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1. Introduction

Let G be a finite abelian group and let A1, . . . , An be subsets of G. If the product

A1 · · ·An is direct and is equal to G, then we say that the equation G = A1 · · ·An

is a factorization of G. A subset A of G in the form

A = {e, a, a2, . . . , ar−1}

is called a cyclic subset of G. In order to avoid trivial cases we assume that r ≥ 2
and that |a| ≥ r. Clearly A is a subgroup of G if and only if ar = e. It is a famous

result of G. Hajós [3] that if a finite abelian group is factored as a direct product

of its cyclic subsets, then at least one of the factors must be a subgroup.

A subset A of G in the form

A = {e, a, a2, . . . , ai−1, aid, ai+1, . . . , ar−1}

is called a distorted cyclic subset. Here we assume that aid 6= aj for each j,

0 ≤ j ≤ r− 1. If d = e then clearly a distorted cyclic subset coincides with a cyclic

subset. A. D. Sands [5] showed that if a finite abelian group is a direct product of

distorted cyclic subsets, then at least one of the factors must be a subgroup. This
is a generalization of Hajós’s theorem. We will show that Sands’s result holds for

certain infinite groups too.

A subset A of G is called normalized if e ∈ A. If each Ai is normalized then

we say that the factorization G = A1 · · ·An is normalized. The next theorem of L.
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Rédei is one of the most striking results of the factorization theory of abelian group.

If a finite abelian group is factored into normalized subsets of prime cardinalities,

then at least one the factors must be a subgroup.

We say that a subset A of G is periodic if there is an element g ∈ G \ {e} such
that Ag = A. The element g is called a period of A. Rédei’s theorem can be

reformulated in terms of periodic subsets in the following way. If G = A1 · · ·An is

a factorization of the finite abelian group G and each |Ai| is a prime, then at least

one of the factors must be periodic. Examples show that the condition that each

|Ai| is a prime cannot be dropped from the theorem. However, for 2-groups K.

Amin, K. Corrádi and A. D. Sands ([1] Theorem 15) proved a slightly more general

version. Namely, if G = BA1 · · ·An is a factorization of the finite abelian 2-group

G such that |B| = 4 and |A1| = · · · = |An| = 2, then at least one of the factors is

periodic. S. Szabó [7] extend the above result proving that if G = BA1 · · ·An is
a factorization of the finite abelian group G such that |B| = 4 and each |Ai| is a

prime, then at least one of the factors must be periodic. In this paper we will show

that the result holds for a class of infinite torsion abelian groups.

We define factorizations for infinite groups. We assume that each factor in a

factorization contains the identity element. In short we consider only normalized

factorizations of an infinite group. Let Ai, i ∈ I be a collection of finite subsets of

an abelian group G such that e ∈ Ai for each i, i ∈ I. If each element g ∈ G can

be written in the form

g =
∏

i∈I

ai, ai ∈ Ai

uniquely, where only finitely many of the ai’s are not equal to the identity element

e, then we say that G is factored into its subsets Ai, i ∈ I. We also will say that

the equation

G =
∏

i∈I

Ai

is a factorization of G. Let p be a prime. The multiplicative group of all (pα)th

roots of unity will be denoted by C(p∞). The group C(p∞) is the so-called Prüfer

group.

We would like to point out a difference between factoring finite and infinite

groups. For a finite abelian group G if the product of its subsets A and B is direct

and if |A||B| is equal to |G|, then the product AB is a factorization of G, that is,
each element g ∈ G is uniquely represented in the form g = ab, a ∈ A, b ∈ B.

This does not hold for infinite groups. To see why let G = AB be a normalized

factorization of the infinite abelian group G, where A is an infinite subset of G. Set

A′ = A \ {a}, where a ∈ A \ {e}. Plainly, |A′||B| is equal to |G|. As the product
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AB is direct it follows that the product A′B is also direct. On the other hand, the

product A′B cannot be equal to G. However, for finite A this phenomenon cannot

occur. E. J. Eigen and V. S. Prasad [2] have proved the following. Let G = AB be

a factorization of an abelian group, where A is finite. If A′ is a subset of G such
that |A| = |A′| and the product A′B is direct, then G = A′B is a factorization of

G.

