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ABSTRACT. Let R be a ring with unity and § a derivation on R. In this paper
we extend a result of Armendariz on the Baer condition in a polynomial ring
to a Baer condition in a nearring of differential polynomial. The nearring of

differential has substitution for its ”multiplication” operation.
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1. Introduction

Throughout this paper all rings are associative and all nearrings are left near-
rings. We use R and N to denote a ring and a nearring respectively. The study
of Rickart rings has its roots in both functional analysis and homological algebra.
In [18], Rickart studied C*-algebra with the property that every right annihilator
of any element is generated by a projection (an idempotent p is called a projection
if p = p*, where % is an involution on the algebra). This condition is modified
by Kaplansky [16] through introducing Baer rings ( a ring R is called Baer if the
right annihilator of every nonempty subset of R is generated, as a right ideal, by an
idempotent of R) to abstract various properties of AW*-algebra and von Neumann
algebra. See also Berberian [2] for more details.

A ring satisfying a generalization of Rickart’s condition (i.e., every right anni-
hilator of any element in R, as a right ideal, by an idempotent) has a homological
characterization as a right PP ring, i.e., every principal right ideal is projective.
Left PP rings are defined similarly. In [9] Clark defines a ring to be quasi-Baer if
the left annihilator of every ideal is generated, as a left ideal, by an idempotent.
Then he used the quasi-Baer concept to characterize when a finite-dimensional al-
gebra with unity over an algebraically closed field is isomorphic to a twisted matrix
units semigroup algebra. Every prime ring is a quasi-Baer ring. It is natural to

ask if some of these properties can extended from a ring R to the polynomial ring
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(R[z],+,.) and vice versa. Armendariz [1] and Birkenmeier et al. [5] obtained the
following results:

Theorem B [1]. Let R be a reduced ring (i.e. R has no nonzero nilpotent
element). Then R is a Baer (resp. PP) ring if and only if (R[z],+,.) is a Baer
(resp. PP) ring.

Theorem [5]. R is quasi-Baer if and only if R[z] is quasi-Baer.

Armendariz provided an example to show that the reduced condition is not
superfluous. A generalization of Armendariz’s result for several types of polynomial
extensions over Baer and quasi-Baer rings, are obtained by various authors [5,6,7,
12,14,15]. In [15] Hong et al. studied Ore extension of Baer and quasi-Baer rings.

Three commonly used operations for polynomials are addition ” 4+ 7, multiplica-
tion ”.” and substitution ” o” [8,10,11,17], respectively. Observe that (R[z],+,.) is
a ring and (R[z],+,0) is a left nearring where the substitution indicates substitu-
tion of f(z) into g(x), explicitly f(z)og(x) = ((z)f)g for each f(z),g(z) € R[z]. It
is natural to investigate the nearring of polynomials R[x] and the zero-symmetric
nearring of polynomials Ry[z]. Birkenmeier and Huang in [3,4], have defined the
Baer-type annihilator conditions in the class of nearrings as follows (for a nonempty
SCN,let ry(S)={a€ N|Sa=0} and {n(S) ={a € N|aS =0}):

(1) N € B,1 if rn(S) = eN for some idempotent e € N;

(2) N € B,y if ry(S) = rn(e) for some idempotent e € N;

(3) N € By if £n(S) = Ne for some idempotent e € N;

(4) N € By if {n(S) = n(e) for some idempotent e € N.

When S is a singleton, the Rickart-type annihilator conditions on nearrings are
also defined similarly except replacing B by R. If the subset S considered in the
above definition is replaced with an ideal, we obtain the quasi-Baer annihilator
conditions in the class of nearrings, denoted by “¢B” in the above notations. In
particular they studied Baer-type conditions on the nearring of polynomials R[x]
(with the operations of addition and substitution) and formal power series by ob-
taining the following results: Let R be a reduced ring. (1) If R is Baer, then Rg[x]
(resp. Ro[[z]]) satisfies all the Baer-type annihilator conditions. (2) If Ry[z] (resp.
Ry|[[x]]) satisfies any one of the Baer-type annihilator conditions, then R is Baer.

