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Abstract. Let L be a weak Hopf algebra with a bijective antipode SL in the

sense of [3]. In this paper we show that if H is a finite-dimensional weak Hopf

algebra in the weak Yetter-Drinfeld category L
LWYD in the sense of [1], then

its dual H∗ is also a weak Hopf algebra in L
LWYD. Also we will apply above

result to the representations category Rep(L) = LM of a quasitriangular weak

Hopf algebra L.
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1. Introduction

Weak Hopf algebras which are generalizations of ordinary Hopf algebras, were
defined by Böhm and Szlachányi in their paper [3]. A general theory for these
objects was subsequently developed in [2]. The axioms are the same as the ones for
a Hopf algebra, except that the coproduct of the unit, the product of the counit and
the antipode condition are replaced by weaker properties. The main motivation for
studying weak Hopf algebras comes from quantum field theories, operator algebras
and representation theory (cf. [7, 8, 10, 11]). It has turned out that many results
of classical Hopf algebra theory can be generalized to weak Hopf algebras. Despite
it, the structure of a weak Hopf algebra is much more complicated than that of a
Hopf algebra.

In the classical Hopf algebra theory, it is well-known that the dual of a finite-
dimensional Hopf algebra is still a Hopf algebra. In 1998, Doi [6] had showed that
if H is a finite-dimensional Hopf algebra in the Yetter-Drinfeld category L

LYD over
a Hopf algebra L, then its dual H∗ is also a Hopf algebra in L

LYD.
Just like finite-dimensional Hopf algebras, finite-dimensional weak Hopf algebras

also obey the mathematical beauty of giving rise to a self-dual notion: the dual of

This work was partially supported by the Specialized Research Fund for the Doctoral Program of

Higher Education (20060286006) and the FNS of CHINA (10571026).



WEAK HOPF ALGEBRA DUALITY IN WEAK YETTER-DRINFELD CATEGORIES 75

it can be canonically endowed with a weak Hopf algebra structure. The notion
of a weak Yetter-Drinfeld category L

LWYD over a weak Hopf algebra L has been
introduced by Böhm in [1], and further studied by Caenepeel et al. in [5].

It is very natural to ask whether or not a finite-dimensional weak Hopf algebra
in L

LWYD is self-dual?
In this paper, we discuss this problem, proving that if H is a finite-dimensional

weak Hopf algebra in the category L
LWYD over a weak Hopf algebra L, then its

linear dual H∗ is also a weak Hopf algebra in L
LWYD.

2. Basic Definitions and Results

In this section, we recall some basic definitions and results related to weak Hopf
algebras introduced in [2,3] and also about weak Yetter-Drinfeld categories L

LWYD
given in [1] and [5] that we will need later.

Throughout this paper, k denotes a fixed field. We will work over k. L denotes a
weak Hopf algebra with a bijective antipode SL, and H denotes a weak Hopf algebra
in the weak Yetter-Drinfeld category L

LWYD. For an algebra A and a coalgebra C,
we have the convolution algebra Conv(C, A) = Hom(C, A) as spaces, but with the
multiplication given by

(f ∗ g)(c) = mA(f ⊗ g)∆C(c) = f(c1)g(c2),

for all f, g ∈ Hom(C,A), c ∈ C.

2.1. Weak bialgebras.

Recall from [2,3] that a weak k-bialgebra L is both a k-algebra (m,µ) and a
k-coalgebra (∆, ε) such that ∆(hk) = ∆(h)∆(k), for all h, k ∈ L, and

∆2(1) = 11 ⊗ 121′1 ⊗ 1′2 = 11 ⊗ 1′112 ⊗ 1′2, (1)

ε(hkl) = ε(hk1)ε(k2l) = ε(hk2)ε(k1l), (2)

for all h, k, l ∈ L, where 1′ stands for another copy of 1. We use the Sweedler’s
notation (see [12]) for the comultiplication. Namely,

∆(h) = h1 ⊗ h2.

We summarize the elementary properties of weak bialgebras. The maps εt, εs:
L −→ L defined by

εt(h) = ε(11h)12; εs(h) = 11ε(h12).
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εt and εs are called the target map and source map, and their imagines Lt and Ls

are called the target and source space. For all g, h ∈ L, we have,

h1 ⊗ εt(h2) = 11h⊗ 12; εs(h1)⊗ h2 = 11 ⊗ h12.

The source and target space can be described as follows:

Lt = {h ∈ L | εt(h) = h} = {h ∈ L | ∆(h) = 11h⊗ 12 = h11 ⊗ 12},
Ls = {h ∈ L | εs(h) = h} = {h ∈ L | ∆(h) = 11 ⊗ h12 = 11 ⊗ 12h}.

We also have

εt(h)εs(k) = εs(k)εt(h),

and its dual property

εs(h1)⊗ εt(h2) = εs(h2)⊗ εt(h1).

Finally εt(1) = εs(1) = 1 and

εt(h)εt(g) = εt(εt(h)g); εs(h)εs(g) = εs(hεs(g)).

This implies that Lt and Ls are subalgebras of L.

2.2. Weak Hopf algebras.

A weak Hopf algebra L is a weak bialgebra together with a k-linear map S :
L −→ L (called the antipode) satisfying

S ∗ id = εs, id ∗ S = εt, S ∗ id ∗ S = S,

where ∗ is the convolution product. It follows immediately that

S = εs ∗ S = S ∗ εt.

If the antipode exists, then it is unique. The antipode S is both an anti-algebra
and an anti-coalgebra morphism. We will always assume that S is bijective. If L

is a finite-dimensional weak Hopf algebra over k, then S is automatically bijective.
Now we recall some properties about S.
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By [2], let L be a weak Hopf algebra, then we have the following conclusions:

(1) εt ◦ S = εt ◦ εs = S ◦ εs, εs ◦ S = εs ◦ εt = S ◦ εt, (3)

(2) x1 ⊗ x2S(x3) = x1 ⊗ εt(x2) = 11x⊗ 12, (4)

(3) S(x1)x2 ⊗ x3 = εs(x1)⊗ x2 = 11 ⊗ x12, (5)

(4) x1 ⊗ S(x2)x3 = x1 ⊗ εs(x2) = x11 ⊗ S(12), (6)

(5) x1S(x2)⊗ x3 = εt(x1)⊗ x2 = S(11)⊗ 12x, (7)

(6) x1y ⊗ x2 = x1 ⊗ x2S(y), for all y ∈ Ls, (8)

(7) x1 ⊗ zx2 = S(z)x1 ⊗ x2, for all z ∈ Lt. (9)

Let L be a weak Hopf algebra with a bijective antipode SL, then Lcop is also a
weak Hopf algebra with antipode S̄ (here S̄ is the composite-inverse of the antipode
SL). At this time

S̄(h2)h1 = S̄εs(h) = ε(h11)12 , ε̃t(h), h2S̄(h1) = S̄εt(h) = 11ε(12h) , ε̃s(h).

