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Abstract. Let R be a ring with unity and δ a derivation on R. In this paper

we extend a result of Armendariz on the Baer condition in a polynomial ring

to a Baer condition in a nearring of differential polynomial. The nearring of

differential has substitution for its ”multiplication” operation.
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1. Introduction

Throughout this paper all rings are associative and all nearrings are left near-

rings. We use R and N to denote a ring and a nearring respectively. The study

of Rickart rings has its roots in both functional analysis and homological algebra.

In [18], Rickart studied C∗-algebra with the property that every right annihilator

of any element is generated by a projection (an idempotent p is called a projection

if p = p∗, where ∗ is an involution on the algebra). This condition is modified

by Kaplansky [16] through introducing Baer rings ( a ring R is called Baer if the

right annihilator of every nonempty subset of R is generated, as a right ideal, by an

idempotent of R) to abstract various properties of AW∗-algebra and von Neumann

algebra. See also Berberian [2] for more details.

A ring satisfying a generalization of Rickart’s condition (i.e., every right anni-

hilator of any element in R, as a right ideal, by an idempotent) has a homological

characterization as a right PP ring, i.e., every principal right ideal is projective.

Left PP rings are defined similarly. In [9] Clark defines a ring to be quasi-Baer if

the left annihilator of every ideal is generated, as a left ideal, by an idempotent.

Then he used the quasi-Baer concept to characterize when a finite-dimensional al-

gebra with unity over an algebraically closed field is isomorphic to a twisted matrix

units semigroup algebra. Every prime ring is a quasi-Baer ring. It is natural to

ask if some of these properties can extended from a ring R to the polynomial ring
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(R[x],+, .) and vice versa. Armendariz [1] and Birkenmeier et al. [5] obtained the

following results:

Theorem B [1]. Let R be a reduced ring (i.e. R has no nonzero nilpotent

element). Then R is a Baer (resp. PP) ring if and only if (R[x], +, .) is a Baer

(resp. PP) ring.

Theorem [5]. R is quasi-Baer if and only if R[x] is quasi-Baer.

Armendariz provided an example to show that the reduced condition is not

superfluous. A generalization of Armendariz’s result for several types of polynomial

extensions over Baer and quasi-Baer rings, are obtained by various authors [5,6,7,

12,14,15]. In [15] Hong et al. studied Ore extension of Baer and quasi-Baer rings.

Three commonly used operations for polynomials are addition ” + ”, multiplica-

tion ”.” and substitution ” ◦ ” [8,10,11,17], respectively. Observe that (R[x], +, .) is

a ring and (R[x], +, ◦) is a left nearring where the substitution indicates substitu-

tion of f(x) into g(x), explicitly f(x)◦g(x) = ((x)f)g for each f(x), g(x) ∈ R[x]. It

is natural to investigate the nearring of polynomials R[x] and the zero-symmetric

nearring of polynomials R0[x]. Birkenmeier and Huang in [3,4], have defined the

Baer-type annihilator conditions in the class of nearrings as follows (for a nonempty

S ⊆ N , let rN (S) = {a ∈ N |Sa = 0} and `N (S) = {a ∈ N | aS = 0}):
(1) N ∈ Br1 if rN (S) = eN for some idempotent e ∈ N ;

(2) N ∈ Br2 if rN (S) = rN (e) for some idempotent e ∈ N ;

(3) N ∈ B`1 if `N (S) = Ne for some idempotent e ∈ N ;

(4) N ∈ B`2 if `N (S) = `N (e) for some idempotent e ∈ N .

When S is a singleton, the Rickart-type annihilator conditions on nearrings are

also defined similarly except replacing B by R. If the subset S considered in the

above definition is replaced with an ideal, we obtain the quasi-Baer annihilator

conditions in the class of nearrings, denoted by “qB” in the above notations. In

particular they studied Baer-type conditions on the nearring of polynomials R[x]

(with the operations of addition and substitution) and formal power series by ob-

taining the following results: Let R be a reduced ring. (1) If R is Baer, then R0[x]

(resp. R0[[x]]) satisfies all the Baer-type annihilator conditions. (2) If R0[x] (resp.

R0[[x]]) satisfies any one of the Baer-type annihilator conditions, then R is Baer.