Let 6 be a derivation of R, that is, ¢ is an additive map such that §(ab) =
0(a)b+ ad(b), for all a,b € R. Since R[z;d] is an abelian nearring under addition
and substitution, it is natural to investigate the nearring of differential polyno-
mials (R[z;d],+,0) when R is Baer. We use R[z;d] to denote the left nearring
of differential polynomials (R[x;d],4+,0) with coefficients from R and Rg[x;d] =
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{f € R|x;d]| f has zero constant term} the O-symmetric subnearring of R[z;d].
Let (z)f = ao + a1z and (x)g = by + b1z + bex® € R[z;6]. Through a sim-
ple calculation, we have (z)f o (z)g = ((x)f)g = bo + b1((x)f) + ba((z)f)* =
(bo + brag + baa? + baaid(ag)) + (bray + beagar + beaiag + baai6(ay))x + beaiz?.

2. Main Results

A nearring N is said to have the insertion of factors property (or simply IFP) if
for all a,b,n € N, ab = 0 implies anb = 0. Clearly each reduced nearring has the
IFP.

Lemma 2.1. Let R be a reduced ring and a,b € R. Then we have the following:
(1) If ab =0, then ad™(b) = 0 = 6™ (a)b for any positive integers m.
(2) If e = e € R, then §(e) = 0.

Proof. (1) It is enough to show that ad(b) = §(a)b = 0. If ab = 0, then é(ab) =
d(a)b+ad(b) = 0. Hence ad(a)b+a?5(b) = 0, and that ad(b) = 0, since R is reduced
and ab = 0.

(2) If €2 = e, then 6(e) = d(e)e + ed(e). Since R is reduced, so e belong to the
center of R. Hence 2ed(e) = ed(e), and that ed(e) = 0. Thus d(e) = 0. O

Lemma 2.2. Let ¢ be a derivation of a ring R and R[x;d] the nearring of differ-
ential polynomials over R. Let R be a reduced ring. Then:
(1) If (x)E € R[x;0] is an idempotent, then (z)E = e1x + eg, where e1 is an
idempotent in R with e1eq = 0.
(2) Rlx;d] is reduced.

Proof. (1) Let (x)E =ep + -+ + e,x™ be an idempotent of R[x;d]. Since (z)E o
(x)E = (z)E, we have e"*t! = 0, if n > 2. Thus e, = 0, since R is reduced.
Therefore (2)E = eg + e;z. Clearly e; is an idempotent of R and ejeq = 0.

(2) Let (z)f = ap+ a1z + - + apx™ € R[z; 4] such that (x)f o (z)f = 0. Then
a1 = 0. Hence a,, = 0, since R is reduced. By using induction on n, we have
a; = 0 for each 0 < ¢ < n. Therefore (z)f = 0 and R[x;d] is reduced. O

The following example ([3], Example 3.5), shows that there exists a finite reduced
commutative Baer ring R such that R[z] ¢ B,s.

Example 2.3. Let R = Zg and S = {2z + 2,2z + 5}. From Lemma 2.2, all
idempotents in Zg[x] are {0,1,2,3,4,5,x,3xz,3x + 2,3x + 4,4x,4x + 3}. Note that
x—c€r(c) and x — ¢ ¢ r(S) for all constant idempotents ¢ € Zg[x]. Also the
possible idempotents (x)E € Zg[x] such that r(S) = r((x)E) are either 4x or 4z +3.
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Observe that 3x € r(4x) but 3z ¢ r(S), and also 3z> + 3 € r(4x + 3) but 32> + 3 ¢
r(S). Therefore, there is no idempotent (x)E € Zg[x] such that r(S) = r((z)E).
Consequently, Zglx] ¢ Bro.

If (z)f =Y. o aiz’ € Rlx; 6], let St =Aa1,a2,--+ ,an}.

Proposition 2.4. Let R be a reduced ring. Then:

(1) R € B,y if and only if Ro[xz; 8] € By.
(2) R € B2 if and only if Ro[x;d] € Bys.