We can easily get the following equations from [4, Proposition 4.8]:

(i) ε̃t ◦ εt = εt, εt ◦ ε̃t = ε̃t,

(ii) ε̃s ◦ εs = εs, εs ◦ ε̃s = ε̃s,

(iii) ε̃t ◦ εs = ε̃t, εt ◦ ε̃s = εt, (10)

(iv) ε̃s ◦ εt = ε̃s, εs ◦ ε̃t = εs. (11)

2.3. Weak (co)module (co)algebras.

Let L be a weak Hopf algebra.
(i) Recall from [9], an algebra H is a left weak L-module algebra if H is left

L-module via l ⊗ x 7→ l → x such that
(1) l → (xy) = (l1 → x)(l2 → y) for all l ∈ L, x, y ∈ H,
(2) l → 1H = εt(l) → 1H .

The second equation is equivalent to

ε̃s(l) → x = x(l → 1H) or εt(l) → x = (l → 1H)x. (12)

(ii) Recall from [1], an algebra H is a left weak L-comodule algebra if H is a left
L-comodule via x 7→ σH(x) = x−1 ⊗ x0 such that

(1) σH(xy) = σH(x)σH(y) i.e., (xy)−1 ⊗ (xy)0 = x−1y−1 ⊗ x0y0,

(2) 1−1 ⊗ x10 = εs(x−1)⊗ x0 for all x ∈ H.
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(iii) Recall from [1], a coalgebra H is a left weak L-module coalgebra if H is a
left L-module via l ⊗ x 7→ l → x such that

(1) ∆(l → x) = (l → x)1 ⊗ (l → x)2 = (l1 → x1)⊗ (l2 → x2),
(2) εs(l) → x = x1ε(l → x2) for all l ∈ L, x ∈ H.

By [4, Proposition 4.13], the second equation is equivalent to

ε(lk → h) = ε(lk2)ε(k1 → h) or ε(εs(l) → h) = ε(l → h). (13)

(iv) A coalgebra H is a left weak L-comodule coalgebra if H is a left L-comodule
via x 7→ σH(x) = x−1 ⊗ x0 such that

(1) x−1 ⊗ (x0)1 ⊗ (x0)2 = x1
−1x2

−1 ⊗ x1
0 ⊗ x2

0,

(2) ε(x0)x−1 = ε(x0)εt(x−1) for all x ∈ H.

2.4. Weak Yetter-Drinfeld category L
LWYD.

Let L be a weak Hopf algebra with a bijective antipode SL. We recall from
[1] and [5] that the weak Yetter-Drinfeld category L

LWYD is the braided monoidal
categories whose objects V are both left L-modules and left L-comodules and satisfy
the following compatibility conditions:

(1) σV (v) = v−1 ⊗ v0 ∈ L⊗t V = {11l ⊗ 12 → v | ∀ l ∈ L, v ∈ V };
(2) l1v

−1 ⊗ l2 → v0 = (l1 → v)−1l2 ⊗ (l1 → v)0,

or equivalently,

(3) σV (l → v) = (l → v)−1 ⊗ (l → v)0 = l1v
−1S(l3)⊗ l2 → v0,

for all v ∈ V, l ∈ L,

where the L-module action is denoted l → v for l ∈ L, v ∈ V and the L-comodule
structure map by σV : V → L⊗ V . We use the following notation:

σV (v) = v−1 ⊗ v0, (∆⊗ id)σV (v) = (id⊗ σV )σV (v) = v−2 ⊗ v−1 ⊗ v0, ...

The braiding τ = τV,W : V ⊗t W → W ⊗t V in this category is given by:

τ(11 → v ⊗ 12 → w) = v−1 → w ⊗ v0,

τ−1(11 → w ⊗ 12 → v) = v0 ⊗ S̄(v−1) → w.
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Proposition 2.1. Let V ∈L
L WYD. Then for all v ∈ V , we have

(1) εt(v−1) → v0 = ε(v−1)v0 = v,

(2) εs(S̄2(v−1)) → v0 = v,

(3) 11 → v0 ⊗ 12S̄(v−1) = v0 ⊗ S̄(v−1), (14)

(4) σv(v) = v−1 ⊗ v0 = 11v
−1 ⊗ 12 → v0 = v−1S(12)⊗ 11 → v0, (15)

(5) ε̃t(v−1)⊗ v0 = 12 ⊗ 11 → v, (16)

(6) ε̃s(v−1)⊗ v0 = 11 ⊗ 12 → v, (17)

(7) εs(v−1)⊗ v0 = S(12)⊗ 11 → v, εt(v−1)⊗ v0 = S(11)⊗ 12 → v.

Proof. The results of (1)-(4) can be found in [5].
(5) For any v ∈ V , we compute

ε̃t(v−1)⊗ v0 = S̄(εs(v−1))⊗ v0

= S̄(v−1)v−2 ⊗ v0 (3)
= 12S̄(v−1)v−2 ⊗ 11 → v0

= S̄(εs(v−1)11)⊗ S̄(12) → v0

(9)
= S̄(11)⊗ S̄(S̄(εs(v−1))12) → v0

= 12 ⊗ 11S̄
2(εs(v−1)) → v0

(3)
= 12 ⊗ 11εs(S̄2(v−1)) → v0 (2)

= 12 ⊗ 11 → v.

(6) For any v ∈ V , we get

ε̃s(v−1)⊗ v0 = S̄(εt(v−1))⊗ v0

= v−1S̄(v−2)⊗ v0 = 11v
−1S̄(v−2)⊗ 12 → v0

= 11S̄(εt(v−1))⊗ 12 → v0

(8)
= 11 ⊗ 12εt(v−1) → v0 (1)

= 11 ⊗ 12 → v.

(7) Applying εs ⊗ id to the both sides of (5) and εt ⊗ id to both sides of (6),
we can immediately get (7). ¤

3. The Dual of Weak Hopf Algebras in Weak Yetter-Drinfeld

Categories

In this section, we first give the definition of a weak Hopf algebra in the weak
Yetter-Drinfeld category L

LWYD. Then we will show that if H is a finite-dimensional
weak Hopf algebra in L

LWYD, then its dual H∗ is a weak Hopf algebra in L
LWYD,

which generalizes the Hopf case in [6].



