
International Electronic Journal of Algebra

Volume 6 (2009) 46-64

PERIODIC RESOLUTIONS FOR CERTAIN FINITE GROUPS

Dave Benson

Received: 08 July 2008; Revised: 2 February 2009

Communicated by Abdullah Harmancı

Abstract. Let p and q be distinct odd primes, and let

G = 〈x, y | xpy = y−1xp, xy = y2q−1x−1〉 ∼= Z/pq oQ8.

Using this deficiency zero presentation discovered by Bernard Neumann, we

investigate the beginning of a projective resolution of Z as a ZG-module in the

case p 6≡ q (mod 4). This gives enough information to compute H∗(G, M) for

any ZG-module M .

Mathematics Subject Classification (2000) : 20J06

Keywords: Free resolution; periodic finite group

1. A family of presentations

This paper is concerned with the calculation of the beginning of a projective res-

olution of Z as a ZG-module, where G belongs to a certain class of periodic groups.

A finite group G has periodic cohomology if and only if every Sylow subgroup of

G is cyclic or generalised quaternion. See for example Cartan and Eilenberg [2],

Section XII.11. The classification of such groups can be found in Theorem 6.1.11

and Section 6.3 of Wolf [11], as well as on page 103 of Thomas and Wall [10].

In this paper, we concentrate on groups expressible as a semidirect product

Z/pq oQ8 = (Z/p× Z/q)oQ8.

Here, p and q are distinct odd primes, and Q8 acts on Z/p and Z/q via two different

quotients of order two, so that the kernel of the action is equal to the centre of Q8.

We begin by investigating the group G defined by two generators x and y, and

two relations

xpy = y−1xp xrys = y2q−sx−r.

Here, p, q, r and s are odd (but not necessarily prime), and (p, r) = (q, s) = 1. In

the case r = s = 1, this presentation was investigated by B. H. Neumann [7].

Since x2py = xpy−1xp = yx2p, we have

x2p ∈ Z(G),
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where Z(G) denotes the centre of G. Also,

xry2qx−r = (xrys)(y2q−sx−r) = (y2q−sx−r)(xrys) = y2q

so y2q commutes with both xr and x2p. Since r is coprime to 2p, it follows that

y2q ∈ Z(G).

We set z = y2q ∈ Z(G). Since zxp = xpz = xpy2q = y−2qxp = z−1xp, we have

z2 = 1. This means we can rewrite the second relation in the form

zxrys = y−sx−r.

We have, using the first relation,

xp−r(xrys) = (y−sx−r)xp+r = (zxrys)xp+r = (zx2p)(xrys)x−p+r

and so

xp(p−r)(xrys) = (zx2p)p(xrys)x−p(p−r).

But also, since p− r is even and x2p ∈ Z(G) we have

xp(p−r)(xrys) = (xrys)xp(p−r).

It follows that x2p(p−r) = (zx2p)p, so x2pr = z−p = z. Set v = x4p and w = xr.

Then vr = 1, v ∈ Z(G), and w2p = z. Furthermore, since (4p, r) = 1, we have

G = 〈v, w, y〉, and

wpy = y−1wp wys = zy−sw−1.

Since wyswys = z ∈ Z(G), conjugating by wp gives

wyswys = wp(wyswys)w−p = wy−swy−s

so that y2sw = wy−2s. Since y2q = z ∈ Z(G) and (q, s) = 1 we deduce that

y2w = wy−2 so that w2 and y2 commute. Since q − s is even, this gives

wyq = wysyq−s = zy−sw−1yq−s = zy−sys−qw−1 = zy−qw−1 = yqw−1.

Set i = yq, j = w−p, k = ij and

Q = 〈i, j〉 ⊆ G.

Since we have i2 = j2 = z, ij = ji−1, and z is central with z2 = 1, it follows that Q

satisfies the relations of a quaternion group of order eight. Writing ı̄, ̄, k̄ for i−1,

j−1 and k−1, we have the usual quaternionic relations

ij = ̄i = k, jk = k̄j = i, ki = ı̄k = j,

i2 = j2 = k2 = ijk = z ∈ Z(Q), z2 = 1.
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Since (4, p) = (4, q) = 1, we have

G = 〈v, w4, y4, i, j〉,

and these elements satisfy the quaternion relations together with

iy4 = y4i, jw4 = w4j, iw4 = w−4i, jy4 = y−4j,

w4y4 = y4w4, (w4)p = 1, (y4)q = 1, v ∈ Z(G), vr = 1.

It follows that there is a surjective homomorphism

Z/r × (Z/p× Z/q)oQ8 → G

sending the generator of Z/r to v, the generator of Z/p to w4, the generator of Z/q

to y4, and the generators of Q8 to i and j. Finally, expressing x and y in terms

of these generators, it is not hard to check that the corresponding elements of the

group on the left satisfy the defining relations, so that this map is an isomorphism

and |G| = 8pqr.

One way of keeping track of this isomorphism is as follows. By replacing p with

−p if necessary, we can assume that p ≡ 3 (mod 4). Similarly, we can assume that

q ≡ 1 (mod 4). Then we can set a = w1+p and b = y1−q, so that 〈a〉 = 〈w4〉 and

〈b〉 = 〈y4〉, and write N for the normal subgroup 〈a, b〉 of G. Then G = 〈v〉×(NoQ),

and in terms of these generators we have w = ja and y = ib. These elements satisfy

ab = ba, ap = 1, bq = 1, ia = a−1i, ja = aj, ib = bi, jb = b−1j.

Remarks. (i) It follows from the above discussion that the isomorphism type of

G depends only on p, q and r, and not on s.

(ii) It would be interesting to know whether the periodic groups of the form

Z/mo (Q2n × Z/r)

with m and r odd and coprime, all have deficiency zero presentations.