Proof. (1) Assume R € B,;. Let S be a nonempty subset of Rg[z;d]. Then
T = UfeSS;E is a nonempty subset of R. Hence rg(T) = eR for some idempotent
e € R, since R € B,;. We show that £(S) = Ry[z;d]o(ex) = e- Ro[z;9]. Let (z)f =
S azt € S. Since §(e) = 0, we have (ex)o (z)f = > " ai(ex)' =Y " aex’ =
0. Thus ex € £(S) and hence e- Ry[x; 8] C £(S). Now, let (z)h = Y"}_, cpz® € £(S)
and (z)f = a1z + ama™ € S. Then Y., a;((z)h)" = 0 and that a,,(c,)™ = 0.
Hence a,,¢, = cpan = 0, since R is reduced. Thus ZZEI aicn((z)h) = 0 and
that (z)h o (cha1x + -+ + cpam—_12™ 1) = 0. By using induction on m + n, we
have a;c; = 0for 1 < ¢ <m—1and 1 < j < n. Therefore ¢, = ec;, for all
1 <k < n. Hence (z)h = e ;_, ez’ € eRp[x;6] and so €(S) = Ro[x;d] o (ex).
Thus Ry[z; 0] € Be.

Now, assume Ry[z;d] € By. Let S be a nonempty subset of R, and define
Sy = {sz|s € S} a subset of Rg[x;0]. Then ¢(S,) = Rolx;d] o (ex) for some
idempotent e € R, by Lemma 2.2. For each sz € S;, 0 = (ex) o (sz) = sex.
Therefore e € rr(S). Now, let a € rg(S). Then (az) o (sz) = sax = 0 for each
sz € Sy. Thus ax € €(S,) = Ro[x; ] o (ex) = e- Ro[x;0]. Hence a = ea € eR. Thus
rgr(S) = eR. Therefore R € B,;.

(2) Assume R € B,s. Let S be a nonempty subset of Ry[z;d]. By a similar
construction to that used in (1), we have rg(T') = rr(e) for some idempotent e € R.
We claim £(S) = l(ex). Let (x)g =7, bjzl € l(ex). Then 0 = (z)goex = e-(x)g.
Hence eb; = 0 for all 1 < j < n. Consequently, b; € rgr(e) = rr(T), for all 1 <
j<n. Let (z)f =37 a;x" € S. Then (z)go (z)f => 1", ai(zyzl bjzd)t = 0.
Therefore £(ex) C ¢(S). Now, let (x)g = Z;'L=1 bjzl € £(S). Then by a similar way
as used in (1), b; € rr(T) = rr(e) for all 1 < j < n. Thus (z)go(ex) =e-(z)g = 0.
Therefore £(S) = £(ex) and so Ry[x;d] € Bea.

Assume Ry[x; 0] € Bya. Let S be a nonempty subset of R and let S, = {sz|s €
S}. Then £(S;) = £((x)E) for some idempotent (z)E = ex € Ry[x;d], by Lemma
2.2. We show that rg(S) = rr(e). Let a € rg(S). Then ax o sz = sazx = 0 for all
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sz € S;. Hence ax € £(S;) = £((x)E). Thus axoex = eax = 0 and that a € rr(e).
Therefore rr(S) C rr(e). Now, let b € rr(e). Then bz o ex = ebx = 0 and that
br € £(S;). Thus bz o sx = sbx = 0 for all s € S. Hence b € rg(S). Therefore
R € Bys. O

Corollary 2.5. Let R be a reduced ring. Then the following are equivalent:
(1) R is Baer;
(2) (R[z;6],+,-) is Baer;
(3) (R()[if, 6]7 +7 O) S Bfl U 822-
Proof. (1)  (2) follows from [9], and (1) < (3) follows from Proposition 2.4. O

Example 2.6. One can show that the following nearrings satisfy all the Baer-

type annihilator conditions discussed in this paper when R is reduced Baer ring:
(i) {ax|a € R}; (i) {(z)f = Y i, azi—12*~ " € Rolz]|azi—1 € R,n € N}; (iii)
Eyx; 6], where E is a subring containing all idempotents of R.