80 BING-LIANG SHEN AND SHUAN-HONG WANG

Definition 3.1. Let L be a weak Hopf algebra with a bijective antipode SL. An
object H ∈L

L WYD is called a weak bialgebra in this category if it is both a k-algebra
and a k-coalgebra satisfying the following conditions:

(1) ∆(xy) = x1(x2
−1 → y1)⊗ x2

0y2,

ε(xyz) = ε(xy1)ε(y2z),

ε(xyz) = ε(x(y1
−1 → y2))ε(y1

0z),

∆2(1) = 11 ⊗ 121′1 ⊗ 1′2,

∆2(1) = 11 ⊗ (12
−1 → 1′1)12

0 ⊗ 1′2.

(2) H is both a left weak L-module algebra, L-comodule algebra, L-module
coalgebra and L-comodule coalgebra.

Furthermore, H is called a weak Hopf algebra in L
LWYD if there exists an an-

tipode S : H → H (here S is both left L-linear and L-colinear i.e., S is a morphism
in the category of L

LWYD) satisfying

x1S(x2) = ε((x−1 → 11)x0)12,

S(x1)x2 = 11ε((12
−1 → x)12

0),

S(x1)x2S(x3) = S(x), for all x ∈ H.

An object H ∈L
L WYD is called an algebra in this category if it is both a

k-algebra, a left weak L-module algebra and L-comodule algebra. Similarly an
object H ∈L

L WYD is called a coalgebra in this category if it is both a k-coalgebra,
a left weak L-module coalgebra and L-comodule coalgebra.

Similar to the notation of weak Hopf algebras, we denote εt(x) = ε((x−1 →
11)x0)12, εs(x) = 11ε((12

−1 → x)12
0). As S is both left L-linear and L-colinear,

we can easily check that εt and εs are also both left L-linear and L-colinear.

Assume that H is a weak Hopf algebra in L
LWYD and finite-dimensional over

k. We will make H∗ = Hom(H, k) into a weak Hopf algebra in L
LWYD. We first

define a left action of L on H∗ as:

(l → f)(h) = f(SL(l) → h), l ∈ L, f ∈ H∗, h ∈ H

and a left coaction of L on H∗ as:

σH∗ : H∗ → L⊗H∗, σH∗(f) = f−1 ⊗ f0,

where

f0(h)f−1 := f(h0)S̄L(h−1), for all h ∈ H.

Now we have the following proposition.
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Proposition 3.2. With the notation as above. Then H∗ ∈L
L WYD.

Proof. (1) σH∗(f) = f−1 ⊗ f0 ∈ L⊗t H∗, i.e., f−1f0(h) = 11f
−1(12 → f0)(h).

11f
−1(12 → f0)(h) = 11f

−1f0(S(12) → h)

= 11f [(S(12) → h)0]S̄[(S(12) → h)−1]

= 11f(S(13) → h0)S̄(S(14)h−1S2(12))

= εt(11)f(S(12) → h0)S̄(h−1)13

(3)
= f(S(121′1) → h0)S(11)S̄(h−1)1′2

= f(S(1′1)11 → h0)12S̄(h−1)1′2
(14)
= f(S(11) → h0)S̄(h−1)12

= f(12 → h0)S̄(11h
−1)

= f(h0)S̄(h−1) = f−1f0(h).

(2) We prove l1f
−1 ⊗ l2 → f0 = (l1 → f)−1l2 ⊗ (l1 → f)0. For all h ∈ H,

l1f
−1(l2 → f0)(h) = l1f

−1f0(S(l2) → h)

= l1f((S(l2) → h)0)S̄((S(l2) → h)−1)

= l1f(S(l3) → h0)S̄(S(l4)h−1S2(l2))

= f(S(l2) → h0)εt(l1)S̄(h−1)l3
(7)
= f(S(12l1) → h0)S(11)S̄(h−1)l2

= f(S(l1)11 → h0)12S̄(h−1)l2
(14)
= f(S(l1) → h0)S̄(h−1)l2

= (l1 → f)(h0)S̄(h−1)l2

= (l1 → f)−1l2(l1 → f)0(h).

By (1) and (2), we obtain that H∗ ∈ L
LWYD. ¤

Lemma 3.3. ([6]) For any left L-comodule V , define θV : H∗ ⊗ V → Hom(H,V )
by

θV (f ⊗ v)(h) = f(v−1 → h)v0, f ∈ H∗, v ∈ V, h ∈ H.

Also, define θ(2) : H∗⊗H∗ → (H ⊗H)∗and θ(3) : H∗⊗H∗⊗H∗ → (H ⊗H ⊗H)∗

by

θ(2)(f ⊗ g)(x⊗ y) = f(S̄(y−1) → x)g(y0), f, g, k ∈ H∗, x, y, z ∈ H,

θ(3)(f ⊗ g ⊗ k)(x⊗ y ⊗ z) = f(S̄(y−1z−2) → x)g(S̄(z−1) → y0)k(z0).

Then θV , θ(2) and θ(3) are bijective.
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Lemma 3.4. If H is a finite-dimensional weak bialgebra in L
LWYD, then H∗ is

an algebra in L
LWYD, with multiplication mH∗ = (∆H)∗ ◦ θ(2), unit µH∗ = εH .

Explicitly, multiplication is given by

(fg)(x) = f(g−1 → x1)g0(x2) = f(S̄L(x2
−1) → x1)g(x2

0), f, g ∈ H∗, x ∈ H.

Proof. We will take three steps as follows:
Step 1): We first prove that H∗ is an algebra.
For the associativity, we have

(fg)k(x)

= fg(S̄(x2
−1) → x1)k(x2

0)

= f(S̄[(S̄(x2
−1) → x1)2

−1
] → (S̄(x2

−1) → x1)1))g((S̄(x2
−1) → x1)2

0
)k(x2

0)

= f(S̄[(S̄(x3
−2) → x2)−1]S̄(x3

−1) → x1)g((S̄(x3
−2) → x2)0)k(x3

0)

= f(S̄[S̄(x3
−2)x2

−1x3
−4]S̄(x3

−1) → x1)g(S̄(x3
−3) → x2

0)k(x3
0)

= f(S̄[x3
−1S̄(x3

−2)x2
−1x3

−4] → x1)g(S̄(x3
−3) → x2

0)k(x3
0)

= f(S̄[ε̃s(x3
−1)x2

−1x3
−3] → x1)g(S̄(x3

−2) → x2
0)k(x3

0)
(4)
= f(S̄[S̄(12)x2

−1x3
−2] → x1)g(S̄(11x3

−1) → x2
0)k(x3

0)

= f(S̄(x2
−1x3

−2) → x1)g(S̄(x3
−1) → x2

0)k(x3
0),

and

f(gk)(x) = f(S̄(x2
−1) → x1)(gk)(x2

0)

= f(S̄(x2
−1) → x1)g(S̄(x2

0
2
−1

) → x2
0
1)k(x2

0
2
0
)