We will use a corollary of this result. Note that the product AB is direct if

and only if A−1A ∩ BB−1 = {e}. Therefore if the product AB is direct then so

is the product A−1B. Thus if A is finite, then A can be replaced by A−1 in each

factorization G = AB to get the factorization G = A−1B. Here A−1 = {a−1 : a ∈
A} and in general At = {at : a ∈ A} for each integer t.

2. Distorted cyclic factors

A. D. Sands [5] proved that in a factorization of a finite abelian group a distorted

cyclic factor always can be replaced by an associated cyclic subset. A weaker version

of this result holds for infinite abelian groups too.

Lemma 2.1. Let G be an abelian group. Let

A = {e, a, a2, . . . , ai−1, aid, ai+1, . . . , ar−1}
be a distorted cyclic subset of G, where

C = {e, a, a2, . . . , ar−1}
is a cyclic subset associated with A. If r ≥ 4, then in the normalized factorization

G = AB the factor A can be replaced by C to get the normalized factorization

G = CB.

Proof. We distinguish the following two cases

Case 1: i = r − 1.

Case 2: 1 ≤ i ≤ r − 2.

Let us settle case 1 first. As G = AB is a factorization of G the sets

B, aB, . . . , ar−2B, ar−1dB (1)

form a partition of G. Multiplying the factorization G = AB by a we get the

factorization G = aG = (aA)B of G. The sets

aB, . . . , ar−2B, ar−1B, ardB (2)

form a partition of G. Comparing the two partitions we get

B ∪ ar−1dB = ar−1B ∪ ardB.
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If ar−1dB ∩ ardB 6= ∅, then B ∩ aB 6= ∅ which contradicts (1). Thus ar−1dB ∩
ardB = ∅ and so dB ⊂ B.

In the factorization G = AB replace the finite factor A by A−1 to get the

factorization G = A−1B. One can draw the conclusion that d−1B ⊂ B. Multiplying
by d we get B ⊂ dB. From dB ⊂ B and B ⊂ dB it follows that B = dB. Plugging

this to (1) we get that the sets

B, aB, . . . , ar−2B, ar−1B

form a partition of G and so G = CB is a factorization of G.

Let us turn to case 2. We would like to prove that G = AB is a factorization of

G, that is, the sets

B, aB, a2B, . . . , ar−1B (3)

form a partition of G. Since G = AB is a factorization of G the sets

B, aB, . . . , ai−1B, aidB, ai+1B, . . . , ar−1B (4)

form a partition of G. In particular auC ∩ avC = ∅ for each u, v, u 6= v, 0 ≤ u, v ≤
r − 1 whenever u 6= i and v 6= i.

In order to verify that (3) is a partition of G we establish that B = dB. We do

this by showing that dB ⊂ B and B ⊂ dB. The containment dB ⊂ B follows from

the fact that auB ∩ aiB = ∅ holds for each u, u 6= i, 0 ≤ u ≤ r − 1. To prove this

assume on the contrary that auC ∩ aiC 6= ∅ for some u, u 6= i, 0 ≤ u ≤ r − 1. We
distinguish two cases depending on u < i or i < u.

Let us consider the u < i case first. Multiplying auB ∩ aiB 6= ∅ by ak gives that

au+kB ∩ ai+kB 6= ∅. (5)

If

0 ≤ u + k, i + k ≤ r − 1, (6)

u + k 6= i, i + k 6= i, (7)

then (5) violates partition (4). Plainly (6) is equivalent to −u ≤ k ≤ r − 1− i and

so there are r − 1− i + u + 1 choices for k. Using i ≤ r − 2, 0 ≤ u we get

2 = r − 1− (r − 2) + (0) + 1 ≤ r − 1− i + u + 1

and so there are at least two choices for k. If i 6= r − 2 or 0 6= u, then there are at
least three choices for k and we can get a contradiction. Thus we may assume that

i = r − 2 and 0 = u. Now with the k = 1 choice (6) and (7) are satisfied and we

get a contradiction.