2. The resolution

Let G be the group discussed in the last section. We assume from now on that

r = s = 1, so that w = x and v = 1. We shall also assume that p and q are distinct

odd primes. Thus

G = 〈x, y | xpy = y−1xp, xy = y2q−1x−1〉 ∼= (Z/p× Z/q)oQ8.

By the analysis of Section 1, every element of G has a unique expression of the form

xαyβ with 0 ≤ α ≤ 4p− 1, 0 ≤ β ≤ 2q − 1. The element x2p = y2q = z is central,
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and x4p = y4q = z2 = 1. In order to multiply such expressions, one uses these facts

together with the rules

ynxm =





xmyn m, n even

xmy−n m odd, n even

x−myn m even, n odd

x−my−nz m, n odd.

Using Fox’s free differential calculus [4] on the relators of the above presentation,

namely yxpyx−p and xyxy1−2q, we can form the beginning of a free resolution of

Z as a ZG-module. The following sequence is exact:

ZGγ ⊕ ZGγ′ d2−→ ZGβ ⊕ ZGβ′ d1−→ ZGα
ε−→ Z→ 0.

Here, the maps are given as follows:

ε(α) = 1, d1(β) = (x− 1)α, d1(β′) = (y − 1)α

d2(γ) =
∂(yxpyx−p)

∂x
β +

∂(yxpyx−p)
∂y

β′

= (y − 1)(xp−1 + · · ·+ x + 1)β + (yxp + 1)β′

d2(γ′) =
∂(xyxy1−2q)

∂x
β +

∂(xyxy1−2q)
∂y

β′

= (xy + 1)β + (x− (y2q−2 + · · ·+ y + 1))β′.

We begin by examining the degenerate case where p = 1 rather than a prime. In

this case, the equation for d2(γ) reduces to

d2(γ) = (y − 1)β + (yx + 1)β′

while the equation for d2(γ′) remains unaltered. The kernel of d2 is generated by

the element

(x− 1)γ + (y − 1)γ′

whose annihilator is the group sum.

Similarly, in the degenerate case where q = 1 rather than a prime, the equation

for d2(γ) remains unaltered, while the equation for d2(γ′) reduces to

d2(γ′) = (xy + 1)β + (x− 1)β′.

The kernel of d2 is generated by the element

(x− 1)γ + (yxp−1 − 1)γ′

whose annihilator is the group sum.
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In each of these two cases, we obtain an exact sequence of the form

0 → Z→ ZGδ
d3−→ ZGγ ⊕ ZGγ′ d2−→ ZGβ ⊕ ZGβ′ d1−→ ZGα

ε−→ Z→ 0

where d3(δ) is equal to the given generator for the kernel of d2. Our purpose here is

to try to understand under what conditions on primes p and q we can get a sequence

like this one. This will happen precisely when the kernel of d2 is generated by a

single element. We do not completely succeed in this goal. What we do succeed

in doing is obtaining a pair of generators (Theorem 4.8) for the kernel of d2. The

next step will be to find conditions under which these may be reduced to a single

generator. We describe in Section 5 why one generator will not always suffice; there

are delicate congruence conditions on p and q in order for the Swan obstruction to

vanish. It seems plausible that these are exactly the conditions for reducing to a

single generator; necessity is clear, but sufficiency is not.

Theorem 4.8 gives enough information to compute H∗(G, M) for any ZG-module

M . Namely, since H∗(G,Z) is periodic with period four, it suffices to compute the

Tate cohomology groups Ĥi(G,M) for −1 ≤ i ≤ 2. This can be achieved by

applying HomZG(−, M) to the segment of a Tate resolution given by

ZGδ ⊕ ZGδ′ d3−→ ZGγ ⊕ ZGγ′ d2−→ ZGβ ⊕ ZGβ′ d1−→ ZGα
ε∗◦ε−−−→

ZGα∗
d∗1−→ ZGβ∗ ⊕ ZGβ′∗

d∗2−→ ZGγ∗ ⊕ ZGγ′∗

and taking the cohomology of the resulting complex. Here, δ and δ′ are taken to

be a pair of generators for the kernel of d2. The maps ε∗, d∗1 and d∗2 are the Z-duals

of ε, d1 and d2, ZGα∗ denotes HomZ(ZGα,Z), a free ZG-module of rank one with

basis element α∗, and so on.

3. The kernel of d2

In order to find the kernel of d2, we write out the equations in the last section

in greater detail. We shall assume that p ≡ 3 (mod 4) and q ≡ 1 (mod 4). As in

Section 1, we write i = yq, j = x−p, k = ij, a = x1+p, b = y1−q. Thus x = ja and

y = ib, and the generators i, j, a and b satisfy

i2 = j2 = k2 = ijk = z ∈ Z(G), z2 = 1,

ab = ba, ap = bq = 1, ia = a−1i, ja = aj, ib = bi, jb = b−1j.

Each element of G may be written uniquely as a product of an element of Q and

an element of N . Substituting ja for x and ib for y, we get

xp−1 + · · ·+ x + 1 = ap−1 + jap−2 + 1ap−3 + ̄ap−4 + zap−5 + · · ·+ ja + 1
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y2q−2 + · · ·+ y + 1 = 1b2q−2 + ı̄b2q−3 + zb2q−4 + ib2q−5 + · · ·+ ib + 1,

so that

yxp + 1 = k̄b−1 + 1, xy + 1 = k̄a−1b + 1,

(y − 1)(xp−1 + · · ·+ x + 1) = −1(ap−3 + ap−7 + · · ·+ 1)

− z(ap−1 + ap−5 + · · ·+ a2) + i(ap−3 + ap−7 + · · ·+ 1)b

+ ı̄(ap−1 + ap−5 + · · ·+ a2)b− j(ap−2 + ap−6 + · · ·+ a)

− ̄(ap−4 + ap−8 + · · ·+ a3) + k(ap−2 + ap−6 + · · ·+ a)b−1

+ k̄(ap−4 + ap−8 + · · ·+ a3)b−1,

and

x− (y2q−2 + · · ·+y +1) = −1(b2q−2 + b2q−6 + · · ·+1)−z(b2q−4 + b2q−8 + · · ·+ b2)

− i(b2q−5 + b2q−9 + · · ·+ b)− ı̄(b2q−3 + b2q−7 + · · ·+ b3) + ja.