= f(S̄(x2
−1x3

−1) → x1)g(S̄(x3
0−1

) → x2
0)k(x3

00
)

= f(S̄(x2
−1x3

−2) → x1)g(S̄(x3
−1) → x2

0)k(x3
0),

for all f, g, k ∈ H∗, x ∈ H.
And for the unit, we compute

(εf)(x) = ε(S̄(x2
−1) → x1)f(x2

0)
(13)
= ε(εsS

−1(x2
−1) → x1)f(x2

0)

= ε(ε̃s(x2
−1) → x1)f(x2

0)
(17)
= ε(11 → x1)f(12 → x2)

= ε(x1)f(x2) = f(x),
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and

(fε)(x) = f(S̄(x2
−1) → x1)ε(x2

0)

= f(S̄εt(x2
−1) → x1)ε(x2

0)

= f(ε̃s(x2
−1) → x1)ε(x2

0) = f(x),

for all f ∈ H∗, x ∈ H.

Step 2): We check that H∗ is a left weak L-module algebra.

(l → (fg))(x) = (fg)(S(l) → x)

= f(S̄((S(l1) → x2)−1) → (S(l2) → x1))g((S(l2) → x2)0)

= f(S̄(S(l3)x2
−1S(S(l1)))S(l4) → x1)g(S(l2) → x2

0)

= f(S(l1)S̄(x2
−1)l3S(l4) → x1)g(S(l2) → x2

0)
(4)
= f(S(l1)S̄(x2

−1)12 → x1)g(S(l2)S(11) → x2
0)

= f(S(l1)S̄(x2
−1) → x1)g(S(l2) → x2

0)

= (l1 → f)(S̄(x2
−1) → x1)(l2 → g)(x2

0)

= ((l1 → f)(l2 → g))(x),

and

(εt(l) → ε)(x) = ε(Sεt(l) → x)
(2.3)
= ε(εsS(l) → x)

(2.13)
= ε(S(l) → x) = (l → ε)(x).

So, we obtain l → 1H∗ = εt(l) → 1H∗ .

Step 3): We show that H∗ is a left weak L-comodule algebra. To prove (fg)−1⊗
(fg)0 = f−1g−1 ⊗ f0g0 in L⊗H∗, for any x ∈ H, we do a calculation:

f0g0(x)f−1g−1 = f0(S̄(x2
−1) → x1)g0(x2

0)f−1g−1

= f0(S̄(x2
−2) → x1)f−1g(x2

0)S̄(x2
−1)

= f((S̄(x2
−2) → x1)0)S̄((S̄(x2

−2) → x1)−1)g(x2
0)S̄(x2

−1)

= f(S̄(x2
−3) → x1

0)S̄(x2
−1S̄(x2

−2)x1
−1x2

−4)g(x2
0)

(4)
= f(S̄(11x2

−1) → x1
0)S̄(S̄(12)x1

−1x2
−2)g(x2

0)

= f(S̄(x2
−1) → x1

0)g(x2
0)S̄(x1

−1x2
−2) = (fg)(x0)S̄(x−1)

= (fg)0(x)(fg)−1,

and

εs(ε−1)ε0(h) = εsS̄(h−1)ε(h0) = S̄εt(h−1)ε(h0) = S̄(h−1)ε(h0) = ε−1ε0(h).

Thus, we have 1H∗−1 ⊗ 1H∗0 = εs(1H∗−1)⊗ 1H∗0. ¤
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Lemma 3.5. If H is a finite-dimensional weak bialgebra in L
LWYD, then H∗ is a

coalgebra in L
LWYD, with comultiplication ∆H∗ = (θ(2))−1 ◦ (mH)∗, counit εH∗ :

f → f(1H). Explicitly, comultiplication ∆H∗(f) = f1 ⊗ f2 is given by

f(xy) = f1(f2
−1 → x)f2

0(y) = f1(S̄L(y−1) → x1)f2(y0), x, y ∈ H,

or equivalently

f1(x)f2(y) = f((y−1 → x)y0), x, y ∈ H.

Proof. (1) We first check that H∗ is a coalgebra. To show the coassociativity, we
use the isomorphism θ(3). For all f ∈ H∗ and x, y, z ∈ H, we do a calculation:

f((xy)z) = f1(S̄(z−1) → (xy))f2(z0)

= f1((S̄(z−1) → x)(S̄(z−2) → y))f2(z0)

= f11(S̄(S̄(z−2)y−1z−4)S̄(z−1) → x)f12(S̄(z−3) → y0)f2(z0)

= f11(S̄(S̄εt(z−1)y−1z−3) → x)f12(S̄(z−2) → y0)f2(z0)
(4)
= f11(S̄(11y

−1z−2) → x)f12(S̄(S(12)z−1) → y0)f2(z0)

= f11(S̄(y−1z−2) → x)f12(S̄(z−1) → y0)f2(z0)

= θ(3)(f11 ⊗ f12 ⊗ f2)(x⊗ y ⊗ z),

f(x(yz)) = f1(S̄(y−1z−1) → x)f2(y0z0)

= f1(S̄(y−1z−2) → x)f21(S̄(z−1) → y0)f22(z0)

= θ(3)(f1 ⊗ f21 ⊗ f22)(x⊗ y ⊗ z).

So we have f11 ⊗ f12 ⊗ f13 = f1 ⊗ f21 ⊗ f22 (we denote it by f1 ⊗ f2 ⊗ f3).
And the counit:

εH∗(f1)f2(x) = f((εt(x−1) → 1H)x0)

= f((S(11) → 1H)(12 → x))

= f((11 → 1H)(12 → x)) = f(x).

Similarly, we have f1εH∗(f2) = f.

This shows that H∗ is a coalgebra.
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(2) Next, we prove that H∗ is a left weak L-module coalgebra. ∆H∗(l → f) =
(l1 → f1)⊗ (l2 → f2), for any x, y ∈ H,

θ(2)((l1 → f1)⊗ (l2 → f2))(x⊗ y)

= (l1 → f1)(S̄(y−1) → x)(l2 → f2)(y0)

= f1(S(l)2S̄(y−1) → x)f2(S(l)1 → y0)

= f(((S(l)1 → y0)−1S(l)2S̄(y−1) → x)((S(l)1 → y0)0))

= f((S(l)1y
−1S̄(y−2) → x)(S(l)2 → y0))

= f(S(l) → ((ε̃s(y−1) → x)y0))
(17)
= f(S(l) → ((11 → x)(12 → y))) = f(S(l) → xy)

= (l → f)(xy) = θ(2)∆H∗(l → f)(x⊗ y),

and

ε(lk2)εH∗(k1 → f) = ε(lk2)f(S(k1) → 1H)

= ε(lk2)f(εtS(k1) → 1H)
(3)
= ε(lk2)f(Sεs(k1) → 1H)

(5)
= ε(lk12)f(S(11) → 1H) = ε(εs(lk)12)f(S(11) → 1H)
(5)
= ε((εs(lk))2)f(S((εs(lk))1) → 1H) = f(Sεs(lk) → 1H)
(3)
= f(εtS(lk) → 1H) = f(S(lk) → 1H) = (lk → f)(1H).