An ideal T of a ring R is called d-ideal whenever 6(I) C I

Theorem 2.7. Let R be a reduced ring. Then the following are equivalent:
(1) R is quasi-Baer;

(2) Rlz;d] € qB,o;
(3) (Rz;d],+,.) is quasi-Baer;
(4) Ro[l‘ 5] S qBrl

Proof. (1)=(2) Let J be an ideal of R[z;d] and B = rgy,s(J). Let J' and B!
denote the set of all coefficients of elements of J and B respectively. Let J'(®) and
B'(®) be the é-ideals of R generated by J' and B! respectively. Hence TR(Jl(é)) =
rr(JY), by Lemma 2.1. We claim that rg(J'®)) = B'@®) and rg(J) = Bé(‘s) [x; 9]
Since 0 € J, we have B C Ry[z;0]. Let >; bia* € B and (z)g = Y7" g2 € J.
Then (3°7"g527) o (3o;2, biz’) = 0 and that big; = g;b; = 0 for each 1 < i <
n,1 < j < m, since R is reduced. Hence ((z)g + b;z®"*1) o 22 — bja?mHl o 2? =
e+ +gobiz®™ 1 € J for each 1 < i < n. Therefore b;gob; = 0 for each 1 < i < n,
since R is reduced. Hence gb = bg = 0 for each g € J' and b € B!. Consequently
g7 (b) = b6 (g) = 0 for each nonnegative integers j and b € B!, g € J', by Lemma
2.1. Therefore B C rp(JY) = rr(J'®) and Bé(‘s)[x' 8] C rg(J). But rg(J) =
BC B [Jc 4], so rg(J) = Bé(é) [2;6]. Let t € rr(J*®). Then tJ' = J't =0 and
that 7" gja’ otz = 0 for each 7" g;7 € J. Hence tx € B and that t € B'.
Therefore rR(J1(5)) = B'0)_ Since R is quasi-Baer and every idempotent of R is
central, there exists an idempotent e € R such that r(J'(®)) = eR = Re. Then
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TRlz;s)(J) = eRo[; 0] = ew o Ro[x; 0] = 151 ((1 — €)x)), since (e) = 0. Therefore
R[x; 6] € qBrs.

(2)=(1) Let I be an ideal of R. Assume 1) be the d-ideal of R generated by
I. Then I®[x; 4] is a left nearring of differential polynomials with coefficients from
I@). We first show that 1(9)[z;4] is an ideal of R[z;d]. Let (v)a = Y i ,a;x* €
IO[2;6] and (z)f,(2)g = >0 gz’ € R[z;d]. Observe that (z)f o (z)a =
3% ail(@)f) € 1026 and (@)a -+ (@)f) (2)g - (2)f o (2)g = Sy g5((2)a+
(@)FY = X g5(@) 1) = S gyl((2)a + (2) ) — (2)£)] € I9[36), since the
coefficients of [((z)a + (z)f)? — ((x)f)?] and a;((z)f)’ belong to I®) for each j.
Therefore I(9)[z; 6] is an ideal of R[z;]. Since R[x;d] € qB,a, there exists an idem-
potent (z)E = ejx + eg € R[x; 6], where e; is an idempotent in R with ejeq = 0,
such that rg[z;s) (IO)[z;8]) = TRiz;6)((2)E). Since —eg+(1—e1)x € TRips((2)E), we
have eg = 0. On the other hand 7 g5 (e17) = (1 —e1)zo Ro[z; ] = (1—eo) Rolx; ).
One can show that rr(I) = (1 — e1)R. Therefore R is quasi-Baer.

The equivalence of (1) and (3) follows from Hong et al. [15].

(4)=(1) Let I be an ideal of R. Assume that I(®) be the d-ideal of R generated
by I. Hence I(()‘S) [x; 6], the O-symmetric left nearring of differential polynomials
with coefficients from I(®), is an ideal of Ry[z;d]. Since Ry[x;d] € gB,1, there exists
an idempotent (z)e € Rg[z;d] such that ’I“RO[I;(;](IS(;)[LU;(S]) = (x)e o Rylz;6]. By
Lemma 2.2, (x)e = ex for some idempotent e € R. Hence 7g 45 (Iéé) [x;0]) =
(z)e o Rolx; 8] = eRp[x; 0], since d(e) = 0 and e is a central idempotent of R. Since
I C I hence reax = ax o (ex ora) = 0 for each a € I and r € R. Consequently
eRI = IeR = 0, since R is reduced and e is a central idempotent of R. Hence
eR C rr(I). Now, let t € rg(I). Then It = tI = 0 an that tI(® = 0, by Lemma
2.1. Hence Iéé) [x;0] o tx = 0. Thus tz € rg, (I(gé) [;0]) = ex o Ry[x;0]. Therefore
tx = ex otx = tex and that ¢t = et € eR. Consequently rr(Il) = eR. Therefore R
is a quasi-Baer ring.