Write the general element φγ − φ′γ′ of the kernel of d2 in the form

(1φ1 + zφz + iφi + ı̄φı̄ + jφj + ̄φ̄ + kφk + k̄φk̄)γ

− (1φ′1 + zφ′z + iφ′i + ı̄φ′ı̄ + jφ′j + ̄φ′̄ + kφ′k + k̄φ′̄k)γ′,

where each of the coefficients φ1, . . . , φk̄, φ′1, . . . , φ
′̄
k

is an element of the group al-

gebra Z[Z/pq]. Then the equations describing the kernel of d2 are

φ(y − 1)(xp−1 + · · ·+ x + 1) = φ′(xy + 1) (1)

φ(yxp + 1) = φ′(x− (y2q−2 + · · ·+ y + 1)) (2)

These equations give 16 conjugate linear equations in these 16 variables. In fact, it

turns out that by conjugating each of these equations by one of 1, i, j or k, these

16 equations become linear in the 16 new variables

φ1 = φ1, φ2 = φz, φ3 = iφi ı̄, φ4 = ı̄φı̄i,

φ5 = jφj ̄, φ6 = ̄φ̄j, φ7 = kφkk̄, φ8 = k̄φk̄k,

φ′1 = φ′1, φ′2 = φ′z, φ′3 = iφ′i ı̄, φ′4 = ı̄φ′ı̄i,

φ′5 = jφ′j ̄, φ′6 = ̄φ′̄j, φ′7 = kφ′kk̄, φ′8 = k̄φ′̄kk.

In order to solve these equations, we work first over the quotient of the group

algebra Z[Z/pq] given by setting ap−1 + · · ·+ a + 1 = 0 and bq−1 + · · ·+ b + 1 = 0.

This is the ring OK = Z[ζpq] of integers in the cyclotomic number field K = Q(ζpq),
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where ζpq = e2πi/pq is a primitive pqth root of unity. Thus a and b are primitive

pth and qth roots of unity respectively.

In this quotient, we may multiply the equations by any non-zero element of K,

without altering the space of solutions. We multiply the equation (1) by a3 + a2 +

a + 1, and the equation (2) by b2 + 1, to obtain

φ(−1− za2 + ib + ı̄a2b− ja + ̄(a2 + a + 1) + kab−1 − k̄(a2 + a + 1)b−1)

= φ′(k̄a−1b + 1)(a3 + a2 + a + 1) (3)

φ(k̄b−1 + 1)(b2 + 1) = φ′(−1 + z + ib−1 + ı̄b + ja(b2 + 1)). (4)

We then conjugate as above to make the equations linear. The resulting 16 equa-

tions are as follows:

−φ1 − φ2a
2 + φ3a

2b + φ4b + φ5(a2 + a + 1)− φ6a

−φ7(a2 + a + 1)b−1 + φ8ab−1 = (φ′1 + φ′7a
−1b)(a3 + a2 + a + 1)

(5)

φ1b + φ2a
−2b− φ3 − φ4a

−2 + φ5a
−1b−1 − φ6(1 + a−1 + a−2)b−1

+φ7(1 + a−1 + a−2)− φ8a
−1 = (φ′3 + φ′6ab)(1 + a−1 + a−2 + a−3)

(6)

−φ1a + φ2(a2 + a + 1)− φ3(a2+a + 1)b + φ4ab− φ5 − φ6a
2

+φ7b
−1 + φ8a

2b−1 = (φ′3a
−1b−1 + φ′5)(a

3 + a2 + a + 1)
(7)

φ1a
−1b− φ2(1 + a−1 + a−2)b−φ3a

−1 + φ4(1 + a−1 + a−2) + φ5a
−2b−1

+φ6b
−1 − φ7 − φ8a

−2 = (φ′2ab−1 + φ′7)(1 + a−1 + a−2 + a−3)
(8)

−φ1a
2 − φ2 + φ3b + φ4a

2b− φ5a+φ6(a2 + a + 1) + φ7ab−1

−φ8(a2 + a + 1)b−1 = (φ′2 + φ′8a
−1b)(a3 + a2 + a + 1)

(9)

φ1a
−2b + φ2b− φ3a

−2 − φ4 − φ5(1 + a−1 + a−2)b−1 + φ6a
−1b−1

−φ7a
−1 + φ8(1 + a−1 + a−2) = (φ′4 + φ′5ab)(1 + a−1 + a−2 + a−3)

(10)

φ1(a2 + a + 1)− φ2a + φ3ab− φ4(a2 + a + 1)b− φ5a
2 − φ6

+φ7a
2b−1 + φ8b

−1 = (φ′6 + φ′4a
−1b−1)(a3 + a2 + a + 1)

(11)

−φ1(1 + a−1 + a−2)b + φ2a
−1b + φ3(1 + a−1 + a−2)− φ4a

−1 + φ5b
−1

+φ6a
−2b−1 − φ7a

−2 − φ8 = (φ′1ab−1 + φ′8)(1 + a−1 + a−2 + a−3)
(12)