So we have ε(lk2)εH∗(k1 → f) = εH∗(lk → f).

(3) Finally we show that H∗ is a left weak L-comodule coalgebra. f−1⊗ (f0)1⊗
(f0)2 = f1

−1f2
−1 ⊗ f1

0 ⊗ f2
0 in L⊗H∗ ⊗H∗, for any x, y ∈ H,

f1
−1f2

−1θ(2)(f1
0 ⊗ f2

0)(x⊗ y)

= f1
−1f2

−1f1
0(S̄(y−1) → x)f2

0(y0)

= f1
−1f2(y0)S̄(y−1)f1

0(S̄(y−2) → x)

= f1(S̄(y−3) → x0)S̄(S̄(y−2)x−1y−4)S̄(y−1)f2(y0)

= f1(S̄(y−2) → x0)S̄(S̄εt(y−1)x−1y−3)f2(y0)
(4)
= f1(S̄(11y

−1) → x0)S̄(S̄(12)x−1y−2)f2(y0)

= f1(S̄(y−1) → x0)f2(y0)S̄(x−1y−2)

= f(x0y0)S̄(x−1y−1) = f−1f0(xy)

= f−1θ(2)((f0)1 ⊗ (f0)2)(x⊗ y),
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and

f0(1H)εt(f−1) = f(10)εtS̄(1−1) = f(10)S̄εs(1−1) = f(10)S̄(1−1) = f0(1H)f−1.

So, we get εH∗(f0)f−1 = εH∗(f0)εt(f−1).
By the proof of (1) to (3), we conclude that H∗ is a coalgebra in L

LWYD. ¤

Proposition 3.6. If H is a finite-dimensional weak bialgebra in L
LWYD, then H∗

is a weak bialgebra in L
LWYD with the structure in Lemma 3.4 and Lemma 3.5.

Proof. By Lemma 3.4 and Lemma 3.5, we have that H∗ is both an algebra and a
coalgebra in L

LWYD. So we only need to check the following conditions:

(1) We first show that ∆H∗(fg) = f1(f2
−1 → g1) ⊗ f2

0g2 ∈ H∗ ⊗H∗ by using
θ(2). For all x, y ∈ H,

θ(2)(f1(f2
−1 → g1)⊗ f2

0g2)(x⊗ y) = (f1(f2
−1 → g1))(S̄(y−1) → x)(f2

0g2)(y0)

= (f1(f2
−1 → g1))(S̄(x−1y−1) → x)f2

0(S̄(y2
−1) → y1

0)g2(y2
0)

= f1(S̄(S̄(y1
−2y2

−3)x2
−1y1

−4y2
−5)S̄(y1

−1y2
−2) → x1)

×(f2
−1 → g1)(S̄(y1

−3y2
−4) → x2

0)f2
0(S̄(y2

−1) → y1
0)g2(y2

0)

= f1(S̄(y1
−1y2

−2S̄(y1
−2y2

−3)x2
−1y1

−4y2
−5) → x1)

×(f2
−1 → g1)(S̄(y1

−3y2
−4) → x2

0)f2
0(S̄(y2

−1) → y1
0)g2(y2

0)

= f1(S̄(S̄εt(y1
−1y2

−2)x2
−1y1

−3y2
−4) → x1)

×(f2
−1 → g1)(S̄(y1

−2y2
−3) → x2

0)f2
0(S̄(y2

−1) → y1
0)g2(y2

0)
(4)
= f1(S̄(S̄(12)x2

−1y1
−2y2

−3) → x1)

×(f2
−1 → g1)(S̄(11y1

−1y2
−2) → x2

0)f2
0(S̄(y2

−1) → y1
0)g2(y2

0)

= f1(S̄(x2
−1y1

−2y2
−3) → x1)(f2

−1 → g1)(S̄(y1
−1y2

−2) → x2
0)f2

0(S̄(y2
−1) → y1

0)g2(y2
0)

= f1(S̄(x2
−1y1

−3y2
−5) → x1)f2(S̄(y2

−2) → y1
0)

×(S̄(S̄(y2
−1)y1

−1y2
−3) → g1)(S̄(y1

−2y2
−4) → x2

0)g2(y2
0)

= f1(S̄(x2
−1y1

−3y2
−5) → x1)f2(S̄(y2

−2) → y1
0)

×g1(S̄(y2
−1)y1

−1y2
−3S̄(y1

−2y2
−4) → x2

0)g2(y2
0)

= f1(S̄(x2
−1y1

−2y2
−4) → x1)f2(S̄(y2

−2) → y1
0)g1(S̄(y2

−1)S̄εt(y1
−1y2

−3) → x2
0)g2(y2

0)
(4)
= f1(S̄(x2

−111y1
−1y2

−3) → x1)f2(S̄(y2
−2) → y1

0)g1(S̄(y2
−1)S̄(12) → x2

0)g2(y2
0)

(15)
= f1(S̄(x2

−1y1
−1y2

−3) → x1)f2(S̄(y2
−2) → y1

0)g1(S̄(y2
−1) → x2

0)g2(y2
0),

On the other hand,
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(θ(2)∆H∗(fg))(x⊗ y) = (fg)(xy) = f(S̄((xy)2
−1) → (xy)1)g((xy)2

0)

= f(S̄(x2
−1y2

−1) → (x1(x2
−2) → y1))g(x2

0y2
0)

= f((S̄(x2
−1y2

−1) → x1)(S̄(x2
−2y2

−2)x2
−3 → y1))g(x2

0y2
0)

= f((S̄(x2
−1y2

−2) → x1)(S̄(y2
−3)S̄(x2

−2)x2
−3 → y1))g1(S̄(y2

−1) → x2
0)g2(y2

0)

= f((S̄(x2
−1y2

−2) → x1)(S̄(y2
−3)S̄εs(x2

−2) → y1))g1(S̄(y2
−1) → x2

0)g2(y2
0)

(5)
= f((S̄(x2

−112y2
−2) → x1)(S̄(y2

−3)S̄(11) → y1))g1(S̄(y2
−1) → x2

0)g2(y2
0)

= f((S̄(x2
−1y2

−2) → x1)(S̄(y2
−3) → y1))g1(S̄(y2

−1) → x2
0)g2(y2

0)

= f1(S̄(S̄(y2
−3)y1

−1y2
−5)S̄(x2

−1y2
−2) → x1)f2(S̄(y2

−4) → y1
0)g1(S̄(y2

−1) → x2
0)g2(y2

0)

= f1(S̄(x2
−1y2

−2S̄(y2
−3)y1

−1y2
−5) → x1)f2(S̄(y2

−4) → y1
0)g1(S̄(y2

−1) → x2
0)g2(y2

0)
(4)
= f1(S̄(x2

−1S̄(12)y1
−1y2

−3) → x1)f2(S̄(11y2
−2) → y1

0)g1(S̄(y2
−1) → x2

0)g2(y2
0)

= f1(S̄(x2
−1y1

−1y2
−3) → x1)f2(S̄(y2

−2) → y1
0)g1(S̄(y2

−1) → x2
0)g2(y2

0).

