FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

Sándor Szabó

Received: 11 November 2008; Revised: 13 March 2009 Communicated by Abdullah Harmancı

ABSTRACT. We will prove that two results on factoring finite abelian groups into a product of subsets, related to Hajós's and Rédei's theorems, can be extended for certain infinite torsion abelian groups.

Mathematics Subject Classification (2000): Primary 20K01; Secondary 05B45, 52C22, 68R05

Keywords: factorization of finite abelian groups, periodic factorization, full-rank factorization, Hajós-Rédei theory.

1. Introduction

Let G be a finite abelian group and let A_1, \ldots, A_n be subsets of G. If the product $A_1 \cdots A_n$ is direct and is equal to G, then we say that the equation $G = A_1 \cdots A_n$ is a factorization of G. A subset A of G in the form

$$A = \{e, a, a^2, \dots, a^{r-1}\}$$

is called a cyclic subset of G. In order to avoid trivial cases we assume that $r \ge 2$ and that $|a| \ge r$. Clearly A is a subgroup of G if and only if $a^r = e$. It is a famous result of G. Hajós [3] that if a finite abelian group is factored as a direct product of its cyclic subsets, then at least one of the factors must be a subgroup.

A subset A of G in the form

$$A = \{e, a, a^2, \dots, a^{i-1}, a^i d, a^{i+1}, \dots, a^{r-1}\}$$

is called a distorted cyclic subset. Here we assume that $a^i d \neq a^j$ for each j, $0 \leq j \leq r-1$. If d = e then clearly a distorted cyclic subset coincides with a cyclic subset. A. D. Sands [5] showed that if a finite abelian group is a direct product of distorted cyclic subsets, then at least one of the factors must be a subgroup. This is a generalization of Hajós's theorem. We will show that Sands's result holds for certain infinite groups too.

A subset A of G is called normalized if $e \in A$. If each A_i is normalized then we say that the factorization $G = A_1 \cdots A_n$ is normalized. The next theorem of L. Rédei is one of the most striking results of the factorization theory of abelian group. If a finite abelian group is factored into normalized subsets of prime cardinalities, then at least one the factors must be a subgroup.

We say that a subset A of G is periodic if there is an element $g \in G \setminus \{e\}$ such that Ag = A. The element g is called a period of A. Rédei's theorem can be reformulated in terms of periodic subsets in the following way. If $G = A_1 \cdots A_n$ is a factorization of the finite abelian group G and each $|A_i|$ is a prime, then at least one of the factors must be periodic. Examples show that the condition that each $|A_i|$ is a prime cannot be dropped from the theorem. However, for 2-groups K. Amin, K. Corrádi and A. D. Sands ([1] Theorem 15) proved a slightly more general version. Namely, if $G = BA_1 \cdots A_n$ is a factorization of the finite abelian 2-group G such that |B| = 4 and $|A_1| = \cdots = |A_n| = 2$, then at least one of the factors is periodic. S. Szabó [7] extend the above result proving that if $G = BA_1 \cdots A_n$ is a factorization of the finite abelian group G such that |B| = 4 and each $|A_i|$ is a prime, then at least one of the factors must be periodic. In this paper we will show that the result holds for a class of infinite torsion abelian groups.

We define factorizations for infinite groups. We assume that each factor in a factorization contains the identity element. In short we consider only normalized factorizations of an infinite group. Let A_i , $i \in I$ be a collection of finite subsets of an abelian group G such that $e \in A_i$ for each $i, i \in I$. If each element $g \in G$ can be written in the form

$$g = \prod_{i \in I} a_i, \ a_i \in A_i$$

uniquely, where only finitely many of the a_i 's are not equal to the identity element e, then we say that G is factored into its subsets A_i , $i \in I$. We also will say that the equation

$$G = \prod_{i \in I} A_i$$

is a factorization of G. Let p be a prime. The multiplicative group of all (p^{α}) th roots of unity will be denoted by $C(p^{\infty})$. The group $C(p^{\infty})$ is the so-called Prüfer group.