(1)=(4) Assume that R is a quasi-Baer ring. Let J be an ideal of Ry[x;0].
Assume that J'©) be the d-ideal of R generated by the set of all coefficients
of elements of J. Then J& @) [; 6], the O-symmetric left nearring of differential
polynomials with coefficients from J'(®) is an ideal of Ry[x;d]. By using Lemma
2.1 one can show that 7pg,[z(J) = rRo[m;g](Jé((S) [;0]). Since R is quasi-Baer,
hence £g(J'®)) = rr(J'®)) = eR for some idempotent e € R. We show that
T'Rolw:6)(J) = ex o Ro[x;6]. Since e € rr(J'®)), we have ex o Ro[2;6] C g ;5 (J)-
Now, let (z)g = g12+ -+ gm2™ € TRy[235)(J) = TRO[I;(;](J&((S) [2;6]). Then J'®)g; =
giJ'®) =0 foreachi=1,---,m, since R is reduced. Therefore g; € rR(J1(5)) =eR
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and that g; = eg; = g;e for each i = 1,--- ,m. Hence (z)g = ex o (x)g, since
d(e) = 0. Consequently rgz6(J) = rRo[m;(;](Jé((s) [;8]) = ex o Rplz;d], which
implies Ro[z;d] € ¢B,1. O

Corollary 2.8. Let R be a reduced ring. Then the following are equivalent:
(1) R is quasi-Baer;
(2) R[z] € gBy2;
(3) (R[z],+,.) is quasi-Baer;
(4) Rola] € gByn.

Acknowledgment. The author would like to thank the referee for the valuable

suggestions and comments.

References

[1] E.P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral.
Math. Soc. 18 (1974), 470-473.
S.K. Berberian, Baer *-rings, Springer-Verlag, Berlin, 1968.

ORI

G.F. Birkenmeier and F.K. Huang, Annihilator conditions on polynomials,
Comm. Algebra 29(5) (2001), 2097-2112.
[4] G.F. Birkenmeier and F.K. Huang, Annihilator conditions on formal power
series, Algebra Collog. 9(1) (2002), 29-37.
[5] G.F. Birkenmeier, J. Y. Kim, J. Y. Park, Polynomial extensions of Baer and
quasi-Baer rings, J. Pure and Appl. Algebra 159 (2001), 25-42.
[6] G.F. Birkenmeier, J. Y. Kim, J. Y. Park, On quasi-Baer rings, Contemporery
Mathematics, 259 (2000), 67-92.
[7] G.F. Birkenmeier, H. E. Heatherly, J. Y. Kim, J. Y. Park, Triangular matriz
representations, J. Algebra, 230 (2000), 558-595.
[8] R. Camina, Subgroups of the Nottingham group, J. Algebra 196 (1997), 101-
113.
[9] W.E. Clark, Twisted matrixz units semigroup algebras, Duke Math. J. 34 (1967),
417-424.
[10] S.A. Jennings, Substutution group of formal power series, Canad. J. Math. 6
(1954), 325-340.
[11] D.L. Johnson, The group of formal power series under substitution, J. Austral.
Math. Soc. 45 (1988), 296-302.
[12] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta
Math. Hungar. 107(3) (2005), 207-224.



DIFFERENTIAL POLYNOMIALS OVER BAER RINGS 45

[13] E. Hashemi and A. Moussavi, Skew power series extensions of a-rigid p.p.-
rings, Bull. Korean Math. Soc. 41(4) (2004), 657-665.

[14] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative
rings, J. Pure Appl. Algebra, 168 (2002), 45-52.

[15] C.Y. Hong, Nam Kyun Kim, Tai Keun Kwak, Ore extensions of Baer and
p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.

[16] 1. Kaplansky, Rings of Operators, Benjamin, New York, 1965.

[17] H. Lausch, W. Nobaure, Algebra of polynomials, Amsterdam: North Holland,
(1973).

[18] C.E. Rickart, Banach algebras with an adjoint operation, Ann. Math. 47 (1946),
656-658.

Ebrahim Hashemi

Department of Mathematics
Shahrood University of Technology
Shahrood, Iran

P.O.Box: 316-3619995161

e-mail: eb_hashemi@yahoo.com

eb_hashemi@shahroodut.ac.ir