(2) Next we want to check εH∗(fgk) = εH∗(fg1)εH∗(g2k). For all f, g, k ∈ H∗,

εH∗(fgk) = fgk(1H) = f(S̄(12
−113

−2) → 11)g(S̄(13
−1) → 12

0)k(13
0)

= f(S̄((121′1)
−1(1′2)

−2) → 11)g(S̄(1′2
−1) → (121′1)

0)k(1′2
0)

using ∆2(1) = 11 ⊗ 121′1 ⊗ 1′2

= f(S̄(12
−11′1

−11′2
−2) → 11)g(S̄(1′2

−1) → (12
01′1

0))k(1′2
0)

= f(S̄(12
−11′−1) → 11)g(S̄(1′02

−1
) → (12

01′01))k(1′02
0
)

(17)
= f(S̄(12

−111) → 11)g(S̄((12 → 1H)2
−1) → [12

0(12 → 1H)1])k((12 → 1H)2
0)

= f(S̄(12
−111) → 11)g(S̄((13 → 1′2)

−1) → [12
0(12 → 1′1)])k((13 → 1′2)

0)

= f(S̄(12
−111) → 11)g(15S̄(1′2

−1)S̄(13) → [12
0(12 → 1′1)])k(14 → 1′2

0)

= f(S̄(12
−111) → 11)g(1′′2 S̄(1′2

−1)S̄(13) → [12
0(12 → 1′1)])k(141′′1 → 1′2

0)
(14)
= f(S̄(12

−111) → 11)g(S̄(1′2
−1)S̄(13) → [12

0(12 → 1′1)])k(14 → 1′2
0)

= f(S̄(12
−111) → 11)g(S̄(131′′11′2

−1) → [12
0(12 → 1′1)])k(1′′2 → 1′2

0)

= f(S̄(12
−111) → 11)g(S̄(131′2

−1) → [12
0(12 → 1′1)])k(1′2

0)

= f(S̄(11)S̄(12
−1) → 11)g(S̄(1′2

−1)S̄(1′′2) → [12
0(ε̃s(1′′1)12 → 1′1)])k(1′2

0)
(12)
= f(S̄(11)S̄(12

−1) → 11)g(S̄(1′2
−1)S̄(1′′2) → [12

0(12 → 1′1)(1
′′
1 → 1H)])k(1′2

0)
(12)
= f(S̄(11)S̄(12

−1) → 11)g(S̄(1′2
−1)S̄(1′′2)1′′1 → [12

0(12 → 1′1)])k(1′2
0)

= f(12S̄(12
−1) → 11)g(S̄(1′2

−1) → [12
0(S(11) → 1′1)])k(1′2

0)
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(12)
= f(12S̄(12

−1) → 11)g(S̄(1′2
−1) → [12

0(11 → 1H)1′1])k(1′2
0)

(12)
= f(12S̄(12

−1) → 11)g(S̄(1′2
−1) → [(ε̃s(11) → 12

0)1′1])k(1′2
0)

(14)
= f(12S̄(12

−1) → 11)g(S̄(1′2
−1) → [(11 → 12

0)1′1])k(1′2
0)

= f(S̄(12
−1) → 11)g(S̄(1′2

−1) → (12
01′1))k(1′2

0),

and

εH∗(fg1)εH∗(g2k) = (fg1, 1H)(g2k, 1′H)

= f(S̄(12
−1) → 11)g1(12

0)g2(S̄(1′2
−1) → 1′1)k(1′2

0)

= f(S̄(12
−1) → 11)g(([S̄(1′2

−1) → 1′1]
−1 → 12

0)[S̄(1′2
−1) → 1′1]

0)k(1′2
0)

= f(S̄(12
−1) → 11)g[(S̄(1′2

−1)1′1
−11′2

−3 → 12
0)(S̄(1′2

−2) → 1′1
0)]k(1′2

0)

= f(S̄(12
−1) → 11)g(S̄(1′2

−1) → [(1′1
−11′2

−2 → 12
0)1′1

0])k(1′2
0)

= f(S̄(12
−1) → 11)g(S̄(1′02

−1
) → [(1′−1 → 12

0)1′01])k(1′02
0
)

(17)
= f(S̄(12

−1) → 11)g(S̄[(12 → 1H)2
−1] → [(11 → 12

0)(12 → 1H)1])k((12 → 1H)2
0)

= f(S̄(12
−1) → 11)g(S̄((13 → 1′2)

−1) → [(11 → 12
0)(12 → 1′1)])k((13 → 1′2)

0)

= f(S̄(12
−1) → 11)g(S̄((12 → 1′2)

−1)11 → (12
01′1))k((12 → 1′2)

0)

= f(S̄(12
−1) → 11)g(14S̄(1′2

−1)S̄(12)11 → (12
01′1))k(13 → 1′2

0)

= f(S̄(12
−1) → 11)g(13S̄(1′2

−1)ε̃t(11) → (12
01′1))k(12 → 1′2

0)

= f(S̄(12
−1) → 11)g(12S̄(1′2

−1)S̄(1′′1) → (12
01′1))k(111′′2 → 1′2

0)

= f(S̄(12
−1) → 11)g(12S̄(1′2

−1) → (12
01′1))k(11 → 1′2

0)
(14)
= f(S̄(12

−1) → 11)g(S̄(1′2
−1) → (12

01′1))k(1′2
0).

Similarly, using ∆2(1) = 11 ⊗ (12
−1 → 1′1)12

0 ⊗ 1′2, one can also get that

εH∗(fgk) = εH∗(f(g1
−1 → g2))εH∗(g1

0k)

= f(S̄(12
−2) → 11)g(S̄(1′2

−1) → ((12
−1 → 1′1)12

0))k(1′2
0).