φ1(b2 + 1) + φ7(b + b−1) = −φ′1 + φ′2 + φ′3b + φ′4b
−1 + φ′6a(b2 + 1) (13)

φ3(b2 + 1) + φ6(b + b−1) = φ′1b
−1 + φ′2b− φ′3 + φ′4 + φ′8a

−1(b2 + 1) (14)

φ3(b + b−1) + φ5(1 + b−2) = φ′1a(1 + b−2)− φ′5 + φ′6 + φ′7b + φ′8b
−1 (15)

φ2(b + b−1) + φ7(1 + b−2) = φ′3a
−1(1 + b−2) + φ′5b

−1 + φ′6b− φ′7 + φ′8 (16)
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φ2(b2 + 1) + φ8(b + b−1) = φ′1 − φ′2 + φ′3b
−1 + φ′4b + φ′5a(b2 + 1) (17)

φ4(b2 + 1) + φ5(b + b−1) = φ′1b + φ′2b
−1 + φ′3 − φ′4 + φ′7a

−1(b2 + 1) (18)

φ4(b + b−1) + φ6(1 + b−2) = φ′2a(1 + b−2) + φ′5 − φ′6 + φ′7b
−1 + φ′8b (19)

φ1(b + b−1) + φ8(1 + b−2) = φ′4a
−1(1 + b−2) + φ′5b + φ′6b

−1 + φ′7 − φ′8. (20)

We simplify this set of equations as follows. Adding equations (13) and (17),

and equations (14) and (18), and dividing by b2 + 1, we get

φ1 + φ2 + φ7b
−1 + φ8b

−1 = φ′3b
−1 + φ′4b

−1 + φ′5a + φ′6a. (21)

φ3 + φ4 + φ5b
−1 + φ6b

−1 = φ′1b
−1 + φ′2b

−1 + φ′7a
−1 + φ′8a

−1 (22)

Similarly, adding equations (15) and (19), and equations (16) and (20), and dividing

by b + b−1, we get

φ3 + φ4 + φ5b
−1 + φ6b

−1 = φ′1ab−1 + φ′2ab−1 + φ′7 + φ′8 (23)

φ1 + φ2 + φ7b
−1 + φ8b

−1 = φ′3a
−1b−1 + φ′4a

−1b−1 + φ′5 + φ′6. (24)

Comparing equations (22) and (23), and using the fact that a − 1 is non-zero,

we see that each side of equation (22) is separately zero. Similarly, comparing

equations (21) and (24), we see that each side of (21) is separately zero. So the last

four equations are equivalent to the following four equations:

φ1b + φ2b + φ7 + φ8 = 0 (25)

φ3b + φ4b + φ5 + φ6 = 0 (26)

φ′1a + φ′2a + φ′7b + φ′8b = 0 (27)

φ′3 + φ′4 + φ′5ab + φ′6ab = 0. (28)

Dividing the equations (13)+(14)b and (13)b−(14) by b2+1, and dividing equations

(15) + (16)b and (15)b− (16) by b + b−1, we get:

φ1 + φ3b + φ6 + φ7b
−1 = φ′2 + φ′4b

−1 + φ′6a + φ′8a
−1b (29)

φ1b− φ3 − φ6b
−1 + φ7 = −φ′1b

−1 + φ′3 + φ′6ab− φ′8a
−1 (30)

φ2b + φ3 + φ5b
−1 + φ7 = φ′1ab−1 + φ′3a

−1 + φ′6b + φ′8 (31)

−φ2 + φ3b + φ5 − φ7b
−1 = φ′1a− φ′3a

−1b−1 − φ′5 + φ′7b (32)

Our sixteen equations are now (5)–(12) and (25)–(32).

Next, we observe that we have the following linear relations between the equa-

tions:

(5)− (8)a2b + (9)− (12)a2b = (25)(a2 + 1)(b− b−1)
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(6)a2b− (7) + (10)a2b− (11) = (25)(a2 + 1)(b− b−1)

(5) + (9) = (−(25)b−1 + (26) + (27)(1 + a−1))(a2 + 1)

(6) + (10) = (25)(1 + a−2)− (26)(1 + a−2)b−1 + (28)(1 + a−1 + a−2 + a−3)

−(6)a3 + (12)a2 = (29)(a3 + a2 + a + 1)

(9) + (11)a = −(25)(a2 + 1)b−1 − (26)(a3 + a) + (30)(a3 + a2 + a + 1)

(5)a− (7) = (31)(a3 + a2 + a + 1)

(6)a2 + (12) = −(25)(a3 + a)− (26)(a2 + 1)b−1 + (32)(a3 + a2 + a + 1)

These relations imply that equations (5)–(12) are redundant, so that we are left
with equations (25)–(32). It is convenient to express these in matrix form as follows:




b b 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 b b 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 a a 0 0 0 0 b b

0 0 0 0 0 0 0 0 0 0 1 1 ab ab 0 0

1 0 b 0 0 1 b−1 0 0 1 0 b−1 0 a 0 a−1b

b 0 −1 0 0 −b−1 1 0 −b−1 0 1 0 0 ab 0 −a−1

0 b 1 0 b−1 0 1 0 ab−1 0 a−1 0 0 b 0 1

0 −1 b 0 1 0 −b−1 0 a 0 −a−1b−1 0 −1 0 b 0




A basis for the null space of this matrix is given by the columns of the following
matrix: 