We would like to point out a difference between factoring finite and infinite groups. For a finite abelian group G if the product of its subsets A and B is direct and if |A||B| is equal to |G|, then the product AB is a factorization of G, that is, each element $g \in G$ is uniquely represented in the form g = ab, $a \in A$, $b \in B$. This does not hold for infinite groups. To see why let G = AB be a normalized factorization of the infinite abelian group G, where A is an infinite subset of G. Set $A' = A \setminus \{a\}$, where $a \in A \setminus \{e\}$. Plainly, |A'||B| is equal to |G|. As the product AB is direct it follows that the product A'B is also direct. On the other hand, the product A'B cannot be equal to G. However, for finite A this phenomenon cannot occur. E. J. Eigen and V. S. Prasad [2] have proved the following. Let G = AB be a factorization of an abelian group, where A is finite. If A' is a subset of G such that |A| = |A'| and the product A'B is direct, then G = A'B is a factorization of G.

We will use a corollary of this result. Note that the product AB is direct if and only if $A^{-1}A \cap BB^{-1} = \{e\}$. Therefore if the product AB is direct then so is the product $A^{-1}B$. Thus if A is finite, then A can be replaced by A^{-1} in each factorization G = AB to get the factorization $G = A^{-1}B$. Here $A^{-1} = \{a^{-1} : a \in A\}$ and in general $A^t = \{a^t : a \in A\}$ for each integer t.

2. Distorted cyclic factors

A. D. Sands [5] proved that in a factorization of a finite abelian group a distorted cyclic factor always can be replaced by an associated cyclic subset. A weaker version of this result holds for infinite abelian groups too.

Lemma 2.1. Let G be an abelian group. Let

$$A = \{e, a, a^2, \dots, a^{i-1}, a^i d, a^{i+1}, \dots, a^{r-1}\}$$

be a distorted cyclic subset of G, where

$$C = \{e, a, a^2, \dots, a^{r-1}\}$$

is a cyclic subset associated with A. If $r \ge 4$, then in the normalized factorization G = AB the factor A can be replaced by C to get the normalized factorization G = CB.

Proof. We distinguish the following two cases

Case 1: i = r - 1. Case 2: $1 \le i \le r - 2$.

Let us settle case 1 first. As G = AB is a factorization of G the sets

$$B, aB, \dots, a^{r-2}B, a^{r-1}dB \tag{1}$$

form a partition of G. Multiplying the factorization G = AB by a we get the factorization G = aG = (aA)B of G. The sets

$$aB,\ldots,a^{r-2}B,\ a^{r-1}B,\ a^r dB$$
 (2)

form a partition of G. Comparing the two partitions we get

$$B \cup a^{r-1}dB = a^{r-1}B \cup a^r dB$$

If $a^{r-1}dB \cap a^r dB \neq \emptyset$, then $B \cap aB \neq \emptyset$ which contradicts (1). Thus $a^{r-1}dB \cap a^r dB = \emptyset$ and so $dB \subset B$.

In the factorization G = AB replace the finite factor A by A^{-1} to get the factorization $G = A^{-1}B$. One can draw the conclusion that $d^{-1}B \subset B$. Multiplying by d we get $B \subset dB$. From $dB \subset B$ and $B \subset dB$ it follows that B = dB. Plugging this to (1) we get that the sets

$$B, aB, \ldots, a^{r-2}B, a^{r-1}B$$

form a partition of G and so G = CB is a factorization of G.

Let us turn to case 2. We would like to prove that G = AB is a factorization of G, that is, the sets

$$B, aB, a^2B, \dots, a^{r-1}B \tag{3}$$

form a partition of G. Since G = AB is a factorization of G the sets

$$B, \ aB, \dots, a^{i-1}B, \ a^{i}dB, \ a^{i+1}B, \dots, a^{r-1}B \tag{4}$$

form a partition of G. In particular $a^u C \cap a^v C = \emptyset$ for each $u, v, u \neq v, 0 \leq u, v \leq r-1$ whenever $u \neq i$ and $v \neq i$.