(3) To verify that ∆2(ε) = ε1 ⊗ ε2ε̃1 ⊗ ε̃2 using the isomorphism θ(3). For all
x, y, z ∈ H, we compute

θ(3)(ε1 ⊗ ε2ε̃1 ⊗ ε̃2)(x⊗ y ⊗ z)

= ε1(S̄(y−1z−2) → x)ε2ε̃1(S̄(z−1) → y0)ε̃2(z0)

= ε1(S̄(y−1z−3) → x)ε2(S̄[(S̄(z−2) → y0
2)
−1] → (S̄(z−1) → y0

1))

×ε̃1((S̄(z−2) → y0
2)

0)ε̃2(z0)

= ε1(S̄(y−1z−5) → x)ε2(S̄(z−1S̄(z−2)y0
2
−1

z−4) → y0
1)ε̃1(S̄(z−3) → y0

2
0
)ε̃2(z0)
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(4)
= ε1(S̄(y−1z−3) → x)ε2(S̄(S̄(12)y0

2
−1

z−2) → y0
1)ε̃1(S̄(11z

−1) → y0
2
0
)ε̃2(z0)

= ε1(S̄(y−1z−3) → x)ε2(S̄(y0
2
−1

z−2) → y0
1)ε̃1(S̄(z−1) → y0

2
0
)ε̃2(z0)

= ε(([S̄(y0
2
−1

z−3) → y0
1]
−1S̄(y−1z−4) → x)[S̄(y0

2
−1

z−3) → y0
1]

0)

×ε((z−1S̄(z−2) → y0
2
0
)z0)

= ε((S̄(y0
2
−1

z−3)y0
1
−1

y0
2
−3

z−5S̄(y−1z−6) → x)(S̄(y0
2
−2

z−4) → y0
1
0
))

×ε((z−1S̄(z−2) → y0
2
0
)z0)

(7)
= ε((S̄(y0

2
−1

z−3)y0
1
−1

y0
2
−3

S̄(y−1) → x)(S̄(y0
2
−2

z−4) → y0
1
0
))

×ε((z−1S̄(z−2) → y0
2
0
)z0)

(4)
= ε((S̄(y0

2
−1

11z
−1)y0

1
−1

y0
2
−3

S̄(y−1) → x)(S̄(y0
2
−2

z−2) → y0
1
0
))

×ε((S̄(12) → y0
2
0
)z0)

(15)
= ε((S̄(y0

2
−1

z−1)y0
1
−1

y0
2
−3

S̄(y−1) → x)(S̄(y0
2
−2

z−2) → y0
1
0
))ε(y0

2
0
z0)

= ε(S̄(y0
2
−1

z−1) → [(y0
1
−1

y0
2
−2

S̄(y−1) → x)y0
1
0
])ε(y0

2
0
z0)

(13)
= ε(ε̃s(y0

2
−1

z−1) → [(y0
1
−1

y0
2
−2

S̄(y−1) → x)y0
1
0
])ε(y0

2
0
z0)

(17)
= ε(11 → [(y0

1
−1

y0
2
−1

S̄(y−1) → x)y0
1
0
])ε(12 → y0

2
0
z)

= ε(11 → [(y−1S̄(y−2) → x)y0
1])ε(12 → y0

2z)

= ε((11ε̃s(y−1) → x)(121′1 → y0
1))ε(1

′
2 → y0

2z)
(12)
= ε((11ε̃s(y−1) → x)(121′1 → y0

1))ε((1
′
2 → y0

2)z)

= ε((11ε̃s(y−1) → x)(12 → y0
1))ε(y

0
2z)

= ε((ε̃s(y−1) → x)y0
1)ε(y

0
2z)

= ε((ε̃s(y−1) → x)y0z) by ε(xyz) = ε(xy1)ε(y2z)
(17)
= ε((11 → x)(12 → y)z)

= ε(xyz) = θ(3)∆2(ε)(x⊗ y ⊗ z).

The last equality is given in the proof (1) of Lemma 3.5. So ∆2(ε) = ε1⊗ε2ε̃1⊗ε̃2.
Similarly, by ε(xyz) = ε(x(y1

−1 → y2))ε(y1
0z), one can prove that ∆2(ε) =

ε1 ⊗ (ε2
−1 → ε̃1)ε2

0 ⊗ ε̃2.
From all above, H∗ is a weak bialgebra in L

LWYD. ¤

We now can arrive at the main result of this paper.

Theorem 3.7. If H is a finite-dimensional weak Hopf algebra in L
LWYD, then H∗

is a weak Hopf algebra in L
LWYD with the antipode (SH)∗. In particular H∗∗ is a

weak Hopf algebra in L
LWYD. If (SL)2 = idL, then the canonical map τ : H → H∗∗

given by τ(x)(f) = f(x) is a weak Hopf algebra isomorphism in L
LWYD.



90 BING-LIANG SHEN AND SHUAN-HONG WANG

Proof. We have proved H∗ is a weak bialgebra in L
LWYD. Now we need to check

the antipode (SH)∗. It is easy to check that (SH)∗ is a morphism in the category of
L
LWYD as S is both left L-linear and L-colinear. Firstly, we show that f1SH∗(f2) =
εH∗((f−1 → ε1)f0)ε2, for any x ∈ H,

(f1SH∗(f2))(x) = f1(S̄(x2
−1) → x1)S(f2)(x2

0)

= f1(S̄(x2
−1) → x1)f2(S(x2

0))

= f(([(S(x2
0)]−1S̄(x2

−1) → x1)([S(x2
0)]0))

= f((x2
−1S̄(x2

−2) → x1)S(x2
0)) (S is L-colinear)

= f((ε̃s(x2
−1) → x1)S(x2

0))
(16)
= f((11 → x1)S(12 → x2))

= f(x1S(x2)) = f(εt(x))

= ε((x−1 → 11)x0)f(12),

and

εH∗((f−1 → ε1)f0)ε2(x)

= (f−1 → ε1)(S̄(12
−1) → 11)f0(12

0)ε2(x)

= ε1(12
−1S̄(12

−2) → 11)f(12
0)ε2(x)

= ε1(ε̃s(12
−1) → 11)f(12

0)ε2(x)
(16)
= ε1(11)f(12)ε2(x)

= ε((x−1 → 11)x0)f(12).

Similarly, we can check that SH∗(f1)f2 = ε1εH∗((ε2
−1 → f)ε2

0).
Next, we compute SH∗(f1)f2SH∗(f3) = SH∗(f), for any x ∈ H,

(SH∗(f1)f2SH∗(f3))(x) = SH∗(f1)(S̄(x2
−1) → x1)f2(εt(x2

0))

= f1(S̄(x2
−1) → S(x1))f2(εt(x2

0)) (S is L-linear)

= f((x2
−1S̄(x2

−2) → S(x1))εt(x2
0)) (εt is L-colinear)

= f((ε̃s(x2
−1) → S(x1))εt(x2

0))
(16)
= f((11 → S(x1))εt(12 → x2)) = f(S(11 → x1)εt(12 → x2))

= f(S(x1)εt(x2)) = f(S(x)) = SH∗(f)(x).