−1 0 0 0 ab−2 0 0 ab−1

−1 0 0 0 −b−2 (a− 1)b a− 1 −b−1

0 −1 0 0 b−1 0 (1− a)b −ab−2

0 −1 0 0 −ab−1 1− a 0 b−2

0 b 0 0 0 −b −b2 0

0 b 0 0 a− 1 ab ab2 (a− 1)b−1

b 0 0 0 0 −ab2 b 1− a

b 0 0 0 (1− a)b−1 b2 −ab 0

0 0 −1 0 0 0 1 b−1

0 0 −1 0 0 0 −b2 −b

0 0 0 ab ab−1 a 0 0

0 0 0 ab −ab −ab2 0 0

0 0 0 −1 1 −b−1 0 0

0 0 0 −1 −b−2 b 0 0

0 0 ab−1 0 0 0 ab −ab−2

0 0 ab−1 0 0 0 −ab−1 a




Now a− 1 and a + 1 are coprime in OK , and b2 + 1 = (b4− 1)/(b2− 1) is a unit in

OK . Using these facts, we easily see that the minor of the above matrix given by
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rows 1–4 and rows 9–12 has determinant a unit in OK . It follows that the kernel

has the columns of the above matrix as an OK-basis.

The first column of this matrix, for example, tells us that the element

(−1− z + kb−1 + k̄b−1)γ = (1 + z)(yxp − 1)γ

is in the kernel of d2, modulo the cyclotomic relations. We write

Na = 1 + a + · · ·+ ap−1,

Nb = 1 + b + · · ·+ bq−1,

Nx = x4p−1 + · · ·+ x + 1 = (1 + z + j + ̄)Na,

Ny = y4q−1 + · · ·+ y + 1 = (1 + z + i + ı̄)Nb.

We note that the relations given at the beginning of this section imply that Na and

Nb lie in the centre of ZG, and that

N2
a = pNa, N2

b = qNb, NaNx = NxNa = pNx, NbNy = NyNb = qNy. (33)

We have

d2(1 + z)(yxp − 1)γ = (1− y)Nxβ. (34)

The remaining columns of this matrix lift to the following equations:

d2y
q(1 + z)(yxp − 1)γ = yq(1− y)Nxβ (35)

d2(1 + z)(xy − 1)γ′ = (1− x)Nyβ′ (36)

d2x
p(1 + z)(xy − 1)γ′ = xp(1− x)Nyβ′ (37)

d2x
−p((1− x1+p + x−py−2 − xy−2z)(y − z)γ + (1 + xy−1)(1− y2)γ′) = 0 (38)

d2x
1+pyq((1− x1+p + x−py−2 − xy−2z)(y − z)γ + (1 + xy−1)(1− y2)γ′) = 0 (39)

d2((1− x1+p + x−py−2 − xy−2z)(y − z)γ + (1 + xy−1)(1− y2)γ′) = 0 (40)

d2xyq((1− x1+p + x−py−2 − xy−2z)(y − z)γ + (1 + xy−1)(1− y2)γ′) = 0 (41)

Now equation (35) is a yq times equation (34), equation (37) is xp times equa-

tion (36), and equations (38), (39) and (41) are obtained by multiplying equa-

tion (40) by x−p, x1+pyq and xyq respectively. So we may restrict our attention to

equations (34), (36) and (40). We have proved the following.

Theorem 3.1. The kernel of

d̄2 : (ZG/I)γ ⊕ (ZG/I)γ′ → (ZG/I)β ⊕ (ZG/I)β′

is generated by the elements (1 + z)(yxp − 1)γ, (1 + z)(xy − 1)γ′ and

(1− x1+p + x−py−2 − xy−2z)(y − z)γ + (1 + xy−1)(1− y2)γ′.
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Here, I is the ideal of ZG generated by the central elements Na and Nb. ¤

4. The switchback map

To make use of the above theorem, we examine the switchback map for the snake

lemma applied to the following diagram.

0 // Iγ ⊕ Iγ′ //

d2

²²

ZGγ ⊕ ZGγ′ //

d2

²²

(ZG/I)γ ⊕ (ZG/I)γ′ //

d̄2

²²

0

0 // Iβ ⊕ Iβ′ // ZGβ ⊕ ZGβ′ // (ZG/I)β ⊕ (ZG/I)β′ // 0

Lemma 4.1. As a ZG-module, the image of the switchback map ker d̄2 → coker d2

for the above diagram is a direct sum Mp ⊕ Mq. The submodule Mp ⊆ Iβ is

generated by (1−y)Nxβ, killed by multiplication by p, while the submodule Mq ⊆ Iβ′

is generated by (1− x)Nyβ′, killed by multiplication by q.

Proof. We apply the switchback map to the generators of ker d̄2 named in Theorem

3.1. Equations (34), (36) and (40) imply that d2 sends these to (1 − y)Nxβ ∈ Iβ,

(1−x)Nyβ′ ∈ Iβ′ and zero respectively. It follows that the image of the switchback

map is Mp ⊕Mq ⊆ Iβ ⊕ Iβ′.

As an element of coker d2, (1 − y)Nxβ is killed by p, since equations (33) and

(34), and the fact that d2 is a module homomorphism give

d2Na(1 + z)(yxp − 1)γ = Na(1− y)Nxβ = p(1− y)Nxβ.

Similarly, equations (33) and (36) show that (1−x)Nyβ′ is killed by q as an element

of coker d2. ¤

Lemma 4.2. (i) The annihilator in ZG of (1 − y)Nxβ is the left ideal generated

by the elements 1− x1+p, yxp + 1 and y2q−1 + · · ·+ y + 1. (ii) The annihilator in

ZG of (1 − x)Nyβ′ is the left ideal generated by the elements 1 − y2, xy + 1 and

x2p−1 + · · ·+ x + 1.