In order to verify that (3) is a partition of G we establish that B = dB. We do this by showing that $dB \subset B$ and $B \subset dB$. The containment $dB \subset B$ follows from the fact that $a^uB \cap a^iB = \emptyset$ holds for each $u, u \neq i, 0 \leq u \leq r - 1$. To prove this assume on the contrary that $a^uC \cap a^iC \neq \emptyset$ for some $u, u \neq i, 0 \leq u \leq r - 1$. We distinguish two cases depending on u < i or i < u.

Let us consider the u < i case first. Multiplying $a^u B \cap a^i B \neq \emptyset$ by a^k gives that

$$a^{u+k}B \cap a^{i+k}B \neq \emptyset. \tag{5}$$

If

$$0 \le u + k, \ i + k \le r - 1,\tag{6}$$

$$u + k \neq i, \ i + k \neq i,\tag{7}$$

then (5) violates partition (4). Plainly (6) is equivalent to $-u \le k \le r - 1 - i$ and so there are r - 1 - i + u + 1 choices for k. Using $i \le r - 2$, $0 \le u$ we get

 $2 = r - 1 - (r - 2) + (0) + 1 \le r - 1 - i + u + 1$

and so there are at least two choices for k. If $i \neq r - 2$ or $0 \neq u$, then there are at least three choices for k and we can get a contradiction. Thus we may assume that i = r - 2 and 0 = u. Now with the k = 1 choice (6) and (7) are satisfied and we get a contradiction.

Finally consider the i < u case. Multiplying $a^i B \cap a^u B \neq \emptyset$ by a^k gives that

$$a^{i+k}B \cap a^{u+k}B \neq \emptyset. \tag{8}$$

If

$$0 \le i+k, \ u+k \le r-1,$$
 (9)

$$i + k \neq i, \ u + k \neq i,\tag{10}$$

then (8) contradicts to partition (4). Clearly (9) is equivalent to $-i \le k \le r-1-u$ and so there are r-1-u+i+1 choices for k. Using $u \le r-1, 1 \le i$ we get

$$2 = r - 1 - (r - 1) + (1) + 1 \le r - 1 - u + i + 1$$

and so there are at least two choices for k. If $u \neq r-1$ or $1 \neq i$, then there are at least three choices for k and we can get a contradiction. Thus we may assume that u = r - 1 and 1 = i. Now with the k = -1 choice (9) and (10) are satisfied and we get a contradiction. Therefore $dB \subset B$ as we claimed.

In the factorization G = AB replace the finite factor A by A^{-1} to get the factorization $G = A^{-1}B$. From this factorization we can conclude that $d^{-1}B \subset B$ or equivalently $B \subset dB$.

This completes the proof.

Lemma 2.2. Let G be an abelian group. Let

$$A = \{e, a, a^2, \dots, a^{i-1}, a^i d, a^{i+1}, \dots, a^{r-1}\}$$

be a distorted cyclic subset of G, where $r \ge 4$. A is a subgroup of G if and only if d = e and $a^r = e$.

Proof. If d = e, then A is a cyclic subset of G. If $a^r = e$, then this cyclic subset is a subgroup of G.

Next assume that A is a subgroup of G and try to show that d = e and $a^r = e$. We distinguish the following three cases

Case 1: i = 1. Case 2: i = r - 1. Case 3: $2 \le i \le r - 2$.

Let us settle case 1 first. Now

$$A = \{e, ad, a^2, \dots, a^{r-1}\}.$$

As $a^{r-2}, a^{r-1} \in A$, it follows that $a \in A$. If a = ad, then e = d. Therefore A is a cyclic subgroup of G and so $a^r = e$, as required. Thus we may assume $a \neq ad$ and consequently $a \in \{e, a^2, \ldots, a^{r-1}\}$. If a = e, then $a^2 = \cdots = a^{r-1} = e$ which is a contradiction.

If $a = a^2$, then a = e. This reduces the problem to the earlier case. If $a = a^j$, $3 \le j \le r - 1$, then we get the $e = a^{j-1}$ contradiction.