Therefore, H is a weak Hopf algebra in L
LWYD.
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Finally, we verify that if (SL)2 = idL, then τ is a weak Hopf algebra isomorphism
in L

LWYD. Firstly, we check that τ is both L-linear and L-colinear, for any f ∈ H∗,

(l → τ(x))(f) = τ(x)(S(l) → f) = (S(l) → f)(x)

= f(S2(l) → x) = f(l → x) = τ(l → x)(f),

and

τ(x)−1
τ(x)0(f) = τ(x)(f0)S̄(f−1) = S̄(f0(x)f−1)

= S̄(f(x0)S̄(x−1)) = f(x0)x−1 = x−1τ(x)0(f).

Next we show that τ is an algebra map.

(τ(x) ∗ τ(y))(f) = τ(x)(S̄(f2
−1) → f1)τ(y)(f2

0)

= (S̄(f2
−1) → f1)(x)f2

0(y) = f1(f2
−1 → x)f2

0(y)

= f1(S̄(y−1) → x)f2(y0) = f(xy) = τ(xy)(f),

and

τ(1H)(f) = f(1H) = εH∗(f) = 1H∗∗(f).

Similarly, τ is a coalgebra map.
The whole proof is completed. ¤

4. Applications

In this section, we will apply our results to the representations category Rep(L) =

LM of a quasitriangular weak Hopf algebra L.

Definition 4.1. ([10]) A quasitriangular weak Hopf algebra is a pair (L,R) where
L is a weak Hopf algebra and R ∈ ∆op(1)(L ⊗k L)∆(1) (called the R-matrix)
satisfying the following conditions:

∆op(h)R = R∆(h), (18)

for all h ∈ L, where ∆op denotes the comultiplication opposite to ∆,

(id⊗∆)R = R13R12, (∆⊗ id)R = R13R23, (19)

where R12 = R ⊗ 1, R23 = 1 ⊗ R, etc., as usual, and such that there exists
R ∈ ∆(1)(L⊗k L)∆op(1) with

RR = ∆op(1), RR = ∆(1). (20)

Furthermore, (L,R) is called triangular if R = R21, where we write R = R(1)⊗
R(2), then R21 = R(2) ⊗R(1).
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Note that R is uniquely determined by R and (S ⊗ id)(R) = (id⊗ S̄)(R) = R.
R satisfies the quantum Yang-Baxter equation. By [10, Lemma 5.3], we can obtain
that

(ε⊗ id)R = 1 = (id⊗ ε)R. (21)

Proposition 4.2. ([10]) The category Rep(L) = LM is a braided monoidal cate-
gory. The braiding τV,W : V ⊗W → W ⊗ V is defined by

τV,W (x) = R(2) → x(2) ⊗R(1) → x(1), (22)

where x = x(1) ⊗ x(2) ∈ V ⊗W and R = R(1) ⊗R(2) ∈ ∆op(1)(L ⊗k L)∆(1), and
the inverse of τV,W is given by

τ−1
V,W (y) = R(1) → y(2) ⊗R(2) → y(1),

where y = y(1) ⊗ y(2) ∈ V ⊗W and R = R(1) ⊗R(2) ∈ ∆(1)(L⊗k L)∆op(1).

Lemma 4.3. Let V ∈ LM, then V ∈ L
LWYD.

Proof. We first construct a left L-coaction over V via

σV : V −→ L⊗ V, v 7→ R(2) ⊗R(1) → v.

(id⊗ σV ) ◦ σV = (∆L ⊗ id) ◦ σV follows Eq. (19), and (εL ⊗ id) ◦ σV = id follows
Eq. (21). So V is a left L-comodule with σV .

Next let us check the compatibility conditions for V . Since R = R(1) ⊗R(2) ∈
∆op(1)(L ⊗k L)∆(1), we immediately get σV (v) ∈ L ⊗t V . Using Eq. (18),
one can obtain that l1v

−1 ⊗ l2 → v0 = (l1 → v)−1l2 ⊗ (l1 → v)0. Therefore,
V ∈ L

LWYD. ¤

Note that the matrix R give rise to a natural braiding for LM and L
LWYD.

Definition 4.4. Let (L,R) be a quasitriangular weak Hopf algebra. An object
H ∈ LM is called a weak bialgebra in this category if it is both a k-algebra and a
k-coalgebra satisfying the following conditions:

(1) ∆(xy) = x1(R(2) → y1)⊗ (R(1) → x2)y2,

ε(xyz) = ε(xy1)ε(y2z),

ε(xyz) = ε(x(R(2) → y2))ε((R(1) → y1)z),

∆2(1) = 11 ⊗ 121′1 ⊗ 1′2,

∆2(1) = 11 ⊗ (R(2) → 1′1)(R(1) → 12)⊗ 1′2.

(2) H is both left weak L-module algebra and L-module coalgebra.
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Furthermore, H is called a weak Hopf algebra in LM if there exists an antipode
S : H → H (S is left L-linear) satisfying

εt(x) = x1S(x2) = ε((R(2) → 11)(R(1) → x))12,

εs(x) = S(x1)x2 = 11ε((R(2) → x)(R(1) → 12)),

S(x1)x2S(x3) = S(x), for all x ∈ H.

Assume that H is a weak Hopf algebra in LM and finite dimensional over k.
Now we will make its dual space H∗ = Hom(H, k) into a weak Hopf algebra in

LM.

Proposition 4.5. If H is a finite-dimensional weak Hopf algebra in LM, then H∗

is also a weak Hopf algebra in LM with the following structures:
left L-module action (l → f)(h) = f(SL(l) → h), for all l ∈ L, f ∈ H∗, h ∈ H;

multiplication is given by

(fg)(x) = f(S̄L(R(2)) → x1)g(R(1) → x2) = f(R(2) → x1)g(R(1) → x2),

unit uH∗ = εH , comultiplication ∆H∗(f) = f1 ⊗ f1 is defined as

f1(x)f2(y) = f((R(2) → x)(R(1) → y)),

or equivalently

f(xy) = f1(S̄L(R(2)) → x)f2(R(1) → y) = f1(R
(2) → x)f2(R(1) → y),

counit εH∗ : f 7→ f(1H) and antipode SH∗ = (SH)∗.
In particular, H∗∗ is also a weak Hopf algebra in LM.
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