Proof. (i) We have

(1− x1+p)(1− y)Nxβ = (1− x1+p − y + yx−1−p)Nxβ

= (1 + yx−1−p)(1− x1+p)Nxβ = 0,

(yxp + 1)(1− y)Nxβ = (yxp + 1− xp − y)Nxβ

= (1− y)(1− xp)Nxβ = 0

(y2q−1 + · · ·+ y + 1)(1− y)Nxβ = (1− y2q)Nxβ = (1− x2p)Nxβ = 0,
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so these elements are in the annihilator. Since ZG has a basis consisting of the

elements ynxm with 0 ≤ n ≤ 2q − 1 and 0 ≤ m ≤ 4p − 1, the elements yn and

ynxp span ZG/ZG(1 − x1+p). Then the elements yn with 0 ≤ n ≤ 2q − 1 span

ZG/ZG(1− x1+p, yxp + 1) and finally the elements yn with 0 ≤ n ≤ 2q − 2 span

ZG/ZG(1− x1+p, yxp + 1, y2q−1 + · · ·+ y + 1).

Since the submodule of ZGβ generated by (1 − y)Nxβ has Z-rank 2q − 1 by

Lemma 4.1, these elements must generate the annihilator.

(ii) We have

(1− y2)(1− x)Nyβ′ = (1− y2 − x + xy−2)Nyβ′

= (1 + xy−2)(1− y2)Nyβ′ = 0,

(xy + 1)(1− x)Nyβ′ = (xy + 1− y2q−1 − x)Nyβ′

= (x− (y2q−2 + · · ·+ y + 1))(y − 1)Nyβ′ = 0,

(x2p−1 + · · ·+ 1)(1− x)Nyβ′ = (1− x2p)Nyβ′ = (1− y2q)Nyβ′ = 0,

so these elements are in the annihilator. The rest of the proof is parallel to the

proof of (i). ¤

Proposition 4.3. The kernel of d2 on ZGγ ⊕ ZGγ′ is generated as a ZG-module

by the elements

(1− x1+p)(1 + z)(yxp − 1)γ (42)

(1− x1+p + x−py−2 − xy−2z)(y − z)γ + (1 + xy−1)(1− y2)γ′ (43)

together with possibly some further elements of Iγ ⊕ Iγ′.

Proof. The image in ZG/I⊕ZG/I of the kernel of d2 is the same as the kernel of the

switchback map on the kernel of d̄2. The kernel of d̄2 is calculated in Theorem 3.1,

and the switchback map is described in Lemma 4.1. Thus using Lemma 4.2, we see

that the kernel is generated by the elements (42) and (43) together with

(yxp + 1)(1 + z)(yxp − 1)γ (44)

(y2q−1 + · · ·+ y + 1)(1 + z)(yxp − 1)γ (45)

(Na − p)(1 + z)(yxp − 1)γ (46)

(1− y2)(1 + z)(xy − 1)γ′ (47)

(xy + 1)(1 + z)(xy − 1)γ′ (48)

(Nb − q)(1 + z)(xy − 1)γ′ (49)
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(x2p−1 + · · ·+ x + 1)(1 + z)(xy − 1)γ′. (50)

The elements (44) and (48) are equal to zero, the elements (45) and (50) are in

Iγ ⊕ Iγ′, and the element (47) is equal to (1 + yxp−1) times (42) minus (1 + z)

times (43). The element (46) is equal to (1 + 2a + 3a2 + · · · + pap−1) times (42)

(note that x1+p = a), and the element (49) is equal to (1+2b2 +3b4 + · · ·+qb2(q−1))

times (47). ¤

In order to make use of Lemma 4.1 for rank calculations, it is necessary next to

calculate TorZG
1 (Z,ZG/I).

Lemma 4.4. We have Z⊗ZG ZG/I = 0 and TorZG
1 (Z,ZG/I) = 0.

Proof. The short exact sequence of ZG-modules

0 → I → ZG → ZG/I → 0

gives rise to an exact sequence

0 → TorZG
1 (Z,ZG/I) → Z⊗ZG I → Z⊗ZG ZG → Z⊗ZG ZG/I → 0.

Now I is generated as a submodule of ZG by the elements u1 = Na and u2 = Nb,

which satisfy the relations (a− 1)u1 = 0, (b− 1)u2 = 0 and Nbu1 = Nau2. A count

of Z-ranks shows that this is a presentation of the ZG-module I.

Tensoring over ZG with Z via the augmentation map, we obtain generators

ū1 = 1 ⊗ Na and ū2 = 1 ⊗ Nb subject only to the relation qū1 = pū2. Choose

integers r and s so that rp + sq = 1, and set ū3 = rū1 + sū2. Then pū3 = ū1 and

qū3 = ū2. So Z⊗ZG I is a copy of Z generated by ū3. The image in Z⊗ZG ZG ∼= Z
of ū1 is p and of ū2 is q, so the image of ū3 is rp+sq = 1. It follows that the middle

arrow in the above exact sequence is an isomorphism, and the two end terms are

zero. ¤

Proposition 4.5. The sequence

ZG/I ⊕ ZG/I
d̄2−→ ZG/I ⊕ ZG/I

d̄1−→ ZG/I → 0

is exact.

Proof. This follows directly from the lemma, since the homology of this sequence

calculates Z⊗ZG ZG/I and TorZG
1 (Z,ZG/I). ¤

Corollary 4.6. The kernel and cokernel of d̄2 both have Z-rank 8(p− 1)(q − 1).

Proof. Since OK has Z-rank (p − 1)(q − 1) and ZG/I has OK-rank 8, it follows

that ZG/I has Z-rank 8(p− 1)(q − 1). ¤
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Corollary 4.7. The kernel and cokernel of d2 as a map from I ⊕ I to I ⊕ I both

have torsion-free Z-rank equal to 8p + 8q − 9. The kernel is torsion-free, while the

cokernel has a p-torsion summand Mp and a q-torsion summand Mq.

