_{0}[x ; \delta]$, which implies $R_{0}[x ; \delta] \in q \mathcal{B}_{r 1}$.

Corollary 2.8. Let R be a reduced ring. Then the following are equivalent:
(1) R is quasi-Baer;
(2) $R[x] \in q \mathcal{B}_{r 2}$;
(3) $(R[x],+,$.$) is quasi-Baer;$
(4) $R_{0}[x] \in q \mathcal{B}_{r 1}$.

Acknowledgment. The author would like to thank the referee for the valuable suggestions and comments.

References

[1] E.P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[2] S.K. Berberian, Baer *-rings, Springer-Verlag, Berlin, 1968.
[3] G.F. Birkenmeier and F.K. Huang, Annihilator conditions on polynomials, Comm. Algebra 29(5) (2001), 2097-2112.
[4] G.F. Birkenmeier and F.K. Huang, Annihilator conditions on formal power series, Algebra Colloq. 9(1) (2002), 29-37.
[5] G.F. Birkenmeier, J. Y. Kim, J. Y. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure and Appl. Algebra 159 (2001), 25-42.
[6] G.F. Birkenmeier, J. Y. Kim, J. Y. Park, On quasi-Baer rings, Contemporery Mathematics, 259 (2000), 67-92.
[7] G.F. Birkenmeier, H. E. Heatherly, J. Y. Kim, J. Y. Park, Triangular matrix representations, J. Algebra, 230 (2000), 558-595.
[8] R. Camina, Subgroups of the Nottingham group, J. Algebra 196 (1997), 101113.
[9] W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.
[10] S.A. Jennings, Substutution group of formal power series, Canad. J. Math. 6 (1954), 325-340.
[11] D.L. Johnson, The group of formal power series under substitution, J. Austral. Math. Soc. 45 (1988), 296-302.
[12] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107(3) (2005), 207-224.
[13] E. Hashemi and A. Moussavi, Skew power series extensions of α-rigid p.p.rings, Bull. Korean Math. Soc. 41(4) (2004), 657-665.
[14] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative rings, J. Pure Appl. Algebra, 168 (2002), 45-52.
[15] C.Y. Hong, Nam Kyun Kim, Tai Keun Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.
[16] I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
[17] H. Lausch, W. Nobaure, Algebra of polynomials, Amsterdam: North Holland, (1973).
[18] C.E. Rickart, Banach algebras with an adjoint operation, Ann. Math. 47 (1946), 656-658.

Ebrahim Hashemi

Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
P.O.Box: 316-3619995161
e-mail: eb_hashemi@yahoo.com
eb_hashemi@shahroodut.ac.ir