Let δ be a derivation of R, that is, δ is an additive map such that δ(ab) =

δ(a)b + aδ(b), for all a, b ∈ R. Since R[x; δ] is an abelian nearring under addition

and substitution, it is natural to investigate the nearring of differential polyno-

mials (R[x; δ],+,◦) when R is Baer. We use R[x; δ] to denote the left nearring

of differential polynomials (R[x; δ],+,◦) with coefficients from R and R0[x; δ] =
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{f ∈ R[x; δ] | f has zero constant term} the 0-symmetric subnearring of R[x; δ].

Let (x)f = a0 + a1x and (x)g = b0 + b1x + b2x
2 ∈ R[x; δ]. Through a sim-

ple calculation, we have (x)f ◦ (x)g = ((x)f)g = b0 + b1((x)f) + b2((x)f)2 =

(b0 + b1a0 + b2a
2
0 + b2a1δ(a0)) + (b1a1 + b2a0a1 + b2a1a0 + b2a1δ(a1))x + b2a

2
1x

2.

2. Main Results

A nearring N is said to have the insertion of factors property (or simply IFP) if

for all a, b, n ∈ N , ab = 0 implies anb = 0. Clearly each reduced nearring has the

IFP.

Lemma 2.1. Let R be a reduced ring and a, b ∈ R. Then we have the following:

(1) If ab = 0, then aδm(b) = 0 = δm(a)b for any positive integers m.

(2) If e2 = e ∈ R, then δ(e) = 0.

Proof. (1) It is enough to show that aδ(b) = δ(a)b = 0. If ab = 0, then δ(ab) =

δ(a)b+aδ(b) = 0. Hence aδ(a)b+a2δ(b) = 0, and that aδ(b) = 0, since R is reduced

and ab = 0.

(2) If e2 = e, then δ(e) = δ(e)e + eδ(e). Since R is reduced, so e belong to the

center of R. Hence 2eδ(e) = eδ(e), and that eδ(e) = 0. Thus δ(e) = 0. ¤

Lemma 2.2. Let δ be a derivation of a ring R and R[x; δ] the nearring of differ-

ential polynomials over R. Let R be a reduced ring. Then:

(1) If (x)E ∈ R[x; δ] is an idempotent, then (x)E = e1x + e0, where e1 is an

idempotent in R with e1e0 = 0.

(2) R[x; δ] is reduced.

Proof. (1) Let (x)E = e0 + · · · + enxn be an idempotent of R[x; δ]. Since (x)E ◦
(x)E = (x)E, we have en+1

n = 0, if n ≥ 2. Thus en = 0, since R is reduced.

Therefore (x)E = e0 + e1x. Clearly e1 is an idempotent of R and e1e0 = 0.

(2) Let (x)f = a0 + a1x + · · ·+ anxn ∈ R[x; δ] such that (x)f ◦ (x)f = 0. Then

an+1
n = 0. Hence an = 0, since R is reduced. By using induction on n, we have

ai = 0 for each 0 ≤ i ≤ n. Therefore (x)f = 0 and R[x; δ] is reduced. ¤

The following example ([3], Example 3.5), shows that there exists a finite reduced

commutative Baer ring R such that R[x] /∈ Br2.

Example 2.3. Let R = Z6 and S = {2x + 2, 2x + 5}. From Lemma 2.2, all

idempotents in Z6[x] are {0, 1, 2, 3, 4, 5, x, 3x, 3x + 2, 3x + 4, 4x, 4x + 3}. Note that

x − c ∈ r(c) and x − c /∈ r(S) for all constant idempotents c ∈ Z6[x]. Also the

possible idempotents (x)E ∈ Z6[x] such that r(S) = r((x)E) are either 4x or 4x+3.



DIFFERENTIAL POLYNOMIALS OVER BAER RINGS 41

Observe that 3x ∈ r(4x) but 3x /∈ r(S), and also 3x3 + 3 ∈ r(4x + 3) but 3x3 + 3 /∈
r(S). Therefore, there is no idempotent (x)E ∈ Z6[x] such that r(S) = r((x)E).

Consequently, Z6[x] /∈ Br2.

If (x)f =
∑n

i=0 aix
i ∈ R[x; δ], let S∗f = {a1, a2, · · · , an}.