Proof. According to Lemma 4.1 the image of the switchback map is a sum of a

p-torsion module Mp and a q-torsion module Mq. So the torsion-free rank of the

cokernel of d2 on I ⊕ I is given by subtracting the torsion-free rank of the cokernel

of d̄2 on ZG/I⊕ZG/I from the torsion-free rank of the cokernel of d2 on ZG⊕ZG.

By Corollary 4.6, this gives a torsion-free rank of

(8pq − 1)− 8(p− 1)(q − 1) = 8p + 8q − 9.

The torsion-free rank of the kernel is the same as that of the cokernel. ¤

Theorem 4.8. The kernel of d2 on ZGγ⊕ZGγ′ is generated as a ZG-module by the

elements (42) and (43), together with NaNb[(j−1)γ+(̄ı−1)γ′]. The latter element

may be added into element (42) or into element (43) to give just two generators.

Proof. Multiplying Na by the element (43) gives

Na(k − k̄ − j + ̄)b−2γ + Na(kb−1 + 1− k̄b− zb2)γ′

which generates a ZG-submodule M1 of I ⊕ I of Z-rank 8q − 4 annihilated by

Nb(1 + z). Multiplying Nb by the element (43) gives

Nb(i− z + k − j − ai + az − ak̄ + a̄)γ + Nb(1 + ak − z − ak̄)γ′,

which generates a ZG-submodule M2 of I ⊕ I of Z-rank 6p − 3 annihilated by

(1 + z)(1 − j) and by Na(1 + z). The intersection M1 ∩ M2 consists of the ZG-

submodule generated by NaNb times (43), annihilated by (1 + z), of Z-rank 4, so

M1 + M2 has Z-rank 6p + 8q − 11.

Multiplying Nb by the element (42) gives

Nb(1− a)(−1− z + k + k̄)γ.

This is annihilated by (1 − z), and (1 + j) times this element equals (1 + z)Nb

times (43). Letting M3 be the ZG-module generated by this element, we see that

(M1 + M2 + M3)/(M1 + M2) is annihilated by (1− z) and (1 + j) and has Z-rank

2p − 2. So M1 + M2 + M3 has Z-rank 8p + 8q − 13. It is not hard to verify that

it is a Z-summand of I ⊕ I, so it follows from Corollary 4.7 that M1 + M2 + M3 is

equal to the kernel of d2 on I ⊕ I modulo multiples of NaNb. The ZG-submodule

generated by NaNb[(j − 1)γ + (̄ı − 1)γ′] is easily checked to be in the kernel, and

has Z-rank 7. Its intersection with M1 + M2 + M3 has Z-rank 3, so we are up to

8p + 8q − 9 as required. The theorem now follows from Proposition 4.3. ¤
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5. The Swan obstruction

Swan [8] has proved that a finite group G acts freely and cellularly on some

finitely dominated CW complex with the homotopy type of an (n−1)-sphere Sn−1

if and only if the integral cohomology of G is periodic with period dividing n. This

means that Hn(G,Z) ∼= Z/|G|, and that cup product with an additive generator

of Hn(G,Z) induces an isomorphism on Tate cohomology Ĥi(G,Z) → Ĥi+n(G,Z)

for all i ∈ Z. The complex may be taken to be finite if and only if an obstruction

called the Swan invariant vanishes. This invariant lies in a quotient of K̃0(ZG) by

a subgroup TG called the Swan subgroup. This section contains an explanation of

the Swan invariant, based on Jon Carlson’s modules Lζ .

Suppose that G is a periodic group. For a finitely generated ZG-module M , we

write ΩnM for the nth kernel in a resolution of M by finitely generated free ZG-

modules. This is only well defined up to adding and removing finitely generated

free summands (by the extended version of Schanuel’s lemma). If ζ ∈ Ĥn(G,Z),

we can represent ζ by a cocycle ζ̂ : ΩnZ→ Z. By adding a free summand to ΩnZ if

necessary, we may assume that this map is surjective (even if ζ = 0!), and we write

Lζ = Ker(ζ̂). So there is a short exact sequence

0 → Lζ → ΩnZ ζ̂−→ Z→ 0. (51)

An element ζ ∈ Ĥn(G,Z) lies in the multiplicative group Ĥ∗(G,Z)× of invertible

elements if and only if Lζ is projective. In this case, we get a well defined element

[Lζ ] ∈ K̃0(ZG). Here, K̃0(ZG) denotes the quotient of the Grothendieck ring

K0(ZG) of finitely generated projective ZG-modules by the subgroup of finitely

generated free ZG-modules, so that K0(ZG) ∼= Z × K̃0(ZG) and K̃0(ZG) is finite

[9].

The modules Lζ with ζ ∈ Ĥ0(G,Z)× are called Swan modules. The Swan module

corresponding to m ∈ (Z/|G|)× ∼= Ĥ0(G,Z)× can be described as the (projective)

submodule of ZG generated by the sum of the group elements and by the elements

divisible by n where n is an integer satisfying mn ≡ 1 modulo |G|. In other words,

the Swan modules are exactly the projective modules which are generated by a

single element after quotienting out the image of the sum of the group elements.

Lemma 5.1. If ζ and η are elements of Ĥ∗(G,Z)× of degrees n and m, then

[Lζ ][Lη] = 0 and [Lζ ] + [Lη] = [Lζη] in K̃0(ZG).
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Proof. As elements of K̃0(ZG), we have [ΩLη] = −[Lη]. Tensoring the exact

sequence (51) with Lη we get

0 → Lζ ⊗ Lη → ΩnLη → Lη → 0.