Let us turn to case 2. Now

$$A = \{e, a, a^2, \dots, a^{r-2}, a^{r-1}d\}.$$

As $a \in A$, it follows that $a^{r-1} \in A$. If $a^{r-1} = a^{r-1}d$, then e = d and so A is a cyclic subgroup of G. It follows that $a^r = e$, as required.

If $a^{r-1} = e$, then the cyclic subset $\{e, a, a^2, \dots, a^{r-2}\}$ is a subgroup of G. Consequently it is a subgroup of A. It follows the contradiction that r-1 divides r. If $a^{r-1} = a^j$, $1 \le j \le r-2$, then we get the $a^{r-2} = a^{j-1}$ contradiction.

We may turn to case 3. Now $a \in A$ implies $a^i \in A$. If $a^i = a^i d$, then e = d and A is a cyclic subgroup of G. It follows that $a^r = e$, as required. We may assume that $a^i = a^j$, where $i \neq j$. We distinguish two cases depending on j < i or i < j.

Assume first that j < i. Multiply $a^j = a^i$ by a^{-u} to get $a^{j-u} = a^{i-u}$. If

$$0 \le j - u, \ i - u \le i - 1, \tag{11}$$

then we get a contradiction. (11) is equivalent to

$$-j \le -u, \ -u \le -1.$$

There are (-1) - (-j) + 1 = j choices for u. Therefore in the $j \ge 1$ case we are done. So we may assume that j = 0.

Multiply $a^0 = a^i$ by a^u to get $a^u = a^{i+u}$. If

$$0 \le u \le i - 1, \ i + 1 \le i + u \le r - 1,$$

then we get a contradiction. Note that the u = 1 choice is suitable, as $2 \le i \le r-2$. Next assume that i < j. Multiply $a^i = a^j$ by a^u to get $a^{i+u} = a^{j+u}$. If

$$i+1 \le i+u, \ j+u \le r-1,$$
 (12)

then we get a contradiction. (12) is equivalent to

$$1 \le u, \ u \le r - 1 - j.$$

There are (r-1-j) - (-1) + 1 = r - j + 1 choices for u. If $r - j + 1 \ge 1$, then we get a contradiction. Equivalently if $j \le r-2$, then we get a contradiction. Thus we may assume that j = r - 1. Multiplying $a^i = a^{r-1}$ by a^{-u} we get $a^{i-u} = a^{r-1-u}$. If

$$0 \le i - u \le i - 1, \ i + 1 \le r - 1 - u \le r - 1,$$

then we get a contradiction. If $i \leq r-3$, then the u = 1 choice is suitable. Thus we may assume that i = r-2. Now $a^{r-2} = a^{r-1}$. This provides the e = a contradiction.

The reader may notice that in the proof above in case 2 it is enough to assume that $r \geq 3$. In this particular case a stronger result holds. We will need this result and for easier reference we spell it out as a lemma.

Lemma 2.3. Let G be an abelian group. Let

$$A = \{e, a, a^2, \dots, a^{r-2}, a^{r-1}d\}$$

be a distorted cyclic subset of G, where $r \ge 3$. A is a subgroup of G if and only if d = e and $a^r = e$.

The distorted cyclic subset A of an abelian group is called a reducible subset if the following hold.

- (1) A is not a subgroup.
- (2) There is a subset B of G such that G = AB is a factorization of G.
- (3) There are non-subgroup distorted cyclic subsets A_1 , A_2 for which $G = A_1 A_2 B$ is a factorization of G.

Lemma 2.4. Let G be an abelian group and let A be a non-subgroup distorted cyclic subset of G. If |A| = st, $s \ge 3$, $t \ge 3$, then A is reducible.

Proof. Suppose there is a subset B of G such that G = AB is a factorization of G. Let

$$A = \{e, a, a^2, \dots, a^{i-1}, a^i d, a^{i+1}, \dots, a^{r-1}\}$$

and let

$$C = \{e, a, a^2, \dots, a^{r-1}\}$$

be a cyclic subset associated with A, where r = st. Set

$$C_{1} = \{e, a, a^{2}, \dots, a^{s-1}\},$$

$$C_{2} = \{e, a^{s}, a^{2s}, \dots, a^{(t-1)s}\},$$

$$A_{1} = C_{1},$$

$$A_{2} = \{e, a^{s}, a^{2s}, \dots, a^{(t-1)s}d\}.$$

Note that the product C_1C_2 is direct and is equal to C.