Proposition 2.4. Let R be a reduced ring. Then:

(1) R ∈ Br1 if and only if R0[x; δ] ∈ B`1.

(2) R ∈ Br2 if and only if R0[x; δ] ∈ B`2.

Proof. (1) Assume R ∈ Br1. Let S be a nonempty subset of R0[x; δ]. Then

T = ∪f∈SS∗f is a nonempty subset of R. Hence rR(T ) = eR for some idempotent

e ∈ R, since R ∈ Br1. We show that `(S) = R0[x; δ]◦ (ex) = e ·R0[x; δ]. Let (x)f =∑m
i=1 aix

i ∈ S. Since δ(e) = 0, we have (ex)◦ (x)f =
∑m

i=1 ai(ex)i =
∑m

i=1 aiex
i =

0. Thus ex ∈ `(S) and hence e ·R0[x; δ] ⊆ `(S). Now, let (x)h =
∑n

k=1 ckxk ∈ `(S)

and (x)f = a1x · · ·+ amxm ∈ S. Then
∑m

i=1 ai((x)h)i = 0 and that am(cn)m = 0.

Hence amcn = cnam = 0, since R is reduced. Thus
∑m−1

i=0 aicn((x)h)i = 0 and

that (x)h ◦ (cna1x + · · · + cnam−1x
m−1) = 0. By using induction on m + n, we

have aicj = 0 for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n. Therefore ck = eck for all

1 ≤ k ≤ n. Hence (x)h = e
∑n

k=1 ckxk ∈ eR0[x; δ] and so `(S) = R0[x; δ] ◦ (ex).

Thus R0[x; δ] ∈ B`1.

Now, assume R0[x; δ] ∈ B`1. Let S be a nonempty subset of R, and define

Sx = {sx|s ∈ S} a subset of R0[x; δ]. Then `(Sx) = R0[x; δ] ◦ (ex) for some

idempotent e ∈ R, by Lemma 2.2. For each sx ∈ Sx, 0 = (ex) ◦ (sx) = sex.

Therefore e ∈ rR(S). Now, let a ∈ rR(S). Then (ax) ◦ (sx) = sax = 0 for each

sx ∈ Sx. Thus ax ∈ `(Sx) = R0[x; δ] ◦ (ex) = e ·R0[x; δ]. Hence a = ea ∈ eR. Thus

rR(S) = eR. Therefore R ∈ Br1.

(2) Assume R ∈ Br2. Let S be a nonempty subset of R0[x; δ]. By a similar

construction to that used in (1), we have rR(T ) = rR(e) for some idempotent e ∈ R.

We claim `(S) = `(ex). Let (x)g =
∑n

j=1 bjx
j ∈ `(ex). Then 0 = (x)g◦ex = e·(x)g.

Hence ebj = 0 for all 1 ≤ j ≤ n. Consequently, bj ∈ rR(e) = rR(T ), for all 1 ≤
j ≤ n. Let (x)f =

∑m
i=1 aix

i ∈ S. Then (x)g ◦ (x)f =
∑m

i=1 ai(
∑n

j=1 bjx
j)i = 0.

Therefore `(ex) ⊆ `(S). Now, let (x)g =
∑n

j=1 bjx
j ∈ `(S). Then by a similar way

as used in (1), bj ∈ rR(T ) = rR(e) for all 1 ≤ j ≤ n. Thus (x)g ◦ (ex) = e · (x)g = 0.

Therefore `(S) = `(ex) and so R0[x; δ] ∈ B`2.

Assume R0[x; δ] ∈ B`2. Let S be a nonempty subset of R and let Sx = {sx|s ∈
S}. Then `(Sx) = `((x)E) for some idempotent (x)E = ex ∈ R0[x; δ], by Lemma

2.2. We show that rR(S) = rR(e). Let a ∈ rR(S). Then ax ◦ sx = sax = 0 for all
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sx ∈ Sx. Hence ax ∈ `(Sx) = `((x)E). Thus ax ◦ ex = eax = 0 and that a ∈ rR(e).

Therefore rR(S) ⊆ rR(e). Now, let b ∈ rR(e). Then bx ◦ ex = ebx = 0 and that

bx ∈ `(Sx). Thus bx ◦ sx = sbx = 0 for all s ∈ S. Hence b ∈ rR(S). Therefore

R ∈ Br2. ¤

Corollary 2.5. Let R be a reduced ring. Then the following are equivalent:

(1) R is Baer;

(2) (R[x; δ], +, ·) is Baer;

(3) (R0[x; δ],+, ◦) ∈ B`1 ∪ B`2.