This is an exact sequence of projective modules, so it splits. Using the fact that an

invertible element of Tate cohomology has to lie in even degree, we get

[Lη] = [ΩnLη] = [Lη] + [Lζ ⊗ Lη]

so that

[Lζ ][Lη] = [Lζ ⊗ Lη] = 0.

The diagram

0

²²
ΩnLη

²²
0 // Lζη //

²²

Ωn+mZ
ζ̂η //

Ωn(η)

²²

Z // 0

0 // Lζ //

²²

ΩnZ
ζ̂ //

²²

Z // 0

0 0

gives us a short exact sequence

0 → ΩnLη → Lζη → Lζ → 0

so that

[Lζη] = [Lζ ] + [ΩnLη] = [Lζ ] + [Lη].

¤

This lemma implies that there is a well defined homomorphism

σ : Ĥ∗(G,Z)× → K̃0(ZG)

ζ 7→ −[Lζ ]
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called the Swan homomorphism. In positive degrees, it has the following interpre-

tation. We form the beginning of a free resolution and form the pushout

0

²²

0

²²
Lζ

²²

Lζ

²²
0 // ΩnZ //

ζ̂

²²

Fn−1
//

²²

Fn−2
// . . . // F0

// Z // 0

0 // Z //

²²

Fn−1/Lζ
//

²²

Fn−2
// . . . // F0

// Z // 0.

0 0

The obstruction to rechoosing the resolution so that Fn−1/Lζ is free, is the element

[Fn−1/Lζ ] = −[Lζ ] = σ(ζ) ∈ K̃0(ZG).

This accounts for the negative sign in the description of the map. The image under

σ of Ĥ0(G,Z)× ∼= Z/|G|× is called the Swan subgroup TG ⊆ K̃0(ZG). It should be

noted that {±1} is in the kernel of σ on Ĥ0(G,Z)×. We obtain a well defined map

σ̄ : Ĥ∗(G,Z)×/Ĥ0(G,Z)× (∼= Z) → K̃0(ZG)/TG.

If Ĥ∗(G,Z)×/Ĥ0(G,Z)× contains a non-zero element of degree n, then that element

is unique, and we write σn for its image in K̃0(ZG)/TG. The interpretation of TG

here is that it is the indeterminacy caused by the freedom to replace ζ by mζ, where

m is an integer coprime to |G|.
If G acts freely on a finite CW complex X with the homotopy type of an (n−1)-

sphere, then the cellular chains on X form a complex of finitely generated free

ZG-modules with homology only in degrees zero and n− 1:

0 → Cm → Cm−1 → · · · → C0 → 0.

If m ≥ n, then since projective ZG-modules are weakly injective (Cartan and

Eilenberg [2], Section XII.1), we may strip off the terms in this complex in degrees

bigger than n and insert the homology of the complex to make an exact sequence

0 → Z→ Fn−1 → · · · → F0 → Z→ 0
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with Fi free (i < n − 1) and Fn−1 stably free. It follows that the element σn ∈
K̃0(ZG)/TG is zero. The element σn is called the Swan obstruction, because it is

the obstruction to the existence of such a complex.

If we invert |G| then we have Ĥ∗(G,Z(1/|G|)) = 0. It follows that the sequence

of Z(1/|G|)G-modules

0 → Lζ(1/|G|) → ΩnZ(1/|G|) → Z(1/|G|) → 0

necessarily splits, giving

0 = [Lζ(1/|G|)] ∈ K̃0(Z(1/|G|)G).

If p is a prime dividing |G| and Z∧p is the ring of p-adic integers, then K̃0(Z
∧
p G) is a

finitely generated free abelian group, by the Krull–Schmidt theorem. Since K̃0(ZG)

is finite, it follows that the inclusion Z → Z∧p induces the zero map K̃0(ZG) →
K̃0(Z

∧
p G). Now examine the long exact sequence in K-theory of the arithmetic

square

K1(Z(1/|G|)G)⊕
⊕

p| |G|
K1(Z

∧
p G) →

⊕

p| |G|
K1(Q

∧
p G) →

K0(ZG) → K0(Z(1/|G|)G)⊕
⊕

p| |G|
K0(Z

∧
p G) →

⊕

p| |G|
K0(Q

∧
p G)

(see Davis and Milgram [3], page 246). Using the fact that K̃0(ZG) is finite and

K0(Z
∧
p G) is Z-free, we see that a representative of σn in K̃0(ZG) goes to zero in

the next term in this sequence. So σn lifts to an element of
⊕

p| |G|K1(Q
∧
p G) that

is well defined modulo the inverse image of TG.

The calculations in K1 have been carried out for the groups considered in this

paper by Milgram [6]) and later by Madsen [5]) and Bentzen and Madsen [1]. The

result of these calculations is as follows. Let A denote the ring Z[ηp, ηq] where

ηp = ζp + ζ−1
p and ηq = ζq + ζ−1

q , and ζp and ζq are primitive pth and qth roots of

unity respectively, with p and q distinct odd primes. Denote by A× the units in A

and by A∗ the totally positive units in A. Consider the reductions modulo p and q

ΦA : A× → (A/pA)×(2) ⊕ (A/qA)×(2).

Here, (2) denotes 2-primary component. Then σ4 = 0 if and only if

(i) p and q are not both congruent to 3 modulo 8, and

(ii) (4, 4) is in the image of ΦA restricted to A∗

(Proposition 5.2 of [1]).
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Condition (i) is guaranteed since we have assumed that q ≡ 1 (mod 4). Condi-

tion (ii) is therefore necessary, in order that the two generators given in Theorem 4.8

can be replaced by a single generator. It seems plausible that this arithmetic con-

dition is also sufficient, but the author has not succeeded in proving this.
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