By Lemma 2.1, in the factorization G = AB the factor A can be replaced by C to get the factorization G = CB. We can read off from the proof that B = dB also holds. The sets

$$B, aB, a^2B, \ldots, a^{r-1}B$$

form a partition of G. Using $C = C_1 C_2$ we get that the sets

form a partition of G. Using
$$B = dB$$
 we get that the sets

form a partition of G and therefore $G = A_1 A_2 B$ is a factorization of G.

If A_1 is a subgroup of G, then $a^s = e$. This violates the factorization G = CB. Thus A_1 cannot be a subgroup of G. If A_2 is a subgroup of G, then, by Lemma 2.3, $a^{st} = a^r = e$ and d = e. Consequently, by Lemma 2.2, A is a subgroup of G. This is not the case. Thus A_2 is not a subgroup of G.

This completes the proof.

Theorem 2.5. Let p_1, \ldots, p_s be distinct odd primes and let

$$G = H \times \Big[\prod_{i=1}^s C(p_i^\infty)\Big],$$

where H is a finite abelian group of odd order and p_i does not divide |H| for each $i, 1 \leq i \leq s$. If

$$G = \prod_{i=1}^{\infty} A_i \tag{13}$$

is a factorization of G and each A_i is a finite distorted cyclic subset of G, then A_i is a subgroup of G for some $i, 1 \leq i < \infty$.

Proof. We claim that q divides $|H|p_1 \cdots p_s$ for each prime divisor q of $|A_k|$ for each factor A_k of the factorization (13).

To prove the claim assume on the contrary that there is a factor A_k of the factorization (13) and a prime divisor q of $|A_k|$ such that q does not divide $|H|p_1 \cdots p_s$. We may assume that k = 1 since this is only a matter of indexing the factors. Setting

$$B = \prod_{i=2}^{\infty} A_i$$

the factorization (13) can be written in the form $G = A_1 B$. We distinguish the next two cases.

102

Case 1:
$$|A_1| \neq q$$
.
Case 2: $|A_1| = q$.

In case 1 let

$$A_1 = \{e, a, a^2, \dots, a^{i-1}, a^i d, a^{i+1}, \dots, a^{r-1}\}$$

and let

$$C = \{e, a, a^2, \dots, a^{r-1}\}$$

be a cyclic subset associated with A_1 . Now plainly $|A_1| \ge 4$ and so, by Lemma 2.1, in the factorization $G = A_1B$, the factor A_1 can be replaced by C to get the factorization G = CB. There are cyclic subsets of prime cardinality C_1, \ldots, C_u such that the product $C_1 \cdots C_s$ is direct and is equal to C. Some of $|C_1|, \ldots, |C_u|$ is equal to q. We may assume that $|C_1| = q$ since this is only a matter of rearranging the factors. Because of the structure of G, each element of G has finite order. Let m be the order of c. Clearly each prime divisor of m divides $|H|p_1 \cdots p_s$. Therefore q and m are relatively prime. By the Chinese remainder theorem, there is an integer t such that

$$t \equiv 0 \pmod{m},$$

$$t \equiv 1 \pmod{q}.$$

Plainly t is relatively prime to q. By Proposition 3 of [4], in the factorization $G = C_1 \cdots C_u B$ the factor C_1 can be replaced by C_1^t to get the factorization $G = C_1^t C_2 \cdots C_u B$. Note that $(c^i)^t = (c^t)^i = e$ and so the element e appears in C_1^t with multiplicity q. This is a contradiction.

In case 2, let *m* be the least common multiple of the orders of the elements of A_1 . Define the integer *t* in the same way as in case 1. Replace A_1 by A_1^t in the factorization $G = A_1B$ to get $G = A_1^t B$. Now we get the contradiction that the element *e* appears in A_1^t with multiplicity *q*.