Proof. (1) ⇔ (2) follows from [9], and (1) ⇔ (3) follows from Proposition 2.4. ¤

Example 2.6. One can show that the following nearrings satisfy all the Baer-

type annihilator conditions discussed in this paper when R is reduced Baer ring:

(i) {ax | a ∈ R}; (ii) {(x)f =
∑n

i=1 a2i−1x
2i−1 ∈ R0[x] | a2i−1 ∈ R, n ∈ N}; (iii)

E0[x; δ], where E is a subring containing all idempotents of R.

An ideal I of a ring R is called δ-ideal whenever δ(I) ⊆ I.

Theorem 2.7. Let R be a reduced ring. Then the following are equivalent:

(1) R is quasi-Baer;

(2) R[x; δ] ∈ qBr2;

(3) (R[x; δ], +, .) is quasi-Baer;

(4) R0[x; δ] ∈ qBr1.

Proof. (1)⇒(2) Let J be an ideal of R[x; δ] and B = rR[x;δ](J). Let J1 and B1

denote the set of all coefficients of elements of J and B respectively. Let J1(δ) and

B1(δ) be the δ-ideals of R generated by J1 and B1 respectively. Hence rR(J1(δ)) =

rR(J1), by Lemma 2.1. We claim that rR(J1(δ)) = B1(δ) and rS(J) = B
1(δ)
0 [x; δ].

Since 0 ∈ J , we have B ⊆ R0[x; δ]. Let
∑n

i=1 bix
i ∈ B and (x)g =

∑m
j=0 gjx

j ∈ J .

Then (
∑m

j=0 gjx
j) ◦ (

∑n
i=1 bix

i) = 0 and that bigj = gjbi = 0 for each 1 ≤ i ≤
n, 1 ≤ j ≤ m, since R is reduced. Hence ((x)g + bix

2m+1) ◦ x2 − bix
2m+1 ◦ x2 =

g2
0 +· · ·+g0bix

2m+1 ∈ J for each 1 ≤ i ≤ n. Therefore big0bi = 0 for each 1 ≤ i ≤ n,

since R is reduced. Hence gb = bg = 0 for each g ∈ J1 and b ∈ B1. Consequently

gδj(b) = bδj(g) = 0 for each nonnegative integers j and b ∈ B1, g ∈ J1, by Lemma

2.1. Therefore B1(δ) ⊆ rR(J1) = rR(J1(δ)) and B
1(δ)
0 [x; δ] ⊆ rS(J). But rS(J) =

B ⊆ B
1(δ)
0 [x; δ], so rS(J) = B

1(δ)
0 [x; δ]. Let t ∈ rR(J1(δ)). Then tJ1 = J1t = 0 and

that
∑m

j=0 gjx
j ◦ tx = 0 for each

∑m
j=0 gjx

j ∈ J . Hence tx ∈ B and that t ∈ B1.

Therefore rR(J1(δ)) = B1(δ). Since R is quasi-Baer and every idempotent of R is

central, there exists an idempotent e ∈ R such that rR(J1(δ)) = eR = Re. Then
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rR[x;δ](J) = eR0[x; δ] = ex ◦R0[x; δ] = rR[x;δ]((1− e)x)), since δ(e) = 0. Therefore

R[x; δ] ∈ qBr2.

(2)⇒(1) Let I be an ideal of R. Assume I(δ) be the δ-ideal of R generated by

I. Then I(δ)[x; δ] is a left nearring of differential polynomials with coefficients from

I(δ). We first show that I(δ)[x; δ] is an ideal of R[x; δ]. Let (x)a =
∑n

i=0 aix
i ∈

I(δ)[x; δ] and (x)f, (x)g =
∑m

j=0 gjx
j ∈ R[x; δ]. Observe that (x)f ◦ (x)a =∑∞

i=0 ai((x)f)i ∈ I(δ)[x; δ] and ((x)a + (x)f) ◦ (x)g− (x)f ◦ (x)g =
∑m

j=1 gj((x)a +

(x)f)j −∑m
j=1 gj((x)f)j =

∑m
j=1 gj [((x)a + (x)f)j − ((x)f)j ] ∈ I(δ)[x; δ], since the

coefficients of [((x)a + (x)f)j − ((x)f)j ] and aj((x)f)j belong to I(δ) for each j.