Finally consider the i < u case. Multiplying aiB ∩ auB 6= ∅ by ak gives that

ai+kB ∩ au+kB 6= ∅. (8)
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If

0 ≤ i + k, u + k ≤ r − 1, (9)

i + k 6= i, u + k 6= i, (10)

then (8) contradicts to partition (4). Clearly (9) is equivalent to −i ≤ k ≤ r−1−u

and so there are r − 1− u + i + 1 choices for k. Using u ≤ r − 1, 1 ≤ i we get

2 = r − 1− (r − 1) + (1) + 1 ≤ r − 1− u + i + 1

and so there are at least two choices for k. If u 6= r − 1 or 1 6= i, then there are at

least three choices for k and we can get a contradiction. Thus we may assume that

u = r− 1 and 1 = i. Now with the k = −1 choice (9) and (10) are satisfied and we

get a contradiction. Therefore dB ⊂ B as we claimed.

In the factorization G = AB replace the finite factor A by A−1 to get the

factorization G = A−1B. From this factorization we can conclude that d−1B ⊂ B

or equivalently B ⊂ dB.

This completes the proof. ¤

Lemma 2.2. Let G be an abelian group. Let

A = {e, a, a2, . . . , ai−1, aid, ai+1, . . . , ar−1}

be a distorted cyclic subset of G, where r ≥ 4. A is a subgroup of G if and only if

d = e and ar = e.

Proof. If d = e, then A is a cyclic subset of G. If ar = e, then this cyclic subset is

a subgroup of G.

Next assume that A is a subgroup of G and try to show that d = e and ar = e.

We distinguish the following three cases

Case 1: i = 1.

Case 2: i = r − 1.

Case 3: 2 ≤ i ≤ r − 2.

Let us settle case 1 first. Now

A = {e, ad, a2, . . . , ar−1}.

As ar−2, ar−1 ∈ A, it follows that a ∈ A. If a = ad, then e = d. Therefore A is a

cyclic subgroup of G and so ar = e, as required. Thus we may assume a 6= ad and
consequently a ∈ {e, a2, . . . , ar−1}. If a = e, then a2 = · · · = ar−1 = e which is a

contradiction.

If a = a2, then a = e. This reduces the problem to the earlier case. If a = aj ,

3 ≤ j ≤ r − 1, then we get the e = aj−1 contradiction.
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Let us turn to case 2. Now

A = {e, a, a2, . . . , ar−2, ar−1d}.

As a ∈ A, it follows that ar−1 ∈ A. If ar−1 = ar−1d, then e = d and so A is a cyclic

subgroup of G. It follows that ar = e, as required.
If ar−1 = e, then the cyclic subset {e, a, a2, . . . , ar−2} is a subgroup of G. Con-

sequently it is a subgroup of A. It follows the contradiction that r− 1 divides r. If

ar−1 = aj , 1 ≤ j ≤ r − 2, then we get the ar−2 = aj−1 contradiction.

We may turn to case 3. Now a ∈ A implies ai ∈ A. If ai = aid, then e = d and

A is a cyclic subgroup of G. It follows that ar = e, as required. We may assume

that ai = aj , where i 6= j. We distinguish two cases depending on j < i or i < j.

Assume first that j < i. Multiply aj = ai by a−u to get aj−u = ai−u. If

0 ≤ j − u, i− u ≤ i− 1, (11)

then we get a contradiction. (11) is equivalent to

−j ≤ −u, −u ≤ −1.

There are (−1) − (−j) + 1 = j choices for u. Therefore in the j ≥ 1 case we are

done. So we may assume that j = 0.

Multiply a0 = ai by au to get au = ai+u. If

0 ≤ u ≤ i− 1, i + 1 ≤ i + u ≤ r − 1,

then we get a contradiction. Note that the u = 1 choice is suitable, as 2 ≤ i ≤ r−2.

Next assume that i < j. Multiply ai = aj by au to get ai+u = aj+u. If

i + 1 ≤ i + u, j + u ≤ r − 1, (12)

then we get a contradiction. (12) is equivalent to

1 ≤ u, u ≤ r − 1− j.

There are (r− 1− j)− (−1) + 1 = r− j + 1 choices for u. If r− j + 1 ≥ 1, then we

get a contradiction. Equivalently if j ≤ r−2, then we get a contradiction. Thus we
may assume that j = r − 1. Multiplying ai = ar−1 by a−u we get ai−u = ar−1−u.

If

0 ≤ i− u ≤ i− 1, i + 1 ≤ r − 1− u ≤ r − 1,

then we get a contradiction. If i ≤ r − 3, then the u = 1 choice is suitable. Thus

we may assume that i = r − 2. Now ar−2 = ar−1. This provides the e = a

contradiction. ¤
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The reader may notice that in the proof above in case 2 it is enough to assume

that r ≥ 3. In this particular case a stronger result holds. We will need this result

and for easier reference we spell it out as a lemma.

Lemma 2.3. Let G be an abelian group. Let

A = {e, a, a2, . . . , ar−2, ar−1d}

be a distorted cyclic subset of G, where r ≥ 3. A is a subgroup of G if and only if

d = e and ar = e.

The distorted cyclic subset A of an abelian group is called a reducible subset if

the following hold.

(1) A is not a subgroup.

(2) There is a subset B of G such that G = AB is a factorization of G.

(3) There are non-subgroup distorted cyclic subsets A1, A2 for which G =

A1A2B is a factorization of G.

Lemma 2.4. Let G be an abelian group and let A be a non-subgroup distorted

cyclic subset of G. If |A| = st, s ≥ 3, t ≥ 3, then A is reducible.

Proof. Suppose there is a subset B of G such that G = AB is a factorization of

G. Let

A = {e, a, a2, . . . , ai−1, aid, ai+1, . . . , ar−1}

and let

C = {e, a, a2, . . . , ar−1}

be a cyclic subset associated with A, where r = st. Set

C1 = {e, a, a2, . . . , as−1},
C2 = {e, as, a2s, . . . , a(t−1)s},
A1 = C1,

A2 = {e, as, a2s, . . . , a(t−1)sd}.

Note that the product C1C2 is direct and is equal to C.

By Lemma 2.1, in the factorization G = AB the factor A can be replaced by C

to get the factorization G = CB. We can read off from the proof that B = dB also

holds. The sets

B, aB, a2B, . . . , ar−1B
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form a partition of G. Using C = C1C2 we get that the sets

B, asB, a2sB, . . . , a(t−2)sB, a(t−1)sB,

aB, a1+sB, a1+2sB, . . . , a1+(t−2)sB, a1+(t−1)sB,
...

...
...

. . .
...

...

as−1B, as−1+sB, as−1+2sB, . . . , as−1+(t−2)sB, as−1+(t−1)sB

form a partition of G. Using B = dB we get that the sets

B, asB, a2sB, . . . , a(t−2)sB, a(t−1)sdB,

aB, a1+sB, a1+2sB, . . . , a1+(t−2)sB, a1+(t−1)sdB,
...

...
...

. . .
...

...

as−1B, as−1+sB, as−1+2sB, . . . , as−1+(t−2)sB, as−1+(t−1)sdB

form a partition of G and therefore G = A1A2B is a factorization of G.

If A1 is a subgroup of G, then as = e. This violates the factorization G = CB.

Thus A1 cannot be a subgroup of G. If A2 is a subgroup of G, then, by Lemma

2.3, ast = ar = e and d = e. Consequently, by Lemma 2.2, A is a subgroup of G.
This is not the case. Thus A2 is not a subgroup of G.

This completes the proof. ¤

Theorem 2.5. Let p1, . . . , ps be distinct odd primes and let

G = H ×
[ s∏

i=1

C(p∞i )
]
,

where H is a finite abelian group of odd order and pi does not divide |H| for each

i, 1 ≤ i ≤ s. If

G =
∞∏

i=1

Ai (13)

is a factorization of G and each Ai is a finite distorted cyclic subset of G, then Ai

is a subgroup of G for some i, 1 ≤ i < ∞.

Proof. We claim that q divides |H|p1 · · · ps for each prime divisor q of |Ak| for each

factor Ak of the factorization (13).

To prove the claim assume on the contrary that there is a factor Ak of the factor-
ization (13) and a prime divisor q of |Ak| such that q does not divide |H|p1 · · · ps.

We may assume that k = 1 since this is only a matter of indexing the factors.

Setting

B =
∞∏

i=2

Ai

the factorization (13) can be written in the form G = A1B. We distinguish the

next two cases.
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Case 1: |A1| 6= q.

Case 2: |A1| = q.

In case 1 let

A1 = {e, a, a2, . . . , ai−1, aid, ai+1, . . . , ar−1}
and let

C = {e, a, a2, . . . , ar−1}
be a cyclic subset associated with A1. Now plainly |A1| ≥ 4 and so, by Lemma

2.1, in the factorization G = A1B, the factor A1 can be replaced by C to get the

factorization G = CB. There are cyclic subsets of prime cardinality C1, . . . , Cu

such that the product C1 · · ·Cs is direct and is equal to C. Some of |C1|, . . . , |Cu| is
equal to q. We may assume that |C1| = q since this is only a matter of rearranging

the factors. Because of the structure of G, each element of G has finite order. Let m

be the order of c. Clearly each prime divisor of m divides |H|p1 · · · ps. Therefore q

and m are relatively prime. By the Chinese remainder theorem, there is an integer

t such that
t ≡ 0 (mod m),

t ≡ 1 (mod q).

Plainly t is relatively prime to q. By Proposition 3 of [4], in the factorization

G = C1 · · ·CuB the factor C1 can be replaced by Ct
1 to get the factorization G =

Ct
1C2 · · ·CuB. Note that (ci)t = (ct)i = e and so the element e appears in Ct

1 with

multiplicity q. This is a contradiction.

In case 2, let m be the least common multiple of the orders of the elements of

A1. Define the integer t in the same way as in case 1. Replace A1 by At
1 in the

factorization G = A1B to get G = At
1B. Now we get the contradiction that the

element e appears in At
1 with multiplicity q.

By the assumption of the theorem |H|p1 · · · ps is odd. The claim we have just

verified gives in particular that each |Ai| is odd.

In order to prove the theorem assume on the contrary that in factorization (13)

none of the factors is a subgroup of G. By Lemma 2.4, in the factorization (13)

each Ai can be replaced by a product of non-subgroup distorted cyclic subsets

whose cardinalities are primes. (It may happen that |Ai| is a prime. In this case

of course we do not replace Ai.) We end up with a factorization in which each

factors is normalized, has prime cardinality, and is not a subgroup of G. For this

factorization Theorem 1 of [6] is applicable and implies that one of the factors is a

subgroup of G.
This contradiction completes the proof. ¤
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3. Factors of prime cardinality

In this section we consider factorizations in which each factor with one possible

exception has prime cardinality and one factor may have order four.

Theorem 3.1. Let

G = H ×
[ r∏

i=1

C(p∞i )
]
,

where H is a finite abelian group, p1, . . . , pr are distinct primes, pi does not divide

|H| for each i, 1 ≤ i ≤ r. If

G = B

∞∏

i=1

Ai (14)

is a normalized factorization of G such that |B| = 4 and each |Ai| is a prime, then

one of the factors B, A1, A2, . . . is periodic.

Proof. Let |H| be the product of the (not necessarily distinct) primes pr+1, . . . , ps.

By the assumptions of the theorem

{p1, . . . , pr} ∩ {pr+1, . . . , ps} = ∅.
For a factor Aj of the factorization (14) with |Aj | = p, where p is a prime let

A′j be the set of the p-components of the elements of Aj . We claim that in the

factorization (14) Aj can be replaced by A′j . In order to prove the claim let m be

a common multiple of the orders of the p′-components of the elements of Aj and

let n be a common multiple of the orders of the p-components of the elements Aj .

Such m, n do exist since each element of G has a finite order. As m and n are

relatively primes by the Chinese remainder theorem, the system of congruences

t ≡ 0 (mod m),
t ≡ 1 (mod n),

is solvable. By Proposition 3 of [4], Aj can be replaced by At
j . As At

j = A′j , the

claim is proved.

The fact that Aj can be replaced by A′j implies that the elements of A′j are

distinct. Further we can conclude that if |Aj | = p, where p is a prime, then p

must be one of the primes p1, . . . , ps. It follows in the same manner that the 2-
components of the elements of B are distinct. These elements form a set B′ and

|B′| = 4.

From the factorization

G = B′
∞∏

i=1

A′i

we draw further conclusions. Let p be one of the primes p1, . . . , pr. If p is odd,

then the product of all the A′j ’s with |A′j | = p forms a factorization of the subgroup
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C(p∞) of G. If p = 2, then the product of B′ and all the A′j ’s with |A′j | = p form

a factorization of the subgroup C(p∞) of G. If |H| is odd, then the product of all

the A′j ’s with |A′j |
∣∣ |H| forms a factorization of H. If |H| is even, then the product

of B′ and all the A′j with |A′j |
∣∣ |H| forms a factorization of H.

The subgroups of C(p∞i ) form a chain. For each integer j ≥ 0 there is a unique

subgroup of order pj . Let Hi,0, Hi,1, . . . be all the subgroups of C(p∞i ). We assume

that |Hi,j | = pj
i . There are factors A′′i,1, A

′′
i,2, . . . among A′1, A

′
2, . . . such that

A′′i,1 = Hi,1, A′′i,1A
′′
i,2 = Hi,2, . . .

Note that each nonidentity element of A′′i,j must have order pj
i .

Now let us go back to factorization (14). To prove the theorem we assume the

contrary that none of the factors B, A1, A2, . . . is periodic. Choose a factor Aj and

assume that |Aj | = p, where p is a prime. (We know that p is one of the primes
p1, . . . , ps.) The p-components of the elements of Aj are distinct and form a set A′j
with |A′j | = p. If A′j is not a subgroup of G, then replace Aj by Cj = A′j . If A′j
is a subgroup of G, then there is an element in Aj whose q-component is not the

identity element since Aj is not a subgroup of G. Here q is a prime p 6= q. Now Aj

can be replaced by Cj such that Cj is not a subgroup of G and the orders of the

elements of Cj divide pq. In other words Cj is constructed from the subgroup A′j
by multiplying some elements of A′j by some elements of order q. Let us consider

the factorization

G = B

∞∏

i=1

Ci.

Here none of the factors B, C1, C2, . . . is periodic. For each i, 1 ≤ i ≤ r there is

an integer α(i) such that the orders of the pi-components of the elements of B are

less than or equal to p
α(i)
i and α(i) ≥ 1. The elements of C(p∞i ) whose order is less

than or equal to p
α(i)
i form the unique subgroup Hi,α(i) of C(p∞i ). Set

K = HH1,α(1) · · ·Hr,α(r).

Clearly, B ⊂ K. Let D1, . . . , Dn be all the Ci factors for which Ci ⊂ K. We claim

that K = BD1 · · ·Dn is a factorization of K. As B, D1, . . . , Dn ⊂ K, it is enough

to verify that |B||D1| · · · |Dn| = |K|. In order to verify this equation let D1, . . . , Dm

be the factors among D1, . . . , Dn whose cardinality is one of pr+1, . . . , ps.

Assume first that 4
∣∣ |H|. Note that |B||Dm+1| · · · |Dn| = |H|. Further

|D1| · · · |Dm| =
(|A′′1,1| · · · |A′′1,α(1)|

) · · · (|A′′r,1| · · · |A′′r,α(r)|
)

= p
α(1)
1 · · · pα(r)

r

= |H1,α(1)| · · · |Hr,α(r)|.
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Assume next that 4
∣∣ |H1,α(1)| · · · |Hr,α(r)|. Note that |Dm+1| · · · |Dn| = |H| and

|B||D1| · · · |Dm| = |H1,α(1)| · · · |Hr,α(r)|.
Thus K = BD1 · · ·Dn is a factorization of the finite abelian group K. By Theorem

1 of [7], one of the factors is periodic. This contradiction completes the proof. ¤
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