By the assumption of the theorem $|H|p_1 \cdots p_s$ is odd. The claim we have just verified gives in particular that each $|A_i|$ is odd.

In order to prove the theorem assume on the contrary that in factorization (13) none of the factors is a subgroup of G. By Lemma 2.4, in the factorization (13) each A_i can be replaced by a product of non-subgroup distorted cyclic subsets whose cardinalities are primes. (It may happen that $|A_i|$ is a prime. In this case of course we do not replace A_i .) We end up with a factorization in which each factors is normalized, has prime cardinality, and is not a subgroup of G. For this factorization Theorem 1 of [6] is applicable and implies that one of the factors is a subgroup of G.

This contradiction completes the proof.

3. Factors of prime cardinality

In this section we consider factorizations in which each factor with one possible exception has prime cardinality and one factor may have order four.

Theorem 3.1. Let

$$G = H \times \Big[\prod_{i=1}^{r} C(p_i^{\infty})\Big],$$

where H is a finite abelian group, p_1, \ldots, p_r are distinct primes, p_i does not divide |H| for each $i, 1 \leq i \leq r$. If

$$G = B \prod_{i=1}^{\infty} A_i \tag{14}$$

is a normalized factorization of G such that |B| = 4 and each $|A_i|$ is a prime, then one of the factors B, A_1, A_2, \ldots is periodic.

Proof. Let |H| be the product of the (not necessarily distinct) primes p_{r+1}, \ldots, p_s . By the assumptions of the theorem

$$\{p_1,\ldots,p_r\}\cap\{p_{r+1},\ldots,p_s\}=\emptyset.$$

For a factor A_j of the factorization (14) with $|A_j| = p$, where p is a prime let A'_j be the set of the p-components of the elements of A_j . We claim that in the factorization (14) A_j can be replaced by A'_j . In order to prove the claim let m be a common multiple of the orders of the p-components of the elements of A_j and let n be a common multiple of the orders of the p-components of the elements A_j . Such m, n do exist since each element of G has a finite order. As m and n are relatively primes by the Chinese remainder theorem, the system of congruences

$$t \equiv 0 \pmod{m}, t \equiv 1 \pmod{n},$$

is solvable. By Proposition 3 of [4], A_j can be replaced by A_j^t . As $A_j^t = A'_j$, the claim is proved.

The fact that A_j can be replaced by A'_j implies that the elements of A'_j are distinct. Further we can conclude that if $|A_j| = p$, where p is a prime, then p must be one of the primes p_1, \ldots, p_s . It follows in the same manner that the 2-components of the elements of B are distinct. These elements form a set B' and |B'| = 4.

From the factorization

$$G=B'\prod_{i=1}^\infty A_i'$$

we draw further conclusions. Let p be one of the primes p_1, \ldots, p_r . If p is odd, then the product of all the A'_i 's with $|A'_i| = p$ forms a factorization of the subgroup

 $C(p^{\infty})$ of G. If p = 2, then the product of B' and all the A'_j 's with $|A'_j| = p$ form a factorization of the subgroup $C(p^{\infty})$ of G. If |H| is odd, then the product of all the A'_j 's with $|A'_j| \mid |H|$ forms a factorization of H. If |H| is even, then the product of B' and all the A'_j with $|A'_j| \mid |H|$ forms a factorization of H.

The subgroups of $C(p_i^{\infty})$ form a chain. For each integer $j \ge 0$ there is a unique subgroup of order p^j . Let $H_{i,0}, H_{i,1}, \ldots$ be all the subgroups of $C(p_i^{\infty})$. We assume that $|H_{i,j}| = p_i^j$. There are factors $A_{i,1}'', A_{i,2}'', \ldots$ among A_1', A_2', \ldots such that

$$A_{i,1}'' = H_{i,1}, \ A_{i,1}'' A_{i,2}'' = H_{i,2}, \dots$$

Note that each nonidentity element of $A_{i,j}^{\prime\prime}$ must have order p_i^j .

Now let us go back to factorization (14). To prove the theorem we assume the contrary that none of the factors B, A_1, A_2, \ldots is periodic. Choose a factor A_j and assume that $|A_j| = p$, where p is a prime. (We know that p is one of the primes p_1, \ldots, p_s .) The p-components of the elements of A_j are distinct and form a set A'_j with $|A'_j| = p$. If A'_j is not a subgroup of G, then replace A_j by $C_j = A'_j$. If A'_j is a subgroup of G, then there is an element in A_j whose q-component is not the identity element since A_j is not a subgroup of G. Here q is a prime $p \neq q$. Now A_j can be replaced by C_j such that C_j is not a subgroup of G and the orders of the elements of C_j divide pq. In other words C_j is constructed from the subgroup A'_j by multiplying some elements of A'_j by some elements of order q. Let us consider the factorization

$$G = B \prod_{i=1}^{\infty} C_i.$$

Here none of the factors B, C_1, C_2, \ldots is periodic. For each $i, 1 \leq i \leq r$ there is an integer $\alpha(i)$ such that the orders of the p_i -components of the elements of B are less than or equal to $p_i^{\alpha(i)}$ and $\alpha(i) \geq 1$. The elements of $C(p_i^{\infty})$ whose order is less than or equal to $p_i^{\alpha(i)}$ form the unique subgroup $H_{i,\alpha(i)}$ of $C(p_i^{\infty})$. Set

$$K = HH_{1,\alpha(1)} \cdots H_{r,\alpha(r)}.$$

Clearly, $B \subset K$. Let D_1, \ldots, D_n be all the C_i factors for which $C_i \subset K$. We claim that $K = BD_1 \cdots D_n$ is a factorization of K. As $B, D_1, \ldots, D_n \subset K$, it is enough to verify that $|B||D_1|\cdots|D_n| = |K|$. In order to verify this equation let D_1, \ldots, D_m be the factors among D_1, \ldots, D_n whose cardinality is one of p_{r+1}, \ldots, p_s .

Assume first that $4 \mid |H|$. Note that $|B||D_{m+1}|\cdots|D_n| = |H|$. Further

$$\begin{aligned} |D_1|\cdots|D_m| &= \left(|A_{1,1}''|\cdots|A_{1,\alpha(1)}''| \right)\cdots \left(|A_{r,1}''|\cdots|A_{r,\alpha(r)}''| \right) \\ &= p_1^{\alpha(1)}\cdots p_r^{\alpha(r)} \\ &= |H_{1,\alpha(1)}|\cdots|H_{r,\alpha(r)}|. \end{aligned}$$

Assume next that $4 \mid |H_{1,\alpha(1)}| \cdots |H_{r,\alpha(r)}|$. Note that $|D_{m+1}| \cdots |D_n| = |H|$ and

$$|B||D_1|\cdots|D_m| = |H_{1,\alpha(1)}|\cdots|H_{r,\alpha(r)}|.$$

Thus $K = BD_1 \cdots D_n$ is a factorization of the finite abelian group K. By Theorem 1 of [7], one of the factors is periodic. This contradiction completes the proof.

References

- K. Amin, K. Corrádi, A. D. Sands, *The Hajós property for 2-groups*, Acta Math. Hungar. 89 (2000), 189–198.
- [2] S. J. Eigen and V. S. Prasad, Solution to a problem of Sands on the factorization of groups, Indag. Mathem., 14 (2003), 11–14.
- [3] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Zeit., 47 (1942), 427–467.
- [4] A. D. Sands, Replacement of factors by subgroups in the factorization of abelian groups, Bull. London Math. Soc., 32 (2000), 297–304.
- [5] A. D. Sands, A note on distorted cyclic subsets, appears in Mathematica Pannonica.
- [6] S. Szabó, Factoring an infinite abelian group by subsets, Periodica Math. Hungar., 40 (2000), 135–140.
- [7] S. Szabó, *Rédei's theorem with a factor of order four*, appears in Hokkaido Math. Journal.

Sándor Szabó

Institute of Mathematics and Informatics University of Pécs Ifjúság u. 6 7624 Pécs, Hungary email: sszabo7@hotmail.com