Therefore I(δ)[x; δ] is an ideal of R[x; δ]. Since R[x; δ] ∈ qBr2, there exists an idem-

potent (x)E = e1x + e0 ∈ R[x; δ], where e1 is an idempotent in R with e1e0 = 0,

such that rR[x;δ](I(δ)[x; δ]) = rR[x;δ]((x)E). Since −e0+(1−e1)x ∈ rR[x;δ]((x)E), we

have e0 = 0. On the other hand rR[x;δ](e1x) = (1−e1)x◦R0[x; δ] = (1−e0)R0[x; δ].

One can show that rR(I) = (1− e1)R. Therefore R is quasi-Baer.

The equivalence of (1) and (3) follows from Hong et al. [15].

(4)⇒(1) Let I be an ideal of R. Assume that I(δ) be the δ-ideal of R generated

by I. Hence I
(δ)
0 [x; δ], the 0-symmetric left nearring of differential polynomials

with coefficients from I(δ), is an ideal of R0[x; δ]. Since R0[x; δ] ∈ qBr1, there exists

an idempotent (x)ε ∈ R0[x; δ] such that rR0[x;δ](I
(δ)
0 [x; δ]) = (x)ε ◦ R0[x; δ]. By

Lemma 2.2, (x)ε = ex for some idempotent e ∈ R. Hence rR0[x;δ](I
(δ)
0 [x; δ]) =

(x)ε ◦R0[x; δ] = eR0[x; δ], since δ(e) = 0 and e is a central idempotent of R. Since

I ⊆ I(δ), hence reax = ax ◦ (ex ◦ rx) = 0 for each a ∈ I and r ∈ R. Consequently

eRI = IeR = 0, since R is reduced and e is a central idempotent of R. Hence

eR ⊆ rR(I). Now, let t ∈ rR(I). Then It = tI = 0 an that tI(δ) = 0, by Lemma

2.1. Hence I
(δ)
0 [x; δ] ◦ tx = 0. Thus tx ∈ rS0(I

(δ)
0 [x; δ]) = ex ◦ R0[x; δ]. Therefore

tx = ex ◦ tx = tex and that t = et ∈ eR. Consequently rR(I) = eR. Therefore R

is a quasi-Baer ring.

(1)⇒(4) Assume that R is a quasi-Baer ring. Let J be an ideal of R0[x; δ].

Assume that J1(δ) be the δ-ideal of R generated by the set of all coefficients

of elements of J . Then J
1(δ)
0 [x; δ], the 0-symmetric left nearring of differential

polynomials with coefficients from J1(δ), is an ideal of R0[x; δ]. By using Lemma

2.1 one can show that rR0[x;δ](J) = rR0[x;δ](J
1(δ)
0 [x; δ]). Since R is quasi-Baer,

hence `R(J1(δ)) = rR(J1(δ)) = eR for some idempotent e ∈ R. We show that

rR0[x;δ](J) = ex ◦ R0[x; δ]. Since e ∈ rR(J1(δ)), we have ex ◦ R0[x; δ] ⊆ rR0[x;δ](J).

Now, let (x)g = g1x+· · ·+gmxm ∈ rR0[x;δ](J) = rR0[x;δ](J
1(δ)
0 [x; δ]). Then J1(δ)gi =

giJ
1(δ) = 0 for each i = 1, · · · ,m, since R is reduced. Therefore gi ∈ rR(J1(δ)) = eR
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and that gi = egi = gie for each i = 1, · · · ,m. Hence (x)g = ex ◦ (x)g, since

δ(e) = 0. Consequently rR0[x;δ](J) = rR0[x;δ](J
1(δ)
0 [x; δ]) = ex ◦ R0[x; δ], which

implies R0[x; δ] ∈ qBr1. ¤

Corollary 2.8. Let R be a reduced ring. Then the following are equivalent:

(1) R is quasi-Baer;

(2) R[x] ∈ qBr2;

(3) (R[x], +, .) is quasi-Baer;

(4) R0[x] ∈ qBr